Like charges will exert a force of
a. positive
b. negative
c. attraction
d. repulsion
e. neutral​

Answers

Answer 1

Answer:

D- Repulsion

Explanation:

A positively charged object will exert a repulsive force upon a second positively charged object.

Answer 2
Repulsión can someone help me ? What is the summary of chapter 27 book two roads by Joseph

Related Questions

One of the disadvantages of experimental research is that __________.
A.
it isn’t easily replicated
B.
it doesn’t often reflect reality
C.
the results aren’t generalizable
D.
conditions are not controllable


Please select the best answer from the choices provided

Answers

C I believe that would be it

Answer:

B

Explanation:

An RC car is carrying a tiny slingshot with a spring constant of 85 N/m at 0.2 m off the ground at 5.6 m/s. The sling shot is pulled back 3.5 cm from a relaxed state and shoots a 25 g steel pellet in the same direction the car is moving. What is the velocity of the steel pellet relative to the ground as it leaves the sling shot

Answers

Answer:

The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.

Explanation:

Let suppose that RC car-slingshot-steelpellet is a conservative system, that is, that non-conservative forces (i.e. friction, air viscosity) can be neglected. The velocity of the steel pellet can be found by means of the Principle of Energy Conservation and under the consideration that change in gravitational potential energy is negligible and that the RC car travels at constant velocity:

[tex]\frac{1}{2}\cdot (m_{C}+m_{P})\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{C}\cdot v_{o}^{2} + \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]

[tex]\frac{1}{2}\cdot m_{P}\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]

[tex]m_{P}\cdot v_{o}^{2} + k\cdot x^{2} = m_{P}\cdot v^{2}[/tex]

[tex]v^{2} = v_{o}^{2} + \frac{k}{m_{P}}\cdot x^{2}[/tex]

[tex]v = \sqrt{v_{o}^{2}+\frac{k}{m_{P}}\cdot x^{2} }[/tex] (1)

Where:

[tex]v_{o}[/tex] - Initial velocity of the steel pellet, measured in meters per second.

[tex]v[/tex] - Final velocity of the steel pellet, measured in meters per second.

[tex]k[/tex] - Spring constant, measured in newtons per meter.

[tex]m_{P}[/tex] - Mass of the steel pellet, measured in kilograms.

[tex]m_{C}[/tex] - Mass of the RC car, measured in kilograms.

[tex]x[/tex] - Initial deformation of the spring, measured in meters.

If we know that [tex]v_{o} = 5.6\,\frac{m}{s}[/tex], [tex]k = 85\,\frac{N}{m}[/tex], [tex]m_{P} = 0.025\,kg[/tex] and [tex]x = 0.035\,m[/tex], then the velocity of the steel pellet relative to the ground when it leaves the sling shot is:

[tex]v = \sqrt{\left(5.6\,\frac{m}{s} \right)^{2}+\frac{\left(85\,\frac{N}{m} \right)\cdot (0.035\,m)^{2}}{0.025\,kg} }[/tex]

[tex]v \approx 5.960\,\frac{m}{s}[/tex]

The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.

How much force is needed to accelerate a 65 kg rider AND her 215 kg motor scooter 8 m/s?? (treat
the masses as like terms)

Answers

Answer:

Force = 2240 Newton.

Explanation:

Given the following data;

Mass A= 65kg

Mass B = 215kg

Acceleration = 8m/s²

To find the force;

Force is given by the multiplication of mass and acceleration.

Mathematically, Force is;

[tex] F = ma[/tex]

Where;

F represents force.

m represents the mass of an object.

a represents acceleration.

First of all, we would have to find the total mass.

Total mass = Mass A + Mass B

Total mass = 65 + 215

Total mass = 280kg

Substituting into the equation, we have

[tex] Force = 280 * 8 [/tex]

Force = 2240 Newton.

3. What is the SI unit of force? What is this unit equivalent to in terms of fundamental units?
4. Why is force a vector quantity?

