Answer:
Jeff has 3 watermelons left
Step-by-step explanation:
44-31=13 watermelons
Answer:
13
Step-by-step explanation:
44
-31
13
Figure out if the figure is volume or surface area.
(and the cut out cm is 4cm)
Answer:
Surface area of the box = 168 cm²
Step-by-step explanation:
Amount of cardboard needed = Surface area of the box
Since the given box is in the shape of a triangular prism,
Surface area of the prism = 2(surface area of the triangular bases) + Area of the three rectangular lateral sides
Surface area of the triangular base = [tex]\frac{1}{2}(\text{Base})(\text{height})[/tex]
= [tex]\frac{1}{2}(6)(4)[/tex]
= 12 cm²
Surface area of the rectangular side with the dimensions of (6cm × 9cm),
= Length × width
= 6 × 9
= 54 cm²
Area of the rectangle with the dimensions (9cm × 5cm),
= 9 × 5
= 45 cm²
Area of the rectangle with the dimensions (9cm × 5cm),
= 9 × 5
= 45 cm²
Surface area of the prism = 2(12) + 54 + 45 + 45
= 24 + 54 + 90
= 168 cm²
Consider the following case and determine whether there is sufficient information to solve the triangle using the low of sines. Two angles and the side included between them are known.
A. There is insufficient information because to use the law of sines, one side and the angle opposite it must be known.
B. There is sufficient information because if two angles and a side included between them are known, the third angle and the remaining two sides can be determined using the law of sines.
C. There is insufficient information because to use the law of sines, two angles and a side opposite one of them must be known.
D. There is sufficient information because if two angles and a side included between them are known, the third angle can be determined using the angle sum formula and the remaining two sides can be determined using the law of sines.
Answer:
D. There is sufficient information because if two angles and a side included between them are known, the third angle can be determined using the angle sum formula and the remaining two sides can be determined using the law of sines.
Step-by-step explanation:
A triangle is a plane shape that consists of 3 sides and 3 angles. There are different ways of solving for any unknown sides or angles of a triangle.
If any two angles and just one side of a triangle are known, then other angles and sides can also be determined using the sine rule.
For example, if a, b and c are the sides of the triangle and <A, <B and <C are the angles. The sine law is expressed as shown;
a/sinA = b/sinB = c/sinC
Any two can be equated to get any unknown sides and angles.
Also, if two of the angles are known, the third angle can be determined since the sum of angle in a triangle is 180°. If <A and <B are known for example, the third angle <C can be determined using the expression.
<C = 180°-(<A+<B)
Based on the explanation, option D is therefore the correct option i.e There is sufficient information because if two angles and a side included between them are known, the third angle can be determined using the angle sum formula and the remaining two sides can be determined using the law of sines.
A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.
Answer:
a
Step-by-step explanation:
answer is a on edg
Find the surface area of the figure. ft
Answer:
486
Step-by-step explanation:
Hello!
To find the surface area of a cube we use the equation
[tex]S = 6a^{2}[/tex]
S is the surface area
a is the side length
Put what we know into the equation
[tex]S = 6*9^{2}[/tex]
Solve
S = 6 * 81
S = 486
Hope this Helps!
Answer:486[tex]ft^{2}[/tex]
Step-by-step explanation:
surface area= 6[tex]l^{2}[/tex]
l=9
sa=6 ([tex]9^{2}[/tex])= 6 x 81=486[tex]ft^{2}[/tex]
There are two pitchers of lemonade in the fridge there are 1.5 gallons of lemonade in 1 pitcher and 9 quarts of lemonade in the other pitcher how many cups of lemonade are there in the fridge
Answer:
52 cups
Step-by-step explanation:
1 gallon = 4 quarts
1.5 gallons = 6 quarts
6 + 9 = 13 quarts of lemonade in the fridge.
1 quart = 4 cups
13 quarts = 4 × 13 = 52 cups
52 cups of lemonade are in the fridge.
I would really appreciate it if you would mark me brainliest!
Have a blessed day!
Answer:
60 cups
Step-by-step explanation:
1 gal = 16 cups
1 quart = 4 cups
16 cups
1.5 gal x ------------- = 24 cups
1 gal.
