For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
Salaries of 42 college graduates who took a statistics course in college have a mean, , of . Assuming a standard deviation, , of $, construct a % confidence interval for estimating the population mean .
Answer:
The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
Step-by-step explanation:
The complete question is:
Salaries of 42 college graduates who took a statistics course in college have a mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard deviation, σ of $10,016 construct a 99% confidence interval for estimating the population mean μ.
Solution:
The (1 - α)% confidence interval for estimating the population mean μ is:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
The critical value of z for 99% confidence interval is:
[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]
Compute the 99% confidence interval for estimating the population mean μ as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
[tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]
Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
What is the area of polygon EFGH?
(4 points) Determine whether each of these functions is O(x 2 ). Proof is not required but it may be good to try to justify it (a) 100x + 1000 (b) 100x 2 + 1000 (c) x 3 100 − 1000x 2 (d) x log x (2) (2 points) U
Answer:
(a) O(x²)
(b) O(x²)
(c) O(x²)
(d) Not O(x²)
Step-by-step explanation:
If a function is O(x²), then the highest power of x in the function ia greater or equal to 2.
(a) 100x + 1000
This is O(x), not O(x²)
(b) 100x² + 1000
This is O(x²)
(c) x³.100 − 1000x²
This is O(x²)
(d) x log x²
This is not O(x²)
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4
A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10sin( t ) N(newtons) and moves in a medium that imparts a viscous force of 2 N
when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass.
A)Find the solution of the initial value problem in the above problem.
B)Plot the graph of the steady state solution
C)If the given external force is replaced by a force of 2 cos(ωt) of frequency ω , find the value of ω for which the amplitude of the forced response is maximum.
Answer:
A) C1 = 0.00187 m = 0.187 cm, C2 = 0.0062 m = 0.62 cm
B) A sample of how the graph looks like is attached below ( periodic sine wave )
C) w = [tex]\sqrt[4]{3}[/tex] is when the amplitude of the forced response is maximum
Step-by-step explanation:
Given data :
mass = 5kg
length of spring = 10 cm = 0.1 m
f(t) = 10sin(t) N
viscous force = 2 N
speed of mass = 4 cm/s = 0.04 m/s
initial velocity = 3 cm/s = 0.03 m/s
Formulating initial value problem
y = viscous force / speed = 2 N / 0.04 m/s = 50 N sec/m
spring constant = mg/ Length of spring = (5 * 9.8) / 0.1 = 490 N/m
f(t) = 10sin(t/2) N
using the initial conditions of u(0) = 0 m and u"(0) = 0.03 m/s to express the equation of motion
the equation of motion = 5u" + 50u' + 490u = 10sin(t/2)
A) finding the solution of the initial value
attached below is the solution and
B) attached is a periodic sine wave replica of how the grapgh of the steady state solution looks like
C attached below
Compute the flux of the vector field LaTeX: \vec{F}=F → =< y + z , x + z , x + y > though the unit cubed centered at origin.
Assuming the cube is closed, you can use the divergence theorem:
[tex]\displaystyle\iint_S\vec F\cdot\mathrm dS=\iiint_T\mathrm{div}\vec F\,\mathrm dV[/tex]
where [tex]S[/tex] is the surface of the cube and [tex]T[/tex] is the region bounded by [tex]S[/tex].
We have
[tex]\mathrm{div}\vec F=\dfrac{\partial(y+z)}{\partial x}+\dfrac{\partial(x+z)}{\partial y}+\dfrac{\partial(x+y)}{\partial z}=0[/tex]
so the flux is 0.
Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X
Answer:
X is uniformly distributed.
Step-by-step explanation:
Uniform Distribution:
This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.
Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.
Factor.
x2 – 5x - 36
(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)
Answer:
The answer is option AStep-by-step explanation:
x² - 5x - 36
To factor the expression rewrite -5x as a difference
That's
x² + 4x - 9x - 36
Factor out x from the expression
x( x + 4) - 9x - 36
Factor out -9 from the expression
x( x + 4) - 9( x+ 4)
Factor out x + 4 from the expression
The final answer is
( x - 9)( x + 4)Hope this helps you
Answer:
[tex] \boxed{(x - 9) \: (x + 4) }[/tex]
Option A is the correct option.-
Step-by-step explanation:
( See the attached picture )
Hope I helped!
