Maya is interning at a law firm over the summer and is paid b the hour. If her hourly wage is $52 which represents the proportional relationship between the wages she earns (w) and the number of hours (h)?

Answers

Answer 1

Answer: [tex]w= 52 h[/tex] .

Step-by-step explanation:

Given: Maya is interning at a law firm over the summer and is paid per hour.

Total wages = (Hourly wage) x (Number of hours worked)

If her hourly wage is $52, then the total wages(w) = 52 x (Number of hours(h))

i.e. w= 52 h

Hence, the proportional relationship between the wages she earns (w) and the number of hours (h) described by [tex]w= 52 h[/tex] .


Related Questions

The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0

Answers

Answer:

Step-by-step explanation:

A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).

X = 100pth percentile of W

Y = 100(1-p)th percentile of W

Expressing Y as a function of X;

Y = 100(1-p)th = 100th - 100pth

Recall that 100pth is same as X, so substitute;

Y = 100th - X

where 100th = hundredth percentile of W and X = 100pth percentile of W  

How do i do this equation
-3(-2y-4)-5y-2=

Answers

Answer:

combined like terms and then follow  the order of operations.

Step-by-step explanation:

Combine like terms and then follow order of operations

What is the domain of f?

Answers

Answer:

-5 ≤x ≤6

Step-by-step explanation:

The domain is the values that x can take

X goes from -5 and includes -5 to x =6 and includes 6

-5 ≤x ≤6

Answer:

See attached!

Step-by-step explanation:

f as a function of x is equal to the square root of quantity 4 x plus 6, g as a function of x is equal to the square root of quantity 4 x minus 6 Find (f + g)(x). x times the square root of 8 4x square root of 8 times x The square root of quantity 4 times x plus 6 plus the square root of quantity 4 times x minus 6

Answers

Answer:

Last one

Step-by-step explanation:

The function f is:

● f (x)= √(4x+6)

The function g is:

● g(x) = √(4x-6)

Add them together:

● f+g (x)= √(4x+6 )+ √(4x-6)

Answer:

[tex]\large \boxed{{\sqrt{4x+6} + \sqrt{4x-6} }}[/tex]

Step-by-step explanation:

[tex]f(x)=\sqrt{4x+6}[/tex]

[tex]g(x)=\sqrt{4x-6}[/tex]

[tex](f+g)(x)[/tex]

[tex]f(x)+g(x)[/tex]

Add both functions.

[tex](\sqrt{4x+6} )+ (\sqrt{4x-6} )[/tex]

A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?

Answers

Answer:

  17 by 21 inches

Step-by-step explanation:

The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...

  L + W = 38

  LW = 357

__

Solution:

  W(38 -W) = 357 . . . . . substitute for L

  -(W^2 -76W) = 357 . . expand on the left

  -(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square

  (W -19)^2 = 4 . . . . . . . write as a square

  W -19 = ±√4 = ±2 . . . take the square root; next, add 19

  W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other

The dimensions are 17 by 21 inches.

Find the reciprocal of the equation in standard form. The selected answer is incorrect.

Answers

Answer:

C

Step-by-step explanation:

reciprocal of z=1/z

[tex]z=2(cos \frac{\pi }{4} +i sin\frac{\pi }{4} )=2e ^{i \frac{\pi } {4}\\\frac{1}{z}=\frac{1}{2e^{i \frac{\pi}{4} } }\\\frac{1}{z} =\frac{1}{2} e^{-i\frac{\pi}{4} } \\\frac{1}{z} (cos\frac{\pi}{4} -isin\frac{\pi}{4} ) \\\frac{1}{z}=\frac{1}{2} (\frac{\sqrt{2} }{2} -\frac{\sqrt{2} }{2} )\\\frac{1}{z} =\frac{\sqrt{2} }{4} -i \frac{\sqrt{2 } }{4}[/tex]

The area of the circle x² + y2 - 6x-4y +9 = 0 is​

Answers

Answer:

Your answer is here.Enjoy dude

Answer:

12.56 unit²

Step-by-step explanation:

Given:x² + y² - 6x - 4y + 9 = 0To find:The area of circleSolution:

The form of the circle is:

(x- h)² + (y-k)² = r²

Let's bring the given to the form of a circle as above:

x² + y² - 6x - 4y + 9 = 0x² - 6x  + y²-  4y + 9 = 0        ⇒ combining like terms and completing squarex² - 6x + 9 + y²- 4y + 4 = 4    ⇒ adding 4 to both sides(x-3)² + (y - 2)² = 2²                ⇒ got the form of this circle

As per the form, we got r² = 2², so the radius of circle is 2 units.

The area of circle:

A= πr² = 3.14×2² = 12.56 unit²

The equation below is written in words. x plus ten equals two. What's the value of x?

Answers

Answer:

x+10 =2

x = -8

Step-by-step explanation:

plus means add

x+10 =2

Subtract 10 from each side

x+10-10 =2-10

x = -8

Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle? ​

Answers

Answer:

7.5 cm²

Step-by-step explanation:

Dimensions of the large ∆:

[tex] base (b) = 3cm, height (h) = 9cm [/tex]

[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]

Dimensions of the small ∆:

[tex] base (b) = 2cm, height (h) = 6cm [/tex]

[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]

Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²

what is the distance between the first and third quartiles of a data set called?

Answers

Answer:

Interquartile range is the distance between the first and third of a data.

Step-by-step explanation:

Hope it will help you :)

The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.

Answers

Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.

The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

What is the line of best fit?

A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.

We have a line of best fit:

h = –21.962x + 114.655

As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.

Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

Learn more about the line of best fit here:

brainly.com/question/14279419

#SPJ2

Stock prices used to be quoted using eighths of a dollar. Find the total price of the transaction. 400 shares of national semi at 135 1/2

Answers

Answer:

The value is [tex]T = \$54200[/tex]

Step-by-step explanation:

From the question we are told that

      The  number of shares is  n  =  400

      The rate  of each share is  [tex]k = 135\frac{1}{2} = 135.5[/tex]

Generally the total price is mathematically represented as

     [tex]T = 400 * 135.5[/tex]

      [tex]T = \$54200[/tex]

Explain how to perform a​ two-sample z-test for the difference between two population means using independent samples with known.

Answers

Answer:

The steps 1-7 have been explained

Step-by-step explanation:

The steps are;

1) We will verify that the population standard deviations are known and that the population is normally distributed which means the sample size must be a minimum of 30.

2) We will state the null and alternative hypothesis

3) We will determine the critical values from the relevant tables

4) From the critical values gotten, we will determine it's corresponding region where it can be rejected.

5)We will calculate the value of the test statistic from the formula;

z = [(x1' - x2') - (μ1 - μ2)]/√[((σ1)²/n1) + ((σ2)²/n2)]

6) If the value of the test statistic gotten from step 5 above falls in the region of rejection noted in step 4,then we will reject the null hypothesis

7) After rejection of the null hypothesis, we will now give a decision/conclusion on the claim.

10/7p+13/8+15/2p=909/56 i NEED THiS solving multi step equations w fractions and #8 PLEASE

Answers

Answer:

P= 2

Step-by-step explanation:

10/7p+13/8+15/2p=-909/56

Combine like terms

10/7p+15/2p=-909/56-13/8

20p+105p/14=-909-13*7/56

125/14p=-909-91/56

125/14p= -1000/56

125/14p*14/125= -1000/56*14/125

simplify

P= 8/4=2

And for #8 n =1 I answered this question it

Search

Reduce the following fraction to lowest terms: 8/14

Answers

Answer:

4/7

Step-by-step explanation:

divide both by two for its simplest form

Answer:4/7

Step-by-step explanation

Divide both the numerator and denominator by 2

The result for the numerator is 8/2=4

that of the denominator is 14/2=7

Therefore the resultant answer is 4/7

Word phrase for algebraic expression 15-1.5/d

Answers

Answer: 1.5 less than 15 is divided by a number d.

