Answer:
b I think it' hope I helped
12 less than a number is equal to the product of 7 and that number. Convert into an
equation and find the number?
Answer:
EQUATION: X - 12 = 7X. SOLUTION: X = - 2.
Step-by-step explanation:
First, we do not know the number. When the number is unknown, it is a variable. I chose the variable, "X."
12 less than signals that we subtract 12. So that would be X - 12.
A product of 7 AND that number means we multiply 7 by X. That can be notated as 7X.
12 less than X is EQUAL to the product of 7 and X. So X - 12 = 7X.
To find the solution, we want to know the value of X. Move X to one side of the equation.
X - 12 = 7X
-X -X
_________
-12 = 6X
Divide both sides by 6 to get X by itself.
X = - 2.
ANSWER PLZZZZZZ!!!!!!!!!!!!!!!
Answer:
length=(3x-2)
Step-by-step explanation:
area of rectangle=length*breadth
3x^2 + 7x - 6=length * (x+3)
3x^2 +(9-2)x -6=length *(x+3)
3x^2+9x-2x-6=length*(x+3)
3x(x+3)-2(x+3)=length*(x+3)
(x+3)(3x-2)=length*(x+3)
(x+3)(3x-2)/(x+3)=length
(3x-2)=length
Answer:
(3x - 2)
Step-by-step explanation:
Given that the area A = length × width
A = 3x² + 7x - 6 ← factor to obtain length
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 3 × - 6 = - 18 and sum = + 7
The factors are + 9 and - 2
Use these factors to split the x- term
3x² + 9x - 2x - 6 ( factor the first/second and third/fourth terms )
= 3x(x + 3) - 2(x + 3) ← factor out (x + 3) from each term
= (x + 3)(3x - 2)
We know (x + 3) is the width , then (3x - 2) is the length
pleaaseee explain !!
Answer:
64
Step-by-step explanation:13+51=64
Which is equivalent to7^(3/2) over 7^(1/2)?
A. 7^(1/3)
B. 7^(3/4)
C. 7^1
D. 7^2
E. 7^3
Given the expression below:
[tex] \large{ \frac{ {7}^{ \frac{3}{2} } }{ {7}^{ \frac{1}{2} } } }[/tex]
Use the following property:
[tex] \large \boxed{ {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } }[/tex]
Therefore:
[tex] \large{ \frac{ {7}^{ \frac{3}{2} } }{ {7}^{ \frac{1}{2} } } = \frac{ \sqrt{ {7}^{3} } }{ \sqrt{7} } } \\ \large{ \frac{ \sqrt{ {7}^{3} } }{ \sqrt{7} } = \frac{ \sqrt{7 \times 7 \times 7} }{ \sqrt{7} } \longrightarrow \frac{7 \sqrt{7} }{ \sqrt{7} } } \\ \large{ \frac{7 \cancel{ \sqrt{7} }}{ \cancel{ \sqrt{7} }} = 7}[/tex]
Note that a¹ = a. Therefore, 7¹ = 7.
Answer
7¹ or 7.?????????????????????
Answer:
[tex]\sqrt{x+6}[/tex]
Step-by-step explanation:
So, there are a few things we need to go over to graph a function,
When a number is outside of a root, it changes the y value. For example:
y=[tex]\sqrt{x}+6[/tex]
With the +6, y will always be 6 higher than normal.
If it was -6, then y will always be 6 lower than normal.
What if the number is inside the root? Well, it works a little differently.
Instead of changing the y value, it changes the x value. For example:
y=[tex]\sqrt{x+6}[/tex]
So if you put a number in for x, lets say -6, wht would you get?
You would get -6+6=0
The square root of 0 is 0, so when x=-6, y=0
Normally, x would have to equal 0 for the y value to be 0.
So basically, when we see the number isnide of the root, we can think the our x coordinate being subtracted by that number.
This makes since, because if we subtract the +6 from x:
x-(+6)= x-6, and -6 is our x coordinate.
If it was -6 at the start, this would also work:
x-(-6)= x+6. So our x coordinate would start at 6.
Now, lets look at our graph.
As we can see, the x values start at -6, and the y values starts at 0.
This eliminates A and D, since the +6 would change the y value, not the x.
Remember that x-6 would make x a postive 6.
x+6 however, would make x a negative 6.
So we need x+6 in a square root.