Answers

Answer:

force = mass * acceleration

therefore the SI unit is kg*m/s2 or newton's

it's a vector quantity because it has both direction(acceleration) and size (mass)

a wooden block is cut into two pieces, one with three times the mass of the other. a depression is made in both faces of the cut so that a fire cracker can be placed in it and the block is reassembled. the reassembled block is set on rough surface and the fuse is lit. when the fire cracker explodes, the two blocks separate. what is the ratio of distances traveled by blocks?

Answers

Answer:

1/9

Explanation:

Let A denote the bigger piece and let B denote the smaller piece.

We are told that one with three times the mass of the other.

Therefore, we have;

M_a = 3M_b

Firecracker is placed in the block and it explodes and thus, momentum is conserved.

Thus;

V_ai = V_bi = 0

Where V_ai is initial velocity of piece A and V_bi is initial velocity of piece B.

Since initial momentum equals final momentum, we have;

P_i = P_f

Thus;

0 = (M_a × V_af) + (M_b × V_bf)

Since M_a = 3M_b, we have;

(3M_b × V_af) + (M_b × Vbf) = 0

Making V_af the subject, we have;

V_af = -⅓V_bf

The kinetic energy gained by each block during the explosion will later be lost due to the negative work done by friction. Thus;

W_f = -½M_b•(v_bf)²

Now, let's express the work is in terms of the force and the distance.

Thus;

W_f = F_f × Δx × cos 180°

Frictional force is also expressed as μmg

Thus;

W_f = -μM_b × g × Δx

Earlier, we saw that;

W_f = -½M_b•(v_bf)²

Thus;

-½M_b•(v_bf)²= -μM_b × g × Δx

Δx = (v_bf)²/2μg

Let the distance travelled by block A be Δx_a and that travelled by B be Δx_b

Thus;

Δx_a/Δx_b = ((v_ba)²/2μg)/((v_bf)²/2μg)

Δx_a/Δx_b = ((v_af)²/((v_bf)²)

Δx_a/Δx_b = (-⅓V_bf)²/(V_bf)²

Δx_a/Δx_b = 1/9



1. (6x + 8)(5x - 8)
a. 30x2 + 49x + 20
2. (5x + 6(5x - 5)
b. 24x3 + 8x2 + 6x + 4
3. (6x + 3)(6x - 4)
c. 25x2 + 5x - 30
4. (6x + 5)(5x + 5)
d. 30x2 - 8x - 64
e. 36x2 - 6x - 1
5. (4x + 2) (6x2 - x + 2)​

Answers

Answer:

form 1 question??????????

calculate ine gravitational potential energy of the ball using pe=m×g×h.(use g=9.8 n/kg)


A 4.0-kilogram ball held 1.5 meters above the floor has ________ joules of potential energy​

Answers

Answer:

58.8J

Explanation:

Given parameters;

Mass of ball  = 4kg

Height above the floor  = 1.5m

g  = 9.8n/kg

Unknown:

Potential energy  = ?

Solution:

The potential energy of a body is the energy due to the position of the body.

It is mathematically expressed as:

  Potential energy = mass x acceleration due to gravity x height

  Potential energy  = 4 x 9.8 x 1.5  = 58.8J

On a low-friction track, a 0.66-kg cart initially going at 1.85 m/s to the right collides with a cart of unknown inertia initially going at 2.17 m/s to the left. After the collision, the 0.66-kg cart is going at 1.32 m/s to the left, and the cart of unknown inertia is going at 3.22 m/s to the right. The collision takes 0.010 s.
What is the unknown inertia?
What is the average acceleration of the heavier cart?
What is the average acceleration of the lighter cart?

Answers

Answer:

(a) the unknown inertia is 0.388 kg

(b) the average acceleration of the heavier cart is 317 m/s²

(c) the average acceleration of the lighter cart is 539 m/s²

Explanation:

Given;

mass of the first cart, m₁ = 0.66 kg

initial speed of the first cart, u₁ = 1.85 m/s

let the mass of the cart with unknown inertia be m₂

initial velocity of the second cart, u₂ = 2.17 m/s to the left

velocity of the first cart after collision, v₁ = 1.32 m/s to the left

velocity of the second cart after collision, v₂ = 3.22 m/s

time of collision, t = 0.010 s

(a) What is the unknown inertia?