Step-by-step explanation:

Carolyn and Paul are playing a game starting with a list of the integers $1$ to $n.$ The rules of the game are: $\bullet$ Carolyn always has the first turn. $\bullet$ Carolyn and Paul alternate turns. $\bullet$ On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list. $\bullet$ On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed. $\bullet$ If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers. For example, if $n=6,$ a possible sequence of moves is shown in this chart: \begin{tabular}{|c|c|c|} \hline Player & Removed \# & \# remaining \\ \hline Carolyn & 4 & 1, 2, 3, 5, 6 \\ \hline Paul & 1, 2 & 3, 5, 6 \\ \hline Carolyn & 6 & 3, 5 \\ \hline Paul & 3 & 5 \\ \hline Carolyn & None & 5 \\ \hline Paul & 5 & None \\ \hline \end{tabular} Note that Carolyn can't remove $3$ or $5$ on her second turn, and can't remove any number on her third turn. In this example, the sum of the numbers removed by Carolyn is $4+6=10$ and the sum of the numbers removed by Paul is $1+2+3+5=11.$ Suppose that $n=6$ and Carolyn removes the integer $2$ on her first turn. Determine the sum of the numbers that Carolyn removes.

Answers

Answer:

The sum of the numbers that Carolyn removes is 5.

Step-by-step explanation:

The provided instruction for the game are:

Carolyn always has the first turn. Carolyn and Paul alternate turns.On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list.On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed.If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers.

The value of n is supposed as 6.

And it is also provided that Carolyn removes the integer 2 on her first turn.

The table displaying the outcomes of the game are as follows:

Player          Removed             Remaining

Carolyn                2                    1, 3, 4, 5, 6

 Paul                    1                       3, 4, 5, 6

Carolyn                3                         4, 5, 6

 Paul                    6                           4, 5

Carolyn             None                        4, 5

 Paul                  4, 5                        None

The sum of the numbers that Carolyn removes is:

S = 2 + 3 = 5

Thus, the sum of the numbers that Carolyn removes is 5.

I believe the answer is 8, but I am not sure.

Find the fourth roots of 16(cos 200° + i sin 200°).

Answers

Answer:

See below.

Step-by-step explanation:

To find roots of an equation, we use this formula:

[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos(\frac{\theta}{n}+\frac{2k\pi}{n} )+\mathfrak{i}(sin(\frac{\theta}{n}+\frac{2k\pi}{n})),[/tex] where k = 0, 1, 2, 3... (n = root; equal to n - 1; dependent on the amount of roots needed - 0 is included).

In this case, n = 4.

Therefore, we adjust the polar equation we are given and modify it to be solved for the roots.

Part 2: Solving for root #1

To solve for root #1, make k = 0 and substitute all values into the equation. On the second step, convert the measure in degrees to the measure in radians by multiplying the degrees measurement by [tex]\frac{\pi}{180}[/tex] and simplify.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(0)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(0)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}} = 2(sin(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

Root #1:

[tex]\large\boxed{z^\frac{1}{4}=2(cos(\frac{19\pi}{36}))+\mathfrack{i}(sin(\frac{19\pi}{38}))}[/tex]

Part 3: Solving for root #2

To solve for root #2, follow the same simplifying steps above but change k  to k = 1.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(1)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(1)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{2\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{2\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{2}))\\[/tex]

Root #2:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{7\pi}{9}))+\mathfrak{i}(sin(\frac{7\pi}{9}))}[/tex]

Part 4: Solving for root #3

To solve for root #3, follow the same simplifying steps above but change k to k = 2.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(2)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(2)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{4\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{4\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\pi))+\mathfrak{i}(sin(\frac{5\pi}{18}+\pi))\\[/tex]

Root #3:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{23\pi}{18}))+\mathfrak{i}(sin(\frac{23\pi}{18}))}[/tex]

Part 4: Solving for root #4

To solve for root #4, follow the same simplifying steps above but change k to k = 3.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(3)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(3)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{6\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{6\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{3\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{3\pi}{2}))\\[/tex]

Root #4:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{16\pi}{9}))+\mathfrak{i}(sin(\frac{16\pi}{19}))}[/tex]

The fourth roots of 16(cos 200° + i(sin 200°) are listed above.