4 cups
9 quarts x ----------- = 36 cups
1 quart
number of cups of lemonade in the fridge = 24 cups + 36 cups = 60 cups
3. A medical devices company wants to know the number of MRI machines needed per day. A previous study found a standard deviation of four hours. How many MRI machines must the company study in order to have a margin of error of 0.5 hours when calculating a 90% confidence interval
Answer:
173 MRI machines
Step-by-step explanation:
Margin of error E = 0.5
Confidence interval 90% = 1-0.9 = 0.1
Standard deviation = 4 hours
Number of MRI machines needed per day n, = [(z alpha/2 * SD)/E]²
Z alpha/2 = 1.645 at alpha = 0.1
Inputting these values into n we have that
[(1.645*4)/0.5]²
= 13.16²
= 173.18 is approximately equal to 173
The company has to study 173 machines.
Diabetic patients have normally distributed cholesterol with mean 200 and standard deviation=10.
Find the percentage of patients whose cholesterol is between 198 mg/dL and
207 mg/dL ?
Answer:
The percentage of patients whose cholesterol is between 198 mg/dL and 207 mg/dL is 33.73%
Step-by-step explanation:
To calculate this proportion, we follow the probability route, using the z-score statistics
Mathematically;
z-score = (x-mean)/SD
from the question, mean = 200 and SD = 10
So for 198
z-score = (198-200)/10 = -2/10 = -0.2
For 207
z-score = (207-200)/10 = 7/10 = 0.7
So the probability we want to calculate is;
P(-0.2<z<0.7)
Mathematically this can be calculated as;
P(z<0.7) - P(z<-0.2)
We can calculate the required probability using the standard normal distribution table
P(-0.2<x<0.7) = 0.3373 from the standard distribution table
So it is this 0.3373 that we now convert to percentage and that is 33.73%
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
A small company is creating a new product to sell to buyers. They have estimated that it will cost them $25 to produce each item and they will have start-up costs of $116000. This leads to the following expression, which gives the total cost, in dollars, to produce q of these new products: 25q+116000 Use this expression to predict how much it will cost them to produce 8900 items.
Answer:
[tex]Cost = 338500[/tex]
Step-by-step explanation:
Given
Startup = $116000
Cost per item = $25
Equation: 25q + 116000
Required
Determine the cost of producing 8900 items
The question implies that q = 8900
To solve further, we have to substitute 8900 for q in the given equation
Equation = 25q + 116000 becomes
[tex]Cost = 25 * 8900 + 116000[/tex]
[tex]Cost = 222500 + 116000[/tex]
[tex]Cost = 338500[/tex]
Hence, the cost of producing 8900 items is $338500
PLEASE HELP! (3/4) - 50 POINTS -
Answer:
C
Step-by-step explanation:
The set of data will only become more narrow when the standard deviation is decreased, so D isn't correct. The data isn't going to shift directions unless there's a translation, so A and B are both out. That leaves us with C. The opposite of answer D.
Answer:
C. It produces a wider range of probable values
Step-by-step explanation:
The set of data that we have cannot shift in directions unless there is a translation, so therefore, A and B are both out. The set of data would become smaller when the standard deviation is decreases so therefore, D isn't correct. So, that leaves us with only one answer.
C. It produces a wider range of probably values.
first second and last term of Ap are a,b,2a respectively, find its sum
Answer:
(3ab)/(2(b-a))
Step-by-step explanation:
The n-th term of an arithmetic progression is ...
an = a1 +d(n -1)
Then the value of n is ...
n = (an -a1)/d +1
The sum of an arithmetic progression is the product of the number of terms and the average of the first and last terms. In this sequence, the common difference d is ...
d = (b -a)
So, the sum is ...
Sn = (a +2a)/2·((2a -a)/(b -a) +1)
Sn = (3ab)/(2(b-a)) . . . . sum of the arithmetic progression
__
Example:
The sequence 1, 1.5, 2 has ...
a = 1, b = 1.5
Its sum is given by the above formula as ...
Sn = 3(1)(1.5)/(2(1.5 -1)) = 4.5/(2(.5)) = 4.5 = 1 + 1.5 + 2 . . . . yes
estimate the number 4576
Nearest 1000: 5000
Nearest 100: 4600
Nearest 10: 4580
Hope that helped!!! k
------------------------------------------------------------------------------------------
Given these four points: A(3, 3), B(−5, 7), C(2, 11), and D(9, −2), find the coordinates of the midpoint of line segments AB and CD.
Midpoint formula: (x1 + x2)/2 , (y1 + y2)/2
Midpoint AB = (3 +-5)/2, (3 + 7)/2 = -2/2 , 10/2 = (-1,5)
Midpoint CD = (2 +9)/2, (11 + -2)/2 = (11/2,9/2)
If y varies directly with x and y = -11.7 when x = -3, find the value of y when x = 7.
Answer:
y = 27.3Step-by-step explanation:
To find the value of y when x = 7 we must first find the relationship between them.