Apply the principle of conservation of linear momentum, to determine the unknown inertia.

let leftward direction be negative direction

let rightward direction be positive direction

m₁u₁ + m₂u₂ = m₁v₁  + m₂v₂

0.66(1.85) + m₂(-2.17) = 0.66(-1.32) + m₂(3.22)

1.221 - 2.17m₂ = -0.8712 + 3.22m₂

1.221 + 0.8712 = 3.22m₂ + 2.17m₂

2.0922 = 5.39m₂

m₂ = 2.0922 / 5.39

m₂ = 0.388 kg

The unknown inertia is 0.388 kg

(b) the average acceleration of the heavier cart

the heavier cart has a mass of 0.66 kg

[tex]a = \frac{v_1 - u_1}{t} \\\\a = \frac{-1.32 - 1.85}{0.01} \\\\a = -317 \ m/s^2\\\\|a| = 317 \ m/s^2[/tex]

(c) the average acceleration of the lighter cart;

the lighter cart has a mass of 0.388 kg

[tex]a = \frac{v_2 - u_2}{t} \\\\a = \frac{3.22 - (-2.17)}{0.01} \\\\a =\frac{3.22 \ +\ 2.17}{0.01} \\\\a= 539\ m/s^2[/tex]

12. A bag weighing 20 N CARRIED horizontally a distance of 35 m, How much

work is done on the bag in Joules? (Do not put units with your answer.) W=Fd *

Your answer

13. A child performs 10J of work in lifting a box 1 m in 2 seconds. How much

power did the child apply to the box? (Do not include units with your answer.)

P=W/t *

Your answer

Answers

Answer:

Explanation:

Well they told you the exact formula to use. Work is the force multiplied by  the distance through which its applied.

W = (20N)(35m)

= 700 Joules

13.) Power is the amount of work done over the time through which the work is being done.

P = W/t

= 10J/2s

= 5J/s

Fill in the blank with the correct word below (from the reading_):
helps you track your progress once you have made a lifestyle
change.
Self-monitoring
Healthy food
Regular xxercise
Goals

Answers

Answer:I think it’s self monitoring sorry if wrong

Explanation:

Answer:

It self monitoring

Explanation:

I took the test

2.19 The drag characteristics of a blimp traveling at 4 m/s are to be studied by experiments in a water tunnel. The prototype is 20 m in diameter and 110 m long. The model is one-twentieth scale. What velocity must the model have for dynamic similarity

Answers

Answer:

[tex]Vm=0.894m/s[/tex]

Explanation:

From the question we are told that

Velocity if travel [tex]v=4m/s[/tex]

Diameter of  prototype [tex]d_1=20m[/tex] and [tex]d_2=110m[/tex]

Scale ratio=[tex]\frac{1}{20}[/tex]

Generally Velocity of of the model using Froud's model is mathematically given as

[tex]Fm=Fp[/tex]

[tex]\frac{Vm}{\sqrt{Lmg}} =\frac{Vp}{\sqrt{Lpg}}[/tex]

[tex]Vm=Vp*\frac{Vp}{\sqrt{Lpg} }[/tex]

[tex]Vm=4*\frac{1}{\sqrt{20}}[/tex]

[tex]Vm=0.894m/s[/tex]

It has been argued that power plants should make use of off-peak hours (such as late at night) to generate mechanical energy and store it until it is needed during peak load times, such as the middle of the day. One suggestion has been to store the energy in large flywheels spinning on nearly frictionless ball-bearings. Consider a flywheel made of iron, with a density of 7800 kg/m^3 , in the shape of a uniform disk with a thickness of 11.3 cm.

Required:
a. What would the diameter of such a disk need to be if it is to store an amount of kinetic energy of 14.1 MJ when spinning at an angular velocity of 93.0 rpm about an axis perpendicular to the disk at its center?
b. What would be the centripetal acceleration of a point on its rim when spinning at this rate?