A box of chocolates contains five milk chocolates, three dark chocolates, and four white chocolates. You randomly select and eat three chocolates. The first piece is milk
chocolate, the second is white chocolate, and the third is milk chocolate. Find the probability of this occuring.

Answers

Answer:

60/220

Step-by-step explanation:

we use combination,

[tex] (\frac{5}{1} ) \times ( \frac{4}{1} ) \times ( \frac{3}{1} )[/tex]

[tex]5 \times 4 \times 3 = 60[/tex]

then, all divided by,

[tex] (\frac{12}{3}) = 220 [/tex]

[tex]60 \div 220[/tex]

The probability of the first piece being milk chocolate, the second being white chocolate, and the third being milk chocolate is 0.06.

What is Probability?

The probability helps us to know the chances of an event occurring.

[tex]\rm Probability=\dfrac{Desired\ Outcomes}{Total\ Number\ of\ outcomes\ possible}[/tex]

The sample contains five milk chocolates, three dark chocolates, and four white chocolates. Therefore, the probability that the first piece is milk chocolate is

[tex]\rm Probability=\dfrac{\text{Number of Milk choclates}}{\text{Total number of choclates}}[/tex]

[tex]\rm Probability=\dfrac{5}{12}[/tex]

Now, since the chocolate is been eaten the sample size will reduce from 12 chocolates in total to 11 chocolates in total (four milk chocolates, three dark chocolates, and four white chocolates). Therefore, the probability of the second piece being white chocolate is

[tex]\rm Probability=\dfrac{\text{Number of White choclates}}{\text{Total number of choclates}}[/tex]

[tex]\rm Probability=\dfrac{4}{11}[/tex]

Now, as the chocolate is been eaten the sample size will reduce from 11 chocolates in total to 10 chocolates in total (four milk chocolates, three dark chocolates, and three white chocolates). Therefore, the probability of the third piece being milk chocolate is

[tex]\rm Probability=\dfrac{\text{Number of Milk choclates}}{\text{Total number of choclates}}[/tex]

[tex]\rm Probability=\dfrac{4}{10}[/tex]

Thus, the probability of the first piece being milk chocolate, the second being white chocolate, and the third being milk chocolate is

[tex]\rm Probability=\dfrac{5}{12}\times \dfrac{4}{11} \times \dfrac{4}{10} = \dfrac{80}{1320} = 0.06[/tex]

Hence, the probability of the first piece being milk chocolate, the second being white chocolate, and the third being milk chocolate is 0.06.

Learn more about Probability:

https://brainly.com/question/795909

What does "C" represent and how do you evaluate this?

Answers

It represents 'combinations'.

It means that you have 9 items, and you want to count the combinations of 7 items.

The answer is:
9! / ((9-7)! * (7!))
= 9! / (2! * 7!)
= 9*8/2
= 36

[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]

Give the domain and range of each relation using set notation​

Answers

Answer:

See below.

Step-by-step explanation:

First, recall the meanings of the domain and range.

The domain is the span of x-values covered by the graph.

And the range is the span of y-values covered by the graph.

1)

So, we have here an absolute value function.

As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:

[tex]\{x|x\in\textbb{R}\}[/tex]

(You are correct!)

For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:

[tex]\{y|y\leq 7\}[/tex]

2)

We have here an ellipse.

First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:

[tex]-4\leq x\leq 6[/tex]

So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:

[tex]\{x|-4\leq x\leq 6\}[/tex]

For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:

[tex]-5\leq y\leq 1[/tex]

This represents all the y-values between -5 and 1, including -5 and 1.