The statement
y varies directly with x is written as
y = kx
where k is the constant of proportionality
From the question
when y = - 11.7
x = - 3
We have
- 11.7 = -3k
Divide both sides by - 3
k = 3.9
So the formula for the variation is
y = 3.9kWhen x = 7
y = 3.9(7)
y = 27.3Hope this helps you
Answer: 27.3
Step-by-step explanation:
Joint Variation
What is the third quartile?
Answer:
17
Step-by-step explanation:
The third quartile is positioned at the right end of the box, thus
third quartile = 17
9.3.2 Listed below are body temperatures from five different subjects measured at 8 AM and again at 12 AM. Find the values of d overbar and s Subscript d. In general, what does mu Subscript d represent? Temperature (degrees Upper F )at 8 AM 98.1 98.8 97.3 97.5 97.9 Temperature (degrees Upper F )at 12 AM 98.7 99.4 97.7 97.1 98.0 Let the temperature at 8 AM be the first sample, and the temperature at 12 AM be the second sample. Find the values of d overbar and s Subscript d.
Answer:
[tex]\frac{}{d}[/tex] = −0.26
[tex]s_{d}[/tex] = 0.4219
Step-by-step explanation:
Given:
Sample1: 98.1 98.8 97.3 97.5 97.9
Sample2: 98.7 99.4 97.7 97.1 98.0
Sample 1 Sample 2 Difference d
98.1 98.7 -0.6
98.8 99.4 -0.6
97.3 97.7 -0.4
97.5 97.1 0.4
97.9 98.0 -0.1
To find:
Find the values of [tex]\frac{}{d}[/tex] and [tex]s_{d}[/tex]
d overbar ( [tex]\frac{}{d}[/tex]) is the sample mean of the differences which is calculated by dividing the sum of all the values of difference d with the number of values i.e. n = 5
[tex]\frac{}{d}[/tex] = ∑d/n
= (−0.6 −0.6 −0.4 +0.4 −0.1) / 5
= −1.3 / 5
[tex]\frac{}{d}[/tex] = −0.26
s Subscript d is the sample standard deviation of the difference which is calculated as following:
[tex]s_{d}[/tex] = √∑([tex]d_{i}[/tex] - [tex]\frac{}{d}[/tex])²/ n-1
[tex]s_{d}[/tex] =
√ [tex](-0.6 - (-0.26))^{2} + (-0.6 - (-0.26))^{2} + (-0.4 - (-0.26))^{2} + (0.4-(-0.26))^{2} + (-0.1 - (-0.26))^{2} / 5-1[/tex]
= √ (−0.6 − (−0.26 ))² + (−0.6 − (−0.26))² + (−0.4 − (−0.26))² + (0.4 −
(−0.26))² + (−0.1 − (−0.26))² / 5−1
= [tex]\sqrt{\frac{0.1156 + 0.1156 + 0.0196 + 0.4356 + 0.0256}{4} }[/tex]
= [tex]\sqrt{\frac{0.712}{4} }[/tex]
= [tex]\sqrt{0.178}[/tex]
= 0.4219
[tex]s_{d}[/tex] = 0.4219
Subscript d represent
μ[tex]_{d}[/tex] represents the mean of differences in body temperatures measured at 8 AM and at 12 AM of population.
A work shift for an employee at Starbucks consists of 8 hours (whole).
What FRACTION (part) of the employees work shift is represented by 2
hours? *
Answer:
1/4 of an hour
Step-by-step explanation:
2 divided by 8 = 1/4
Answer:
1/4
Step-by-step explanation:
A whole shift is 8 hours
Part over whole is the fraction
2/8
Divide top and bottom by 2
1/4
Find the measure of each angle in Triangle ABC
Answer:
m<A = 133 degrees
m<B = 17 degrees
m<C = 30 degrees
Step-by-step explanation:
In a triangle, all the angles add up to 180 degrees.
So, adding all the angles gets us,
39x + 24
This equals 180 degrees so,
39x + 24 = 180
Subtract 24 from both sides,
39x + 24 - 24 = 180 - 24
39x = 156
Divide both sides by 39
x = 4
Now we have x = 4, we use this to plug in each equation of the angles.
m<A = 40(4) - 27 = 160 - 27 = 133
m<B = 25 - 2(4) = 25 - 8 = 17
m<C = 26 + 4 = 30
Which expression is equivalent to x+y+x+y+3(y+5)
Answer:
2x + 5y + 15
Step-by-step explanation:
add like terms
(x+x) + (y+y)+3y+15
2x+2y+3y+15
2x + 5y + 15
i hope this helps!