Answers

Answer:

Explanation:

kinetic energy = 14.1 MJ = 14.1 x 10⁶ J

Let radius of flywheel be r .

volume of flywheel = π r² x t where t is thickness

= 3.14 x r² x .113 m³

= .04 r² m³

mass = volume x density

= .04 r² x 7800 = 312.73 r²kg

moment of inertia I = 1 / 2 mass x radius²

= .5 x 312.73 r² x r²

= 156.37 r⁴ kg m²

angular velocity ω = 2π x 93/60

= 9.734 rad /s

kinetic energy = 1/2 Iω² where ω is angular velocity

= .5 x 156.37 r⁴ x 9.734²

= 7408.08 r⁴

Given

7408.08 r⁴ =  14.1 x 10⁶

r⁴ = .19 x 10⁴

r = .66 x 10

= 6.60 m .

Diameter = 13.2 m

b )

centripetal acceleration of a point on its rim = ω² r

= 9.734² x 6.6

= 625.35 m /s²

The pickup truck has a changing velocity because the pickup truck

A.can accelerate faster than the other two vehicles

B.is traveling in the opposite direction from the other two vehicles

C.is traveling on a curve in the road

D.needs a large amount of force to move

please get right i need awnser today

Answers

Answer:

C. Is traveling on a curve in the road

    Hope this helps :3

The pick up truck has a changing velocity because, it is travelling on a curve in the road. A change in direction results in its change in velocity because, velocity is a vector quantity.

What is velocity ?

Velocity is a physical quantity that measures the distance covered by an object per unit time. It is a vector quantity, thus having magnitude as well direction.

The rate of change in velocity is called acceleration of the object. Like velocity, acceleration also is a vector quantity. Thus, a change in magnitude or direction or change in both for velocity make the object to accelerate.

Here, all the three vehicles  are travelling with the same velocity. But, the truck is moving to a curve on the road. The curvature in the path will make a change in its velocity.

Find more on velocity:

https://brainly.com/question/16379705

#SPJ6

The image related with this question is attached below:

A circus tightrope walker weighing 800 N is standing in the middle of a 15 meter long cable stretched between two posts. The cable was originally horizontal. The lowest point of the cable is now at his feet and is 30 cm below the horizontal. Assume the cable is massless. What is the tension in the cable

Answers

Answer:

T = 10010 N

Explanation:

To solve this problem we must use the translational equilibrium relation, let's set a reference frame

X axis

       Fₓ-Fₓ = 0

       Fₓ = Fₓ

whereby the horizontal components of the tension in the cable cancel

Y Axis  

        [tex]F_{y} + F_{y} - W =0[/tex]

        2[tex]F_{y}[/tex] = W

let's use trigonometry to find the angles

        tan θ = y / x

        θ = tan⁻¹ (0.30 / 0.50 L)

        θ = tan⁻¹ (0.30 / 0.50 15)

        θ = 2.29º

the components of stress are

         F_{y} = T sin θ

we substitute

       2 T sin θ = W

       T = W / 2sin θ

        T = [tex]\frac{ 800}{ 2sin 2.29}[/tex]

        T = 10010 N

Two pieces of amber are hung from threads. Piece A is charged by rubbing piece A with fur. Piece B is charged by rubbing piece B with silk. Nylon is used to rub and charge a third piece of amber. Piece A and B are both repelled by the third piece of amber. This means:____.

Answers

Answer:

ieces A and B must also have the same type of charges

Explanation:

In electrostatics, charges of the same sign repel and charges of different signs attract.

If we apply this to our case, we have that part A and C repel each other, therefore they have the same type of charge.

Also part A and C repel each other, therefore they have the same type of charge.

If we use the transitive property of mathematics, pieces A and B must also have the same type of charges

How could a change in straight line motion due to unbalanced forces be predicted from an understanding of inertia?

Answers

Answer:

If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.

Explanation:

The principle of inertia or Newton's first law states that every body remains static or with constant velocity if there is no net force acting on it.

