Answer:
$13,450
Step-by-step explanation:
The fixed cost of production is $13,450, this is because a fixed cost of production is the amount of cost that does not change with an increase or decrease in the amount of the goods or services produced. Fixed cost of production are paid by companies. It is one of the two component of the total cost of goods or services along with the variable cost.
In regard to the information given in the question, no matter how many spinners the company produces, the fixed cost will remain the same.
Assuming x is the variable cost which signifies the number of spinners produced, this literally implies that the cost to produce each spinner is $1.28 and the fixed cost which is independent of the production is $13,450.
Hence, the fixed cost of production is $13,450.
plz someone help me with this question
Answer:
(x+3)^2=-4(y-3)
Step-by-step explanation:
(x-h)^2 = 4p(y-k)
P is the distance between the focus and vertex
P = 1 --> used distance formula for the points of -3,2 -3,3
Vertex is -3,3 --> according to picture
(x+3)^2=-4(y-3)
P is negative since it goes downwards in the picture.
If the mean difference gets larger and sample standard deviation stays the same, what happens to effect size?
Answer:
The effect size of the sample gets larger
Step-by-step explanation:
The effect size of the sample gets larger when the mean difference gets larger and the sample standard deviation stays the same. because the Cohen's effect size is proportional to mean difference and this can be proven below using the Cohen's formula
Cohen's effect size = Mean difference / standard deviation
form the question standard deviation is constant while the mean difference gets larger, hence the effect size will get larger as well
I need help with this question
Answer:
a. 2
b. x^2 + 10x + 26
c. x^2 + 2x + 2
Step-by-step explanation:
For each part, replace x with the value you are given and simplify.
f(x) = x^2 - 2x + 2
a.
f(2) = 2^2 - 2(2) + 2 = 2
b.
f(x + 6) = (x + 6)^2 - 2(x + 6) + 2
= x^2 + 12x + 36 - 2x - 12 + 2
= x^2 + 10x + 26
c.
f(-x) = (-x)^2 - 2(-x) + 2
= x^2 + 2x + 2
Figure ABCD is a square find the value of x
Answer:
x=3
Step-by-step explanation:
since its a square all sides equal each other
5x-2=x+10
4x -2 =10
4x=12
x = 3
f(x) = -3x + 7
What is f (0)?
Answer:
f(0) = 7
Step-by-step explanation:
f(x) = -3x + 7
Let x =0
f(0) = -3*0 + 7
f(0) = 7
Select the best estimate of the capacity of a bath tub. A. 5 ml B. 500 ml C. 50 cl D. 500 L.
Answer:
D. 500 L
because ml cl is smaller than L
Answer:
D. 500 L
Step-by-step explanation:
Choice A (5 ml) is basically a teaspoon. A bathtub can most definitely hold much more then one teaspoon of water.
Choice B (500 ml) is about 17 ounces. Which is basically the amount of water in a normal water bottle. A bathtub can hold more then the amount of water in one water bottle.
Choice C (50 cl) is a little bit more then 2 cups of water. I believe a normal bathtub can hold about 1280 cups of water.
That rules out choices A, B, and C. By process of elimination, we can tell choice D is the answer. But let's just take a look at D.
Choice D (500 L) is about 132 gallons. This is the most plausible one, although some bathtubs don't hold as much water as that, it still is the best estimate of the capacity of a bath tub. \
Hope that helped!
Let A and B be any two sets. Show that:
Show that (
AUB)', (BUA)' = 0
Step-by-step explanation:
(AUB)' means they are all outside the set A and B so thats 0. Hope it helps
Divide. Write the quotient in lowest terms. 3 3/4 ÷ 5/7
Rewrite 3 3/4 as an improper fraction
3 3/4 = 15/4
Now you have
15/5 / 5/7
When you divide fractions, change the division to multiplication and flip the second fraction over:
15/4 x 7/5
Now multiply the top numbers together and the bottom numbers together:
( 15 x 7) / (4 x 5) = 105/20
Write as a proper fraction:
105/20 = 5 1/4
Nour drove from the Dead Sea up to Amman, and her altitude changed at a constant rate. When she began driving, her altitude was 400400400 meters below sea level. When she arrived in Amman 222 hours later, her altitude was 100010001000 meters above sea level. Let yyy represent Nour's altitude (in meters) relative to sea level after xxx hours.