In set notation, thi is:

[tex]\{y|-5\leq y\leq 1\}[/tex]

A signal light is green for 4 minutes, yellow for 10 seconds, and red for 3 minutes. If you drive up to this light, what is the probability that it will be green when you reach the intersection? Round your answer to two decimal places.

Answers

Answer:

0.56 is the required probability.

Step-by-step explanation:

Time for which signal shows green light = 4 minutes

Time for which signal shows yellow light = 10 seconds

Time for which signal shows red light = 3 minutes

To find:

Probability that the signal will show green light when you reach the destination = ?

Solution:

First of all, let us convert each time to same unit before doing any calculations.

Time for which signal shows green light = 4 minutes = 4 [tex]\times[/tex] 60 seconds = 240 seconds

Time for which signal shows yellow light = 10 seconds

Time for which signal shows red light = 3 minutes = 3 [tex]\times[/tex] 60 seconds = 180 seconds

Now, let us have a look at the formula for probability of an event E:

[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]

Here, E is the event that green light is shown by the signal.

Number of favorable cases mean the time for which green light is shown and Total number of cases is the total time (Time for which green light is shown + Time for which Yellow light is shown + Time for which red light is shown)

So, the required probability is:

[tex]P(E) = \dfrac{240}{240+10+180}\\\Rightarrow P(E) = \dfrac{240}{430}\\\Rightarrow \bold{P(E) \approx 0.56 }[/tex]

Select the correct answer -1/4(12x+8) is less than it equal to -2x+11

Answers

Answer:

x ≤ [tex]\frac{9}{5}[/tex]

Step-by-step explanation:

Given

[tex]\frac{1}{4}[/tex](12x + 8) ≤ - 2x + 11 ← distribute parenthesis on left side

3x + 2 ≤ - 2x + 11 ( add 2x to both sides )

5x + 2 ≤ 11 ( subtract 2 from both sides )

5x ≤ 9 ( divide both sides by 5 )

x ≤ [tex]\frac{9}{5}[/tex]

Answer: x≤ 3/-10

Explanation: Firstly given that

-¼(12x+8) ≤ -2x+11

• Divide by 4

4X-¼(12x+8) ≤-2x+11

= -12x + 8 ≤ -2x + 11

• Group like terms

-12x + 2x ≤ 11 - 8

= -10x/10 ≤ 3/-10

x≤ 3/-10

An experimental probability is ______ likely to approach the theoretical probability if the number of trials simulated is larger. A. as B. more C. less D. not

Answers

Answer:

B. More

Step-by-step explanation:

This is according to the law of large numbers

An experimental probability is more likely to approach the theoretical probability if the number of trials simulated is larger.

What is an experimental probability and theoretical probability?

Experimental probability is an experimental outcome whereas theoretical probability is a possible or expected outcome.

An experimental probability is more likely to approach the theoretical probability if the number of trials increased because of the law of large numbers which states that the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed

Thus using the concept of the law of large numbers we can say that an experimental probability is more likely to approach the theoretical probability.

Learn more about probability here:

https://brainly.com/question/9627169

#SPJ5

1
1 point
mZABD = 79
D
C
V
(5x + 4)
(8x - 3)
В B.
A
x= type your answer...
2
1 point

Answers

Answer:

x = 6

Step-by-step explanation:

∠ DBC + ∠ ABC = ∠ ABD , substitute values

5x - 4 + 8x - 3 = 79

13x + 1 = 79 ( subtract 1 from both sides )

13x = 78 ( divide both sides by 13 )

x = 6

What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24

Answers

Answer:

D question,somewhat confusing, itsit's like simultaneous equation,but values are different

Answer:

x = 4 + 2y/3

Step-by-step explanation:

Write "six and thirty-four thousandths" as a decimal

Answers

Answer:

6.034

Step-by-step explanation:

6 is a whole number.

.034 because it is 34 thousandths, not 34 hundredths.