Based on this principle, if we have a net force, the velocity of the body changes by having an unbalanced force acting.

If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.

A particle with charge Q and mass M has instantaneous speed uy when it is at a position where the electric potential is V. At a later time, the particle has moved a distance R away to a position where the electric potential is V2 ) Which of the following equations can be used to find the speed uz of the particle at the new position?
a. 1/2M(μ2^2-μ1^2)=Q (v1-v2)
b. 1/2M(μ2^2-μ1^2)^2=Q(v1-v2)
c. 1/2Mμ2^2=Qv1
d. 1/2Mμ2^2=1/4πx0 (Q^2/R)

Answers

Answer:

A

Explanation:

Ke = 1/2 MV^2

Which of the following is a mixture?
a air
biron
Chydrogen
d nickel

Answers

The answer is to this is b

Answer:

it will option option A hope it helps

As a person pushes a box across a floor, the energy from the person's moving arm is transferred to the box, and the box and the floor becomes warm. During the process, what happens to energy

Answers

Answer:

isnt heat transfer

Explanation:

sorry if im wrong

A car enters a 105-m radius flat curve on a rainy day when the coefficient of static friction between its tires and the road is 0.4. What is
the maximum speed which the car can travel around the curve without sliding

Answers

Static friction (magnitude Fs) keeps the car on the road, and is the only force acting on it parallel to the road. By Newton's second law,

Fs = m a = W a / g

(a = centripetal acceleration, m = mass, g = acceleration due to gravity)

We have

a = v ² / R

(v = tangential speed, R = radius of the curve)

so that

Fs = W v ² / (g R)

Solving for v gives

v = √(Fs g R / W)

Perpendicular to the road, the car is in equilibrium, so Newton's second law gives

N - W = 0

(N = normal force, W = weight)

so that

N = W

We're given a coefficient of static friction µ = 0.4, so

Fs = µ N = 0.4 W

Substitute this into the equation for v. The factors of W cancel, so we get

v = √((0.4 W) g R / W) = √(0.4 g R) = √(0.4 (9.80 m/s²) (105 m)) ≈ 20.3 m/s

Two spherical objects are separated by a distance that is 1.08 x 10-3 m. The objects are initially electrically neutral and are very small compared to the distance between them. Each object acquires the same negative charge due to the addition of electrons. As a result, each object experiences an electrostatic force that has a magnitude of 3.89 x 10-21 N. How many electrons did it take to produce the charge on one of the objects

Answers

Answer:

the charge on the object is 71.043×10^-20 C and the number of electron is 4.44

Explanation:

from coulumbs law, The force that is acting over both charge can be computed as

F=( kq1q2)/r^2..............eqn(1)

Where

F=electrostatic force= 3.89 x 10-21 N

k= column constant= 9 x 10^9 Nm^2/C^2

q1 and q2= magnitude of the charges

r= distance between the charges= 1.08 x 10-3 m.

Since both charges are experiencing the same force, eqn(1) can be written as

F=( kq^2)/r^2.

We can make q subject of the formula

q= √(Fr^2)/k

= √[(3.89 x 10^-21× (1.08 x 10^-3)^2]/8.99 x 10^9

q= 71.043×10^-20 C

Hence, the charge is 71.043×10^-20 C

From quantization law, the number of electron can be computed as

N=q/e

Where

N= number of electron

q= charges

=1.6×10^-19C

N=71.043×10^-20/1.6×10^-19

=4.44

Hence, the charge on the object is 71.043×10^-20 C and the number of electron is 4.44

Consider a swimmer that swims a complete round-trip lap of a 50 m long pool in 100 seconds. The swimmer's... average speed is 0 m/s and average velocity is 0 m/s. average speed is 0.5 m/s and average velocity is 0.5 m/s. average speed is 1 m/s and average velocity is 0 m/s. average speed is 0 m/s and average velocity is 1 m/s.What is the swimmers average speed and average velocity?

Answers

Answer:

average speed is 1 m/s and average velocity is 0 m/s.