Answer:
y = 700x - 400
Step-by-step explanation:
A negative number represents an altitude below sea level.
Beginning: -400
y = mx + b
y = mx - 400
In 2 hours the altitude was now 1000 m.
1000 m - (400 m) = 1400 m
The altitude went up 1400 m in 2 hours. The rate of change is
1400/2 m/h = 700 m/h
The rate of change is the slope.
y = 700x - 400
Answer:
The graph answer is below :)
Step-by-step explanation:
Write the ratio as a fraction in simplest form, with whole numbers in the numerator and denominator. 7.2 to 4.5
Answer:
[tex]\frac{8}{5}[/tex]
Step-by-step explanation:
Given
7.2 : 4.5 ← multiply both parts by 10
= 72 : 45 ← divide both parts by 9
= 8 : 5
= [tex]\frac{8}{5}[/tex]
in the factory 25 men working 26 hour can produce 1300 radios . how manny hours must the same group of men work to produce 450 radios
Answer:
9 hours
Step-by-step explanation:
Since the group of men remains the same, number of hours is proportional to number of radios.
1300/26 = 450/h
h = 26 * 450 / 1300 = 9 hours
In a zoo there are 6 orang-utans for every 3 baboons. There are 27 orang-utans and baboons altogether. How many are orang-utans?
Answer:
18
Step-by-step explanation:
Okay first we know that for every one baboon there is 2 orang-utans (6 / 3 = 2)
So, I like to play the guess and check:
Lets just use the numbers 12 orang-utans and 6 baboons. We know that those two don't equal 27, so thats not it.
Now we can have 18 orang-utans and 9 baboons. 18 + 9 = 27, which means there are 18 orang-utans.
Hope this helps, and have a good day.
A hockey team is convinced that the coin used to determine the order of play is weighted. The team captain steals this special coin and flips it 14 times to evaluate the hypothesis that the coin is weighted, and it shows up heads 12 times. Test this hypothesis (use alpha=.05).
1. What is the appropriate test?
2. State the null hypothesis:
3. State the alternative hypothesis:
4. Find the critical value:
5. Calculate the obtained statistic:
6. Make a decision:
7. What does your decision mean
Answer:
Since x= 12 (0.006461) does not fall in the critical region so we accept our null hypothesis and conclude that the coin is fair.
Step-by-step explanation:
Let p be the probability of heads in a single toss of the coin. Then our null hypothesis that the coin is fair will be formulated as
H0 :p 0.5 against Ha: p ≠ 0.5
The significance level is approximately 0.05
The test statistic to be used is number of heads x.
Critical Region: First we compute the probabilities associated with X the number of heads using the binomial distribution
Heads (x) Probability (X=x) Cumulative Decumulative
0 1/16384 (1) 0.000061 0.000061
1 1/16384 (14) 0.00085 0.000911
2 1/16384 (91) 0.00555 0.006461
3 1/16384(364) 0.02222
4 1/16384(1001) 0.0611
5 1/16384(2002) 0.122188
6 1/16384(3003) 0.1833
7 1/16384(3432) 0.2095
8 1/16384(3003) 0.1833
9 1/16384(2002) 0.122188
10 1/16384(1001) 0.0611
11 1/16384(364) 0.02222
12 1/16384(91) 0.00555 0.006461
13 1/16384(14) 0.00085 0.000911
14 1/16384(1) 0.000061 0.000061
We use the cumulative and decumulative column as the critical region is composed of two portions of area ( probability) one in each tail of the distribution. If alpha = 0.05 then alpha by 2 - 0.025 ( area in each tail).