Best regards!
An investigator claims, with 95 percent confidence, that the interval between 10 and 16 miles includes the mean commute distance for all California commuters. To have 95 percent confidence signifies that
Answer:
Hello the options to your question is missing below are the options
A) if sample means were obtained for a long series of samples, approximately 95 percent of all sample means would be between 10 and 16 miles
B.the unknown population mean is definitely between 10 and 16 miles
C.if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians
D.the unknown population mean is between 10 and 16 miles with probability .95
Answer : if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians ( c )
Step-by-step explanation:
95% confidence
interval = 10 to 16 miles
To have 95% confidence signifies that if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians
confidence interval covers a range of samples/values in the interval and the higher the % of the confidence interval the more precise the interval is,
help pls:Find all the missing elements
Step-by-step explanation:
Using Sine Rule
[tex] \frac{ \sin(a) }{ |a| } = \frac{ \sin(b) }{ |b| } = \frac{ \sin(c) }{ |c| } [/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(38) }{a} [/tex]
[tex]a = \frac{5( \sin(38))}{ \sin(42) } [/tex]
[tex]a = 4.6[/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(100) }{b} [/tex]
[tex]b= \frac{5( \sin(100))}{ \sin(42) } [/tex]
[tex]b = 7.4[/tex]
The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:
Complete Question
On the uploaded image is a similar question that will explain the given question
Answer:
The value of k is [tex]k = 214285.7[/tex]
The percentage of the oil that will be cleaned is [tex]x = 80.77\%[/tex]
Step-by-step explanation:
From the question we are told that
The cost of cleaning up the spillage is [tex]C = \frac{ k x }{100 - x }[/tex] [tex]x \le x \le 100[/tex]
The cost of cleaning x = 70% of the oil is [tex]C = \$500,000[/tex]
Now at [tex]C = \$500,000[/tex] we have
[tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]
[tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]
[tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]
[tex]k = 214285.7[/tex]
Now When [tex]C = \$900,000[/tex]
[tex]x = 80.77\%[/tex]
limit chapter~ anyone can help me with these questions?
please gimme clear explanation :)
Step-by-step explanation:
I(S) = aS / (S + c)
As S approaches infinity, S becomes much larger than c. So S + c is approximately equal to just S.
lim(S→∞) I(S)
= lim(S→∞) aS / (S + c)
= lim(S→∞) aS / S
= lim(S→∞) a
= a
As S approaches infinity, I(S) approaches a.
which expression have a value of 2/3
A: 8+(24 divided by 12) X 4
B:8+24 divided by (12X4)
C: 8+24 divided 12X4
D: (8+24) divided (12X4)
A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.
Answer:
a
Step-by-step explanation:
answer is a on edg
Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r
Answer:
Note that orthogonal to the plane means perpendicular to the plane.
Step-by-step explanation:
-1x+3y-3z=1 can also be written as -1x+3y-3z=0
The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).
Let us find a point on this line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively
Therefore, the vector equation is given as:
-1(x-0) + 3(y-0) + -3(z-5) = 0
-x + 3y + (-3z+15) = 0
-x + 3y -3z + 15 = 0
Multiply through by - to get a positive x coordinate to give
x - 3y + 3z - 15 = 0
For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
HELP ASAP ROCKY!!! will get branliest.
Answer:
work pictured and shown
Answer:
Last one
Step-by-step explanation:
● [ ( 3^2 × 5^0) / 4 ]^2
5^0 is 1 since any number that has a null power is equal to 1.
●[ (3^2 ×1 ) / 4 ]^2
● (9/4)^2
● 81 / 16
a
A solid metal cone of base radius a cm and height 2a cm is melted and solid
spheres of radius are made without wastage. How many such spheres can be
made?
volume of a cone
.
.
.
volume of sphere
.
.
number of spheres that can be made......
.