Explanation:

Given that :

Length of round trip = 50 m

Time taken = 100 seconds

The average speed :

Total distance / total time taken

Length of complete round trip :

(50 + 50) m, total. Distance = 100 m

100 / 100 = 1m/s

The average velocity :

Total Displacement / total time taken

Total Displacement of round trip = end point - start point = 0

0 / 100 = 0

Average speed is 1 m/s and average velocity is 0 m/s.

The average speed is defined as the ratio of distance to time. Speed is a scalar quantity hence it does not take direction into account while velocity is a vector quantity hence it takes direction into account.

The speed is obtained from;

Speed = Distance/time = 2(50 m)/100 s = 1 m/s.

The velocity is 0 m/s since it is complete round-trip lap.

Learn more about speed: https://brainly.com/question/7359669

An electric range has a constant current of 10 A entering the positive voltage terminal with a voltage of 110 V. The range is operated for two hours, (a) Find the charge in coulombs that passes through the range, (b) Find the power absorbed by the range, (c) If electric energy costs 12 cents per kilowatt-hour, determine the cost of operating the range for two hours.

Answers

Answer:

A. 72000 C

B. 1100 W

C. 26.4 cents.

Explanation:

From the question given above, the following data were obtained:

Current (I) = 10 A

Voltage (V) = 110 V

Time (t) = 2 h

A. Determination of the charge.

We'll begin by converting 2 h to seconds. This can be obtained as follow:

1 h = 3600 s

Therefore,

2 h = 2 h × 3600 s / 1 h

2 h = 7200 s

Thus, 2 h is equivalent to 7200 s.

Finally, we shall determine the charge. This can be obtained as follow:

Current (I) = 10 A

Time (t) = 7200 s

Charge (Q) =?

Q = It

Q = 10 × 7200

Q = 72000 C

B. Determination of the power.

Current (I) = 10 A

Voltage (V) = 110 V

Power (P) =?

P = IV

P = 10 × 110

P = 1100 W

C. Determination of the cost of operation.

We'll begin by converting 1100 W to KW. This can be obtained as follow:

1000 W = 1 KW

Therefore,

1100 W = 1100 W × 1 KW / 1000 W

1100 W = 1.1 KW

Thus, 1100 W is equivalent to 1.1 KW

Next, we shall determine the energy consumption of the range. This can be obtained as follow:

Power (P) = 1.1 KW

Time (t) = 2 h

Energy (E) =?

E = Pt

E = 1.1 × 2

E = 2.2 KWh

Finally, we shall determine the cost of operation. This can be obtained as follow:

1 KWh cost 12 cents.

Therefore, 2.2 KWh will cost = 2.2 × 12

= 26.4 cents.

Thus, the cost of operating the range for 2 h is 26.4 cents.

While investigating Kirchhoff's Laws, you begin observing a blackbody, such as a star, from Earth using advanced technology that can analyze spectra. While pointing it at the star with nothing between you and the star, you observe a full spectrum. You come back and repeat this same experiment a year later using the same star, except this time you observe an absorption spectrum. What is the most likely explanation for this

Answers

Answer:

the second time there is a gas between you and the star,

Explanation:

When you observe the star for the first time you do not have a given between you and the star, therefore you observe the emission spectrum of the same that is formed by lines of different intensity and position that indicate the type and percentage of the atoms that make up the star.

 When you observe the same phenomenon for the second time there is a gas between you and the star, this gas absorbs the wavelengths of the star that has the same energies and the atomisms and molecular gas, therefore these lines are not observed by seeing a series of dark bands,

The information obtained from the two spectra is the same, the type of atoms that make up the star

A small sphere of reference-grade iron with a specific heat of 447 J/kg K and a mass of 0.515 kg is suddenly immersed in a water-ice mixture. Fine thermocouple wires suspend the sphere, and the temperature is observed to change from 15 to 14C in 6.35 s. The experiment is repeated with a metallic sphere of the same diameter, but of unknown composition with a mass of 1.263 kg. If the same observed temperature change occurs in 4.59 s, what is the specific heat of the unknown material

Answers

Answer:

The specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.