We observe that P (X≤2) = 0.006461 > 0.025
and
P ( X≥12 ) = 0.006461 > 0.025
Therefore true significance level is
∝= P (X≤0)+P ( X≥14 ) = 0.000061+0.000061= 0.000122
Hence critical region is (X≤0) and ( X≥14)
Computation x= 12
Since x= 12 (0.006461) does not fall in the critical region so we accept our null hypothesis and conclude that the coin is fair.
A flagpole is 50 feet high. You are standing a distance from the flag pole. The angle of elevation from where you are standing to the top of the flagpole is 23°. How far away from the flagpole are you standing? Note that the angle of elevation is the angle formed by the ground and the line of sight to the top of the flagpole.
Answer:
x = 21.2 ft
Step-by-step explanation:
x = tanФ h
h = 50
Ф = 23°
x = tan(23°) * 50
x = 21.2 ft
Complete the point-slope equation of the line through (2,3)(7,4). Use exact numbers. y-4=
Please help me, I would really appreciate it!
Answer:
The answer is
[tex]y - 4 = \frac{1}{5} (x - 7)[/tex]Step-by-step explanation:
To find the equation of a line given two points first find the slope and use the formula
[tex] y - y_{1} = m(x - x_{1})[/tex]Where m is the slope
To find the slope we use the formula
[tex]m = \frac{y2 - y1}{x2 - x1} [/tex]The slope of the line using points
(2,3)(7,4) is
[tex]m = \frac{4 - 3}{7 - 2} = \frac{1}{5} [/tex]Equation of the line using point (7,4) and slope 1/5 is
[tex]y - 4 = \frac{1}{5} (x - 7)[/tex]Hope this helps you
Answer:
y-4=1/5(x-3)
Step-by-step explanation:
We plug in the x's and the y's and find the slope with:
[tex](y-y_{1} )/ x-x_{1})=m[/tex]
I NEED HELP ASAP
191 of the 288 high school students surveyed at a local school said they went outside more during school hours as elementary school students than they do now as high school students. Calculate the Margin of Error, rounded to the nearest tenth of a percent. Is it reasonable that the state education department claims the percentage for the entire state is 73%? Justify your answer.
Answer:
It is not reasonable that the state education department claims the percentage for the entire state is 73%.
Step-by-step explanation:
We are given that 191 of the 288 high school students surveyed at a local school said they went outside more during school hours as elementary school students than they do now as high school students.
Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of high school students who went outside more during school hours as elementary school students than they do now as high school students = [tex]\frac{191}{288}[/tex] = 0.66
n = sample of high school students = 288
p = population percentage for the entire state
Here for constructing a 90% confidence interval we have used a One-sample z-test for proportions.
The margin of error is given by;
M.E. = [tex]2 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]
= [tex]2 \times \sqrt{\frac{0.66(1-0.66)}{288} }[/tex]
M.E. = 0.056 or 5.6%
So, the confidence interval so formed = [tex]\hat p \pm \text{Margin of error}[/tex]
= [[tex]0.66 - 0.056 , 0.66 + 0.056[/tex]]
= [0.604, 0.716]
Since the above interval does not include 0.73 or the population proportion of 73% falls outside the above interval. So, it is not reasonable that the state education department claims the percentage for the entire state is 73%.
g A slot machine has three slots; each will show a cherry, a lemon, a star, or a bar when spun. The player wins if all three slots show the same three items. a. How many simple events are in the sample space
Answer:
64
Step-by-step explanation:
Let us consider E_abc to be the event that a, b and c appear on the first, second and third slot of the spin machine.
Now, we are told that each slot has 4 possibilities which are a cherry, a lemon, a star, or a bar when spun.
Thus, from mn rule in probability, the total number of simple events in the sample space is = 4³ = 64
PLEASE HELP ! (2/4) - 50 POINTS -
Answer:
The correct answer would be 15.5 or C.
Simplify 10 - [14 = (3 + 4) · 2]+3
Answer:
There is a typo near the equal sign.
There can be two different answers if we think that = sign as + or -.