This eliminates B, since it has a x-6, making the x coordinate postive 6, not negative 6.
So c is our answer.
Hope this helps!
can you slve fasssst pls
Step-by-step explanation:
the value of x is 18 degree and the value of Y is 15 degree
I need helped really need this question to be answer!
Answer:
the answer for your question is b
Find x if 5, 9, 11, 12, 13, 14, 17 and x have a mean of 12.
Answer: 15
Step-by-step explanation: 5+9+11+12+13+14+17=81
Make an equation based on this and solve for the variable (x)
81+x/8=12
12*8=96
81+x=96
96-81=15
x=15
A square is inscribed in an equilateral triangle that is inscribed in a circle.
A square is inscribed in an equilateral triangle that is inscribed in a circle. The square and circle are shaded.
Which represents the area of the shaded region?
area of the circle – area of the square – area of the triangle
area of the triangle – area of the square + area of the circle
area of the triangle + area of the square + area of the circle
area of the circle – area of the triangle + area of the square
The area of the shaded region is (area of the circle) - (area of the square) - (area of the triangle)
Option A is the correct answer
What is a triangle?A triangle is a 2-D figure with three sides and three angles.
The sum of the angles is 180 degrees.
We can have an obtuse triangle, an acute triangle, or a right triangle.
We have,
The shaded region consists of the area inside the circle but outside the square, as well as the area inside the equilateral triangle but outside the square.
Now,
The area of the circle is πr²
Since the square is inscribed in the circle, the diameter of the circle is equal to the diagonal of the square.
Let's say the side length of the square is s.
By the Pythagorean theorem,
s² + s² = (diameter)²
2s² = (2r)²
s² = r²
The area of the square is s² = r².
The area of an equilateral triangle with side length s is √(3)/4 x s².
Since the side length of the square is equal to the height of the equilateral triangle, the side length of the equilateral triangle is also equal to s.
The area of the shaded region.
= (area of the circle) - (area of the square) - (area of the triangle)
Thus,
The area of the shaded region is (area of the circle) - (area of the square) - (area of the triangle)
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ7
help me please i need help on this
Answer:
CE = 20
Step-by-step explanation:
Given a line parallel to a side of a triangle and intersecting the other 2 sides then it divides those sides proportionally, that is
[tex]\frac{6}{8}[/tex] = [tex]\frac{15}{CE}[/tex] ( cross- multiply )
6 CE = 120 ( divide both sides by 6 )
CE = 20
What is the midpoint of the line segment with endpoints (-1,7) and (3, -3)?
A. (1, 2)
B. (1,4)
C. (2, 4)
D. (2, 2)
Help me pls
this is very important
Answer:
C/3rd one. (y=2x+4)
Step-by-step explanation:
In the equation y=mx+b, m=slope of the line and b=y-intercept. From the graph, we know the y-intercept is 4 so we can write y=mx+4. To find the slope: (0-4)/(-2-0) = (-4)/(-2) = 2. We can replace the m with 2 to get the final equation of y=2x+4 which is also the third answer.
can you solve this problem please
Answer:
k = 11
Step-by-step explanation:
Given the points are collinear then the slopes between consecutive points are equal.
Using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (5, 1) and (x₂, y₂ ) = (1, - 1)
m = [tex]\frac{-1-1}{1-5}[/tex] = [tex]\frac{-2}{-4}[/tex] = [tex]\frac{1}{2}[/tex]
Repeat with another 2 points and equate to [tex]\frac{1}{2}[/tex]
with (x₁, y₁ ) = (1, - 1) and (x₂, y₂ ) = (k, 4)
m = [tex]\frac{4+1}{k-1}[/tex] , then
[tex]\frac{5}{k-1}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
k - 1 = 10 ( add 1 to both sides )
k = 11
Type the equation for the graph below.
please help!!!
Answer:
y = 1sin(3x)
Step-by-step explanation:
y = A sin( (2π/ω)x )
A is amplitude = 1
ω is period = 2π/3
------------------------------
y = 1sin( 2π / (2π/3) x)
y = 1sin(3x)
The equation for the graph with a sinusoidal wave, given an amplitude of 1, a period of 2π/3, and a phase shift of 0, is y = sin((2π/3)x).
The equation for a sinusoidal wave can be written as:
y = A * sin(ωx + φ)
In this case, we are given the values of amplitude (A = 1), period (ω = 2π/3), and phase shift (φ = 0).