Explanation:

Let suppose that sphere is cooled down at steady state, then we can estimate the rate of heat transfer ([tex]\dot Q[/tex]), measured in watts, that is, joules per second, by the following formula:

[tex]\dot Q = m\cdot c\cdot \frac{T_{f}-T_{o}}{\Delta t}[/tex] (1)

Where:

[tex]m[/tex] - Mass of the sphere, measured in kilograms.

[tex]c[/tex] - Specific heat of the material, measured in joules per kilogram-degree Celsius.

[tex]T_{o}[/tex], [tex]T_{f}[/tex] - Initial and final temperatures of the sphere, measured in degrees Celsius.

[tex]\Delta t[/tex] - Time, measured in seconds.

In addition, we assume that both spheres experiment the same heat transfer rate, then we have the following identity:

[tex]\frac{m_{I}\cdot c_{I}}{\Delta t_{I}} = \frac{m_{X}\cdot c_{X}}{\Delta t_{X}}[/tex] (2)

Where:

[tex]m_{I}[/tex], [tex]m_{X}[/tex] - Masses of the iron and unknown spheres, measured in kilograms.

[tex]\Delta t_{I}[/tex], [tex]\Delta t_{X}[/tex] - Times of the iron and unknown spheres, measured in seconds.

[tex]c_{I}[/tex], [tex]c_{X}[/tex] - Specific heats of the iron and unknown materials, measured in joules per kilogram-degree Celsius.

[tex]c_{X} = \left(\frac{\Delta t_{X}}{\Delta t_{I}}\right)\cdot \left(\frac{m_{I}}{m_{X}} \right) \cdot c_{I}[/tex]

If we know that [tex]\Delta t_{I} = 6.35\,s[/tex], [tex]\Delta t_{X} = 4.59\,s[/tex], [tex]m_{I} = 0.515\,kg[/tex], [tex]m_{X} = 1.263\,kg[/tex] and [tex]c_{I} = 447\,\frac{J}{kg\cdot ^{\circ}C}[/tex], then the specific heat of the unknown material is:

[tex]c_{X} = \left(\frac{4.59\,s}{6.35\,s} \right)\cdot \left(\frac{0.515\,kg}{1.263\,kg} \right)\cdot \left(447\,\frac{J}{kg\cdot ^{\circ}C} \right)[/tex]

[tex]c_{X} = 131.750\,\frac{J}{kg\cdot ^{\circ}C}[/tex]

Then, the specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.

A violin has a string of length
0.320 m, and transmits waves at
622 m/s. At what frequency does
it oscillate?

Answers

Answer:

1.9kHz

Explanation:

Given data

wavelength [tex]\lambda= 0.32m[/tex]

velocity [tex]v= 622 m/s[/tex]

We know that

[tex]v= f* \lambda\\\\f= v/ \lambda[/tex]

substitute

[tex]f= 622/ 0.32\\\\f= 1943.75\\\\f= 1.9kHz[/tex]

Hence the frequency is 1.9kHz

Answer:

971.2

Explanation:

It was right on acellus :)

state four law of photoelectric effect​

Answers

Answer:

LAW 1 :  For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation.  

---------------------------------------------

LAW 2: For a given metal, there exists a certain frequency below which the photoelectric emission does not take place. This frequency is called threshold frequency.

-----------------------------------------------

LAW 3: For a frequency greater than the threshold frequency, the kinetic energy of photoelectrons is dependent upon frequency or wavelength but not on the intensity of light.

-----------------------------------------------

LAW 4: Photoelectric emission is an instantaneous process. The time lag between incidence of radiations and emission of electron is 10^-9 seconds.

Explanation:

Answer:

LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation. ... LAW 4: Photoelectric emission is an instantaneous process.