.
hence a hemisphere can be formed
I need help please help meee I don’t understand
Answer:
204
Step-by-step explanation:
To simplify the shape, you can do multiple things. I've opted to shave down both prongs to take it from a 'T' shape to a rectangular prism.
For height of the prongs, take 4 from 6.
6 - 4 = 2
Divide by 2 as there are 2 prongs.
2 / 2 = 1
Remember L * W * H
6 * 3 * 1 = 18
Remember that there are two prongs!
3 + 4 = 7
6 * 7 * 4 = 168
168 + 2(18) = 204
8. When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the _______.
A. remainder
B. dividend
C. quotient
D. divisor
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the remainder.
A. remainder
B. dividend
C. quotient
D. divisor
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
Answer:
a. remainder
Step-by-step explanation:
took the test
dont leave your house without a vest
or you will get hit in the vital organs in your chest
(16 points) Find the radius of convergence and the interval of convergence of the power series. g
Answer:
The equation to be solved is missing in the question.
I will explain power series and ways to find the radius and interval of convergence of a powers series in the attached image.
Step-by-step explanation:
Understand the power seriesFind radius of convergenceDetermine interval of convergenceA line passes through (-5, -3) and is parallel to -3x - 7y = 10. The equation of the line in slope-intercept form is _____
Answer:
-3x - 7y = 36
Step-by-step explanation:
The given line -3x - 7y = 10 has an infinite number of parallel lines, all of the form -3x - 7y = C.
If we want the equation of a line parallel to -3x - 7y = 10 that passes through (-5, -3), we substitute -5 for x in -3x - 7y = 10 and substitute -3 for y in -3x - 7y = 10:
-3(-5) - 7(-3) = C, or
15 + 21 = C, or C = 36
Then the desired equation is -3x - 7y = 36.
BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER
Answer:
The first picture's answer would be (6, 21)
Step-by-step explanation:
You have to find the points on the 8th and the 9th day, and then you would add them together, and then divide by two finding the average, which would be 24 and 18, so when added, you get 42, divided by 2 you get 21. You look on the graph for the point with 21, and you find it is on 6.
What is 1/3 of 675 is left
A low-noise transistor for use in computing products is being developed. It is claimed that the mean noise level will be below the 2.5-dB level of products currently in use. It is believed that the noise level is approximately normal with a standard deviation of .8. find 95% CI
Answer:
The 95% CI is [tex]2.108 < \mu < 2.892[/tex]
Step-by-step explanation:
From the question we are told that
The population mean [tex]\mu = 2.5[/tex]
The standard deviation is [tex]\sigma = 0.8[/tex]
Given that the confidence level is 95% then the level of confidence is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the values is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically evaluated as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
here we would assume that the sample size is n = 16 since the person that posted the question did not include the sample size
So
[tex]E = 1.96* \frac{0.8}{\sqrt{16} }[/tex]
[tex]E = 0.392[/tex]
The 95% CI is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]2.5 - 0.392 < \mu < 2.5 + 0.392[/tex]
substituting values
[tex]2.108 < \mu < 2.892[/tex]
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
Use the order of operations to simplify this expression 1.2x3.5x4.1= What
[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]
$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$
$=(3+0.5+0.6+0.1)(4+0.1)$
$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$
$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$
$=16+0.4+0.8+0.02=17.22$
is this a function {(-2, 6), (-3, 7), (-4, 8), (-3, 10)}
No, that is not a function.
To be a function, each different input (x) needs a different output (y)
In the given function there are two -3’s as inputs and they have different y values, so it can’t be a function.
Answer: no
Step-by-step explanation: To determine if a relation is a function, take a look at the x–coordinate of each ordered pair. If the x–coordinate is different in each ordered pair, then the relation is a function.
Note that the only exception to this would be that if the x-coordinate pairs up with the same y-coordinate in a relation more than once, it's still classified ad a function.
Ask yourself, do any of the ordered pairs
in this relation have the same x-coordinate?
Well by looking at this relation, we can see that two
of the ordered pairs have the same x-coordinate.
In this case, the x-coordinate of 3 appears twice.
So no, this relation is not a function.