I need help will rate you branliest

Answers

Answer:

[tex] {x}^{2} + 5x + 10[/tex]

Answer:

[tex]\large \boxed{x^2 +5x+10}[/tex]

Step-by-step explanation:

A polynomial is an expression that has variables, coefficients, and constants.

An example of a polynomial can be x² - 6x + 2.

if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=

Answers

Answer:

3

Step-by-step explanation:

f(x)=3x-3

g(x)=-x^2+4,

f(2) = 3(2) -3 = 6-3 =3

g(-2) = -(-2)^2+4 = -4+4 = 0

f(2)-g(-2)= = 3-0 = 3

Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...

Answers

Answer:

C. -8, -6, -4, -2, ...

Step-by-step explanation:

An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.

A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.

B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.

C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.

Hope this helps!

Other Questions
A plumbers apprentice needs to cut a 54-inch length of pipe so that one piece is twice the length of the other piece. How far from the endpoint should the apprentice cut the pipe? Which of the following did the colonists promise to do if King George III addressed their complaints -18 = -3x + 6 can anybody help me solve this problem Cada par de numeros esta a razon de 2:3 Carl recorded the number of customers who visited his new store during the week: Day Customers Monday 17 Tuesday 13 Wednesday 14 Thursday 16 He expected to have 15 customers each day. To answer whether the number of customers follows a uniform distribution, a chi-square test for goodness of fit should be performed. (alpha = 0.10) What is the chi-squared test statistic? Answers are rounded to the nearest hundredth. Find the area of the ACTUAL gym Accidentally a food handler sprays glass cleaner onto a pan of baked chicken strips. Which type of hazard is this? a kicker starts a football game by "kicking off". The quadratic function y = -10x^2 + 25x models football's height after x seconds. How long, in seconds, is the football in the air? What is the surface area of the sphere below? which statement best describes an effect of a filibuster? Pennsylvania Refining Company is studying the relationship between the pump price of gasoline and the number of gallons sold. For a sample of 14 stations last Tuesday, the correlation was 0.65. Can the company conclude that the correlation is positive Think of an ethical question that might arise in your own life. What are two possible answers to the question? Which answer do you think is better? Expectant mothers many times see their unborn child for the first time during an ultrasonic examination. In ultrasonic imaging, the blood flow and heartbeat of the child can be measured using an echolocation technique similar to that used by bats. For the purposes of these questions, please use 1500 m/s as the speed of sound in tissue. I need help with part B and C To clearly see an image, the wavelength used must be at most 1/4 of the size of the object that is to be imaged. What frequency is needed to image a fetus at 8 weeks of gestation that is 1.6 cm long? A. 380 kHz B. 3.8 kHz C. 85 kHz D. 3.8 MHz A new resident recently fell and broke his hip, which is what prompted his move into the long-term care facility. He has become very dependent on other for the first time in his life. Even though the facility is comfortable, provides good medical care, and serves food he enjoys, he is depressed. According to Maslow's Hierarchy of Needs, which of the needs could the resident be struggling with How is Islamic fundamentalism being practiced in the graphic novel,Persepolis PLEASE HELP ME!!! I will mark brainliest!!! The image above shows two dilated figures with lines IJ and JK drawn. If the smaller figure was dilated by a scale factor of 2, what relationship do lines IJ and KL have? What is the science and art of making an illustrated map or chart. GIS allows users to interpret, analyze, and visualize data in different ways that reveal patterns and trends in the form of reports, charts, and maps? a. Automatic vehicle locationb. Geographic information systemc. Cartographyd. Edge matching If the rate of formation (also called rate of production) of compound C is 2M/s in the reaction A --->2C, what is the rate of consumption of A Using the function f(x)=-x^2+8x-13 find f(4) The adjustment to the weighted-average shares for retired shares is the same as for issuing new shares except: A. The shares are deducted rather than added. B. The shares are added rather than deducted. C. The shares are treated as being acquired at the end of the year. D. The shares are treated as being acquired at the beginning of the year. g