If a cyclist travels 30 km in 2 h, What is her average speed?​

Answers

The avarage speed is 15km/h

Answer:

15km/h

Explanation:

→ Speed = Distance ÷ Time

30 ÷ 2 = 15km/h

A sinusoidal wave is traveling on a string with speed 19.3 cm/s. The displacement of the particles of the string at x = 6.0 cm is found to vary with time according to the equation y = (2.6 cm) sin[1.8 - (5.8 s-1)t]. The linear density of the string is 5.0 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form

Answers

Answer:

Explanation:

equation of wave is given by the following equation

y = (2.6 cm) sin[1.8 - (5.8 s-1)t].

Comparing it with standard form of wave

y = A sin ( ωt - kx )

we get

ω = 5.8

2πn = 5.8

n = .92 per second

kx = 1.8

k x 6 = 1.8

k = 0.3

[tex]\frac{2\pi}{\lambda}[/tex] = 0.3

λ = 20.9 cm

25 points!


A 6 kg object accelerates from 5 m•s to 25 m•s in 30 seconds. What was the net force acting on the
object? Give your answer in Newtons to one significant figure and without a unit.

(Show Work)

Answers

Answer:

6N

Explanation:

Given parameters:

Mass of object  = 6kg

Initial velocity  = 5m/s

Final velocity  = 25m/s

Time  = 30s

Unknown:

Net force acting on the object  = ?

Solution:

From Newton's second law of motion:

   Force  = mass x acceleration

Acceleration is the rate of change of velocity with time

  Acceleration  = [tex]\frac{Final velocity - Initial velocity }{time}[/tex]  

  Force  = mass x  [tex]\frac{Final velocity - Initial velocity }{time}[/tex]  

So;

 Force  = 6 x [tex]\frac{25 - 5}{30}[/tex]    = 6N

Other Questions
On January 2, 2021, Farr Co. issued 10-year convertible bonds at 105. During 2021, these bonds were converted into common stock having an aggregate par value equal to the total face amount of the bonds. At conversion, the market price of Farr's common stock was 50 percent above its par value. On January 2, 2021, cash proceeds from the issuance of the convertible bonds should be reported as:_______. a. paid-in capital for the entire proceeds. b. paid-in capital for the portion of the proceeds attributable to the conversion feature and as a liability for the balance. c. a liability for the face amount of the bonds and paid-in capital for the premium over the face amount.d. a liability for the entire proceeds. 3x + 2y = -9X Y = -13 What does totalitarianism mean Tropical rain forests receive heavy rainfall. How do the trees and plants of this region withstand rotting? What energy store is in the torchBEFORE it gets switched on? the value of a car is 30,000$ it loses 6.5% of its value each year. What will the value of the car be after 5 years Albert moved 1/4 of lawn and son mowed 3/7 of how much is left to mow To map PQR onto STU, there must be a factor k that reduces PQR.Find each length.PQ = 5QR = 7ST = 5TU = 5Step 2 out of 5:If kPQ = ST, then k = What is the prouduct of the number p and 12 True or false: The Aeneid is a famous story about the beginnings of Rome which of the following is most important in preventing a catheter associated urinary tract infection Drag the tiles to the correct boxes to complete the pairs.Match each type of database to its applicationMultistageStationaryDistributedVirtualused for concise as well as detailedhistorical dataarrowRightused where access to data is rarearrowRightused for accessing data in diverseapplications using middlewarearrowRightused by an organization that runsseveral businessesarrowRight What is the difference of using Selection Tool and Direct Selection Tool? I need help with this question geometry the anwser options are in the image What is an equation of the line that passes through the points (5,2) and (-5,6)?Put your answer in fully reduced form. A friend asks to borrow $55 from you and in return will pay you $58 in one year. If your bank is offering a 6% interest rate on deposits and loans: a. How much would you have in one year if you deposited the $55 instead what happens when china doesnt be there in the world ?? plssssssssssssss help this quiz is timed Tomaz realized that the tip of a second hand on a clock rotates about the center of the clock. He watched the second hand rotate around the center of the clock for 15 seconds. Which describes the rotation he observed?270 degrees clockwise rotation90 degrees clockwise rotation 180 degrees rotation90 degrees counterclockwise rotation help fast plz with that