First way: Making = as +
=> 10 - [14 + (3+4) x 2] +3
=> 10 - [14 + 7 x 2] + 3
=> 10 - [14 + 14] + 3
=> 10 - 28 + 3
=> 10 + 3 - 28
=> 13 - 28
=> -15
=> So, -15 is the answer if we consider "=" sign as "+" sign.
Second way: Making = as -
=> 10 - [14 - (3+4) x 2] + 3
=> 10 - [14 - 7 x 2] + 3
=> 10 - [14 - 14] + 3
=> 10 - 0 + 3
=> 10 + 3
=> 13
=> So, 13 is the answer if we consider "=" sign as "-" sign.
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
A paint machine dispenses dye into paint cans to create different shades of paint. The amount of dye dispensed into a can is known to have a normal distribution with a mean of 5 milliliters (ml) and a standard deviation of 0.4 ml. Answer the following questions based on this information. Find the dye amount that represents the 9th percentile of the distribution.
Answer:
4.464 ml
Step-by-step explanation:
Given that:
mean (μ) = 5 mm, standard deviation (σ) = 0.4 ml
The z score is a score in statistics used to determine by how many standard deviation the raw score is above or below the mean. If the z score is positive then the raw score is above the mean and if the z score is negative then the raw score is below the mean It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, the 9th percentile (0.09) corresponds to a z score of -1.34
[tex]z=\frac{x-\mu}{\sigma}\\\\-1.34=\frac{x-5}{0.4}\\\\x-5=-0.536\\\\x=5-0.536\\\\x=4.464[/tex]
The dye amount that represents the 9th percentile of the distribution is 4.464 ml
PLEASE ANSWER ASAP!!!!
Question refers to Table in the picture
Use a proportional reasoning statement like the one in the picture to determine how many feet are in 3 miles. Notice that the conversion fact 1 mile = 5,280 feet is written as a ratio in the picture.
A. x = 15,840 feet
B. x = 10,560 feet
C. x = 21,120 feet
D. x = 26,400 feet
any unrelated answer will be reported
Answer:
The answer is A 15,840, because 5,280 x 3 is equivalent to A
Answer:
A. x = 15,840 feet.
Step-by-step explanation:
[tex]\frac{5280 feet}{1 mile} =\frac{x feet}{3 miles}[/tex]
[tex]\frac{5280}{1} =\frac{x}{3}[/tex]
1 * x = 5,280 * 3
x = 15,840 feet
So, your answer is A. x = 15,840 feet.
Hope this helps!
Find the value of NT
A. 4
B. 14
C. 12
D. 16
Answer:
14
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
12*x = 8 * (x+2)
Distribute
12x = 8x+16
Subtract 8x
12x-8x = 8x+16-8x
4x = 16
Divide by 4
4x/4 = 16/4
x = 4
We want NT
NT = 8+x+2
= 10 +x
= 10 +4
= 14
One way to calculate the target heart rate of a physically fit adult during exercise is given by the formula h=0.8( 220−x ), where h is the number of heartbeats per minute and x is the age of the person in years. Which formula is equivalent and gives the age of the person in terms of the number of heartbeats per minute?
Answer:
The answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
Step-by-step explanation:
Given:
[tex]h=0.8( 220-x )[/tex]
Where [tex]h[/tex] is the heartbeats per minute and
[tex]x[/tex] is the age of person
To find:
Age of person in terms of heartbeats per minute = ?
To choose form the options:
[tex]A.\ x=176-h\\B.\ x=176-0.8h\\C.\ x=-1.25h+220\\D.\ x=h-0.8220[/tex]
Solution:
First of all, let us have a look at the given equation:
[tex]h=0.8( 220-x )[/tex]
It is value of [tex]h[/tex] in terms of [tex]x[/tex].
We have to find the value of [tex]x[/tex] in terms of [tex]h[/tex].