The amplitude (A) represents the maximum displacement or height of the wave from the center line. In this case, it is 1.
The period (ω) represents the length of one complete cycle of the wave. The period is the reciprocal of the frequency, and in this case, it is 2π/3.
The phase shift (φ) represents any horizontal displacement of the wave. In this case, the phase shift is 0, indicating that the wave starts at its equilibrium position.
Using these values, the equation for the given graph would be:
y = 1 * sin((2π/3)x + 0)
Simplifying it further:
y = sin((2π/3)x)
To learn more about equation click on,
https://brainly.com/question/30509851
#SPJ2
WILL GIVE BRAINLIEST!
3 Using SOH CAH TOA!
1 point
Find the missing side length,
1
16
23°
2
х
Type your answer...
Previous
find the area of the figure below
A.832in^2
B.768^2
C.416^2
D.384in^2
2. The average daily rainfall in London during April was 3.5 mm. How much rain fell during the month?
Answer:
105mm
Step-by-step explanation:
To find the rainfall during the month of April simply multiply the number of days in April times the average daily rainfall
Number of days in April: 30
Average daily rainfall: 3.5mm
Rainfall during the month = 30 * 3.5 = 105mm
Find the sum.
b/ b^2+4b+4 + 9/b^2+7b+10
Answer:
11b^3+14b^2+b+9
---------------------------
b2
Step-by-step explanation:
Which is a better estimate for the length of a raisin?
A. 1 meter b. 1 centimeter
Answer:
1 centimeter
Step-by-step explanation:
nope
John invested $30000 in the bank for 4 years. At the end of the period, he had
$42520. Calculate
a. the interest earned
b. the rate per annum at which simple interest was earned to 1 decimal place.
Answer:
Rate = 10.4%
Step-by-step explanation:
Given :
P = $30000
A = $42520
Interest earned = 42520 - 30000 = $12520
Time = 4years
Find R
[tex]Interest = \frac{PRT}{100}[/tex]
[tex]12520 = \frac{30000 \times R \times 4}{100}\\\\12520 = 300 \times 4 \times R\\\\12520 = 1200 \times R\\\\R = \frac{12520}{1200}\\\\R = 10.43 \%[/tex]
Round to 1 decimal place, Rate = 10.4%
The total resistance in a circuit with two parallel resistors is 2 ohms and R1 is 6 ohms. Using the equation for R2, in terms of RT and R1, what is R2 R2 blank is ohms
[tex]R_2[/tex] is 3 ohms
Step-by-step explanation:In a circuit containing two resistors [tex]R_1[/tex] and [tex]R_2[/tex] connected together in parallel, the total resistance [tex]R_T[/tex] is given by;
[tex]\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}[/tex] ---------(i)
Make [tex]R_2[/tex] subject of the formula;
=> [tex]\frac{1}{R_2} = \frac{1}{R_T} - \frac{1}{R_1}[/tex]
=> [tex]\frac{1}{R_2} = \frac{R_1 - R_T}{R_TR_1}[/tex]
=> [tex]{R_2} = \frac{R_TR_1}{R_1 - R_T}[/tex] ---------------(ii)
From the question,
[tex]R_1[/tex] = 6Ω
[tex]R_T[/tex] = 2Ω
Substitute these values into equation (ii) as follows;
=> [tex]{R_2} = \frac{2*6}{6 - 2}[/tex]
[tex]{R_2} = \frac{12}{4}[/tex]
[tex]R_2[/tex] = 3Ω
Therefore, the value of [tex]R_2[/tex] = 3 ohms or [tex]R_2[/tex] = 3Ω
Answer: is 3 ohms.
Explanation: edmentum/plato :)
Two brothers are sharing a certain sum of money in the ratio 2/3 : 3/5, if the largest share was Gh¢500.00. How much was shared between them?
Given:
Two brothers are sharing a certain sum of money in the ratio [tex]\dfrac{2}{3}:\dfrac{3}{5}[/tex].
The largest share was Gh¢500.00.
To find:
The total amount shared between them.
Solution:
It is given that, two brothers are sharing a certain sum of money in the ratio [tex]\dfrac{2}{3}:\dfrac{3}{5}[/tex].
First we need to make the denominators common.