Hi I need help with 800×200= 8 × ______ hundreds=_____ Hundreds = _______ plz help me
Answer:
800×200= 8 × 200 hundreds= 1600 Hundreds = 160000
Translate and solve: 82 less than a is at least -82
Answer:
a≥0
Step-by-step explanation:
a-82≥-82
a≥-82+82
a≥0
In the figure, ∆BAT ≅ ∆CAT. Which statement is not true by CPCTC? ∠BTA ≅ ∠CTA ∠BAT ≅ ∠CAT
Answer:
The two choices are true by CPCTC. Are there other choices that were not posted?
What number represents the same amount as 8 hundreds + 10 tens + 0 ones? i was told 810 is incorrect
Answer:
900
Step-by-step explanation:
You have 10 tens not 1 ten
8 * 100 + 10 * 10 + 0*1
800 + 100 + 0
900
Answer:
[tex]900[/tex]
Step-by-step explanation:
[tex]8 \times 100 + 10 \times 10 + 0 \times 1 \\ 800 + 100 + 0 \\ = 900[/tex]
An agriculture company is testing a new product that is designed to make plants grow taller. This can be thought of as a hypothesis test with the following hypotheses. H0: The product does not change the height of the plant. Ha: The product makes the plant grow taller. Is the following an example of a type I or type II error? The sample suggests that the product makes the plant grow taller, but it actually does not change the height of the plant.
Answer:
hi
Step-by-step explanation:
hji
Find the vertex of this parabola:
y = x2 + 2x - 3
Answer:
(-1,-4)
Step-by-step explanation:
The equation of a parabola os written as: ax^2+bx+c
This parabola's equation is x^2+2x-3
● a= 1
● b= 2
● c = -3
The coordinates of the parabola are: ( (-b/2a) ; f(-b/2a) )
● -b/2a = -2/2 = -1
● f(-b/2a) = (-1)^2+2×(-1)-3=1-2-3= -4
So the vertex coordinates are (-1,-4)
Answer:
-1+2X
Step-by-step explanation:
Complete the statement to describe the expression abc+def
The expression consists of ____ terms,and each term contains___ factors
Answer:
3 each
Step-by-step explanation:
The answer is already on this site
simplest form 2 3/4 x 4/5 *
Answer:
2 1/5
Step-by-step explanation:
2 3/4 * 4/5
Change the mixed number to an improper fraction
( 4*2+3)/4 * 4/5
11/4 * 4/5
The 4 in the numerator and denominator cancel
11/5
Changing back to a mixed number
5 goes into 11 2 times with 1 left over
2 1/5
Answer:
[tex]2\frac{1}{5}[/tex]
Step-by-step explanation:
[tex]2\frac{3}{4}*\frac{4}{5}\\\frac{11}{4}*\frac{4}{5}\\\frac{11}{5}\\ 2\frac{1}{5}[/tex]
If the function Q(t)=4e-0.00938t models the quantity (in kg) of an element in a storage unit after t years, how long will it be before the quantity is less than 1.5kg? Round to the nearest year.
Answer:
105 years
Step-by-step explanation:
Given the function :
Q(t) = 4e^(-0.00938t)
Q = Quantity in kilogram of an element in a storage unit after t years
how long will it be before the quantity is less than 1.5kg
Inputting Q = 1.5kg into the equation:
1.5 = 4e^(-0.00938t)
Divide both sides by 4
(1.5 / 4) = (4e^(-0.00938t) / 4)
0.375 = e^(-0.00938t)
Take the ln of both sides
In(0.375) = In(e^(-0.00938t))
−0.980829 = -0.00938t
Divide both sides by 0.00938
0.00938t / 0.00938 = 0.980829 /0.00938
t = 104.56599
When t = 104.56599 years , the quantity in kilogram of the element in storage will be exactly 1.5kg
Therefore, when t = 105 years, the quantity of element in storage will be less than 1.5kg
nishan bought 7 marbles Rs.x per each. if he gave Rs.100 to the shop keeper. what is the balance he would receive?
Which statements are true?
Answer:
Step-by-step explanation:
The first statement is true. We use 4 as the base and 3.33 as the exponent, obtaining 101.
The second statement is true. Using 2 as the base and 6.15 as the exponent, we get 71.01, or approximately 71.
Third statement: 3^4.14 = 94.47, which is NOT equal to 24. False
Fourth statement: Raise the base (5) to the power 2.60, obtaining 65.66, or approximately 66. True
Fifth statement: Raise the base (6) to the power 0.17, obtaining 1.36. This does not match the '11' given. False