Let us divide the equation by 0.8 on both sides:
[tex]\dfrac{h}{0.8}=\dfrac{0.8( 220-x )}{0.8}\\\Rightarrow \dfrac{1}{0.8}h=220-x\\\Rightarrow 1.25h=220-x[/tex]
Now, subtracting 220 from both sides:
[tex]\Rightarrow 1.25h-220=220-x-220\\\Rightarrow 1.25h-220=-x[/tex]
Now, multiplying with -1 on both sides:
[tex]-1.25h+220=x\\OR\\\bold{x = -1.25h+220}[/tex]
So, the answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
What is the area of polygon EFGH?
6. A car dealership would like to estimate the mean mpg of its new model car with 90% confidence. The population is normally distributed; however we are taking a sample of 25 cars with a sample mean of 96.52 and a sample standard deviation of 10.70. Calculate a 90% confidence interval for the population mean using this sample data.
Answer:
92.9997<[tex]\mu[/tex]<99.5203
Step-by-step explanation:
Using the formula for calculating the confidence interval expressed as:
CI = xbar ± Z * S/√n where;
xbar is the sample mean
Z is the z-score at 90% confidence interval
S is the sample standard deviation
n is the sample size
Given parameters
xbar = 96.52
Z at 90% CI = 1.645
S = 10.70.
n = 25
Required
90% confidence interval for the population mean using the sample data.
Substituting the given parameters into the formula, we will have;
CI = 96.52 ± (1.645 * 10.70/√25)
CI = 96.52 ± (1.645 * 10.70/5)
CI = 96.52 ± (1.645 * 2.14)
CI = 96.52 ± (3.5203)
CI = (96.52-3.5203, 96.52+3.5203)
CI = (92.9997, 99.5203)
Hence a 90% confidence interval for the population mean using this sample data is 92.9997<[tex]\mu[/tex]<99.5203
In the diagram, XY bisects ZWXZ.
1
z
2
w
(5x + 3)
(7x - Y
х
mWYZ
type your answer.
In provided diagram angle WXY = angle YXZ
Angle WXY =( 7x-7)°
Angle YXZ = ( 5x +3)°
We have to find out the value of Angle WXZ
→ 7x-7 = 5x +3
→ 7x - 5x = 7+3
→ 2x = 10
→ x = 10/2
→ x = 5 .
Putting the value of x .
→ Angle WXY = 7(2)-7
→ 14-7 = 7°
→ Angle YXZ = 5(2)+3
→ 10+3 = 13°
Angle WXZ = 13° + 7 ° → 20°
So 20° is the required answer .
Answer:
SI
Step-by-step explanation:
If the errors produced by a forecasting method for 3 observations are +3, +3, and −3, then what is the mean squared error?
Answer:
9
Step-by-step explanation:
The mean squared error (MSE)of a set of observations can be calculated using the formula :
(1/n)Σ(Actual values - predicted values)^2
Where n = number of observations
Steps :
Error values of each observation (difference between actual and predicted values) is squared.
Step 2:
The squared values are summed
Step 3:
The summation is the divided by the number of observations
The difference between the actual and predicted values is known as the ERROR.
(1/n)Σ(ERROR)^2
n = 3
Error = +3, +3, - 3
MSE = (1/3)Σ[(3)^2 + (3)^2 + (-3)^2]
MSE = (1/3) × [9 + 9 + 9]
MSE = (1/3) × 27
MSE = 9
Four members from a "55"person committee are to be selected randomly to serve as chairperson, vice-chairperson, secretary, and treasurer. The first person selected is the chairperson; the second, the vice-chairperson; the third, the secretary; and the fourth, the treasurer. How many different leadership structures are possible?
Answer:
8,185,320 different leadership structures
Step-by-step explanation:
Since the order at which the members of the committee are chosen matters, this is a permutation of 4 out 55 people and it is given by:
[tex]n=\frac{55!}{(55-4)!}=55*54*53*52 \\\\n=8,185,320[/tex]
8,185,320 different leadership structures are possible.
which of the following greatest
6+(-2)
6-(-2)
6×(-2)
6+(-2)