[tex]Ratio=\dfrac{2\times 5}{3\times 5}:\dfrac{3\times 3}{5\times 3}[/tex]
[tex]Ratio=\dfrac{10}{15}:\dfrac{9}{15}[/tex]
[tex]Ratio=10:9[/tex]
So, the two brothers are sharing a certain sum of money in the ratio 10:9.
Let the shares of two brothers are 10x and 9x respectively. So, the larger share is 10x.
It is given that the largest share was Gh¢500.00.
[tex]10x=500[/tex]
[tex]x=\dfrac{500}{10}[/tex]
[tex]x=50[/tex]
Now, the total amount shared between them is:
[tex]Total=10x+9x[/tex]
[tex]Total=19x[/tex]
[tex]Total=19(50)[/tex]
[tex]Total=950[/tex]
Therefore, the total amount shared between them is Gh¢950.00.
Find the y-intercept of the quadratic function: g(x) = 5х2 + 9x + 4 о (0, 18) (4.0) ООО (0.4) (0,5)
Answer:
(0,4)
Step-by-step explanation:
Here, we want to find the y-intercept of the quadratic function
g(x) = 5x^2 + 9x + 4
Mathematically, we know that the y-intercept is the position on the graph where we have x = 0
so, to find the y-intercept value, we have to find g(0)
simply put, we have to substitute the value of 0 for x
Mathematically, we have this as;
g(0) = 5(0)^2 + 9(0) + 4
g(0) = 0 + 0 + 4
g(0) = 4
thus, we have the y-intercept point as (0,4)
what number represents the same amount as 4 tens+0 ones
I need help
Solve the expression when X =5;3(X+2)=
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {21}}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex]3 \: ( \: x + 2 \: )[/tex]
Plugging in the value [tex]x = 5[/tex] in the above expression, we have
[tex] = 3\:( \: 5 + 2 \: )[/tex]
[tex] = 3 \: ( \: 7 \: )[/tex]
[tex] = 3 \times 7[/tex]
[tex] = 21[/tex]
Note:-[tex]\sf\pink{PEMDAS\: rule.}[/tex]
P = Parentheses
E = Exponents
M = Multiplication
D = Division
A = Addition
S = Subtraction
[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35☂}}}}}[/tex]
Find the value of angle y
Answer:
116
Step-by-step explanation:
116 is parallel to y so that are the same its called corresponding angles
When a transversal cuts two parallel lines, the corresponding angles are equal.
In the given figure, the corresponding angles are 116° and y
So, they are equal
⇒ y = 116°
What is the value of this expression when a = 7 and b = -4? 1201 - 6 3 OA. -6 OB. - 31 Oc. 37 D. 6
Answer:
OA . -6
Step-by-step explanation:
correct me if I'm wrong
A rectangular garden has a length that is modeled by the expression2X -7 and a width of 3X^2+4x. What is the area of the garden?
Answer:
A = 6x³ - 13x² - 28xStep-by-step explanation:
Area of rectangle:
A = lwGiven:
l = 2x - 7w = 3x² + 4xThe area is:
A = (2x - 7)(3x² + 4x) =
2x(3x² + 4x) - 7(3x² + 4x) =
6x³ + 8x² - 21x² - 28x =
6x³ - 13x² - 28x
Answer:
Area of rectangle = 6 x ³ - 13 x ² + 28
step by step explanation
Given That :-
Length of rectangle = 2 x - 7Width of rectangle = 3 x ²+ 4 xTo Find :-
Area of rectangleFormula Used :-Area of rectangle = Length × Width
Solution : -Using Formula
Area of rectangle = Length × Width
substitute the values.
Area of rectangle = ( 2 x - 7 ) × ( 3 x ² + 4 )
= 2 x ( 3 x ² + 4 ) - 7 ( 3 x ² + 4 )
= 6 x ³ + 8 x - 21 x ² + 28
= 6 x ³ - 13 x ² + 28
Need help with probabilities (math) plz
Answer:
What is your question for probabilities?
how to solve -4x+8y=-16
4x+3y=5
Answer:
X=2, y=-1
Step-by-step explanation:
-4x +8y=-16 equation 1
4x +3y=5 equation 2
11y=-11 add two equations to eliminate x
y=-1
solve for x by inputting y value into either equation
4x+3y=5
4x+3(-1)=5
4x-3=5
4x=8
x=2