Answer: 75%
Step-by-step explanation:
186.75/249 =.75
.75x100
75%
Construct a frequency distribution and a relative frequency histogram for the accompanying data set using five classes. Which class has the greatest relative frequency and which has the least relative frequency?Complete the table below. Use the minimum data entry as the lower limit of the first class.Class Frequency, f Relative frequencyx-x x xx-x x xx-x x xx-x x xx-x x x sumf= X?(Type integers or decimals. Round to the nearest thousandth as needed.)DATA:Triglyceride levels of 26 patients (in milligrams per deciliter of blood)138 199 240 143 294 175 240 216 223180 138 266 161 175 402 172 459 147391 152 199 294 188 320 421 161
Answer:
[tex]\begin{array}{cc}{Class}& {Frequency} & 138 - 202 & 14 & 203 - 267 & 5 & 268 - 332 & 3 & 333 - 397 & 1 & 398 - 462 & 3 \ \end{array}[/tex]
The class with the greatest is 138- 202 and the class with the least relative frequency is 333 - 397
Step-by-step explanation:
Solving (a): The frequency distribution
Given that:
[tex]Lowest = 138[/tex] --- i.e. the lowest class value
[tex]Class = 5[/tex] --- Number of classes
From the given dataset is:
[tex]Highest = 459[/tex]
So, the range is:
[tex]Range = Highest - Lowest[/tex]
[tex]Range = 459 - 138[/tex]
[tex]Range = 321[/tex]
Divide by the number of class (5) to get the class width
[tex]Width = 321 \div 5[/tex]
[tex]Width = 64.2[/tex]
Approximate
[tex]Width = 64[/tex]
So, we have a class width of 64 in each class;
The frequency table is as follows:
[tex]\begin{array}{cc}{Class}& {Frequency} & 138 - 202 & 14 & 203 - 267 & 5 & 268 - 332 & 3 & 333 - 397 & 1 & 398 - 462 & 3 \ \end{array}[/tex]
Solving (b) The relative frequency histogram
First, we calculate the relative frequency by dividing the frequency of each class by the total frequency
So, we have:
[tex]\begin{array}{ccc}{Class}& {Frequency} & {Relative\ Frequency} & 138 - 202 & 14 & 0.53 & 203 - 267 & 5 & 0.19 & 268 - 332 & 3 & 0.12 & 333 - 397 & 1 & 0.04 & 398 - 462 & 3 & 0.12 \ \end{array}[/tex]
See attachment for histogram
The class with the greatest is 138- 202 and the class with the least relative frequency is 333 - 397
suppose y varies inversely with X, and y = 48 when x = 3. What is the value of x when y = 24?
NO LINKS OR ANSWERING YOU DON'T KNOW.
a. 3
b. 12
c. 6
d. 24
Answer:
C. 6
Step-by-step explanation:
Recall that inverse variation is given by:
[tex]\displaystyle y=\frac{k}{x}[/tex]
Where k is the constant of variation.
We know that y = 48 when x = 3. Substitute:
[tex]\displaystyle (48)=\frac{k}{(3)}[/tex]
Solve for k:
[tex]k=3(48)=144[/tex]
Hence, our equation is:
[tex]\displaystyle y=\frac{144}{x}[/tex]
We want to find x when y = 24. Substitute:
[tex]\displaystyle \frac{24}{1}=\frac{144}{x}[/tex]
Cross-multiply:
[tex]24x=144[/tex]
Divide both sides by 24. Hence:
[tex]x=6[/tex]
Our answer is C.
Lim x>0 (x(e^3x - 1)/(2 - 2cosx))
Evaluating the limand directly at x = 0 yields the indeterminate form 0/0. If L'Hopital's rule is known to you, you can compute the limit by applying it twice:
[tex]\displaystyle\lim_{x\to0}\frac{x\left(e^{3x}-1\right)}{2-2\cos(x)} = \lim_{x\to0}\frac{3xe^{3x}+e^{3x}-1}{2\sin(x)} \\\\\\ = \lim_{x\to0}\frac{9xe^{3x}+6e^{3x}}{2\cos(x)} = \frac62=\boxed{3}[/tex]
Which of the following best describes the relationship between angle a and angle bin the image below?
Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.)
g(t) =
4 + t + t2
t
G(t) =
Step-by-step explanation:
[tex]G(t) =\displaystyle \int (4 + t + t^2)dt[/tex]
[tex]\:\:\:\:\:\:\:=4t + \frac{1}{2}t^2 + \frac{1}{3}t^3 + C[/tex]
Check:
[tex]\dfrac{d}{dt}(4t + \frac{1}{2}t^2 + \frac{1}{3}t^3+C)= 4 + t + t^2 =g(t)[/tex]
If f(1) =160 and f(n+1)=-2f(n),
What is f(4)?
Answer:
f(n+1=-2f(n)
f(x)=-2f(n)
f(4)
f(4)=-2f(4)
Answer:
f(4) = - 1280
Step-by-step explanation:
Using the recursive rule and f(1) = 60 , then
f(2) = - 2f(1) = - 2 × 160 = - 320
f(3) = - 2f(2) = - 2 × - 320 = 640
f(4) = - 2f(3) = - 2 × 640 = - 1280
Given that m∠abc=70° and m∠bcd=110°. Is it possible (consider all cases): Line AB intersects line CD?
The line AB and CD are parallel. Then it is impossible that the line AB intersects the line CD.
What are parallel lines?When the distance between the lines is constant, then the lines are called parallel lines. The lines do not intersect when they are separated from each other. And the slope of the lines is equal.
Given that ∠ABC = 70° and ∠BCD = 110°.
Then the line AB and the line CD makes the same angle with the line BC.
Hence, the line AB and CD are parallel.
Then it is impossible that the line AB intersects the line CD.
More about the parallel lines link is given below.
https://brainly.com/question/16701300
#SPJ1
What is the equation, in the point-slope form, of the line that is parallel to the given and passes through the point (-1,-1)?
Answer:
y + 1 = 3(x+ 1)
Step-by-step explanation:
(2,3) , (0 ,-3)
Slope = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]= \frac{-3-3}{0-2}\\\\=\frac{-6}{-2}\\\\= 3[/tex]
m = 3
Parallel lines have same slope.
m = 3; (-1 , -1)
y -y1 = m (x -x1)
y -[-1] = 3(x -[-1])
y + 1 = 3(x+ 1)
Answer:
D. y+1=3(x+1)
Insert a digit in place of each “…” to make numbers that are divisible by 6 if it
is possible:
4…6
?
Answer: Either 2, 5, or 8
This means the number 426 is divisible by 6. So are 456 and 486
===============================================================
Explanation:
A number is divisible by 6 if both of the following are true
The number is divisible by 2The number is divisible by 3This is simply because 6 = 2*3. So if 6 is a factor of a number, then 2 and 3 must be factors.
To have 2 be a factor, the units digit must be in the set {0,2,4,6,8} which is the case here (the units digit is 6 in this case). Therefore we know the number is a multiple of 2 regardless of what the other digits are. To have 3 be a factor, the digits must add up to a multiple of 3. Through trial and error, we see that 0 doesn't work because 4+0+6 = 10 which is not a multiple of 3. Same goes for 4+1+6 = 11, but 4+2+6 = 12 is a multiple of 3.Therefore, 426 is a multiple of 6
Increment that middle digit 2 by 3 and we jump from 426 to 456. Those three digits add to a multiple of 3 as well (4+5+6 = 15). Following that line of logic, we go from 456 to 486 as the last possible three digit number that has these conditions of having 4 first and 6 last, and the number is a multiple of 6.
-------------------------------
In short,
The numbers 426 and 456 and 486 are all multiples of 6 since they are multiples of 2 and 3 at the same time.
So we could replace that middle digit with either 2, 5 or 8.
If X is a normal random variable with mean 6 and standard deviation 2.0, then find the value x such that P(X > x) is equal to .7054. Group of answer choices5.28
5.46
4.92
7.28
Answer:
Step-by-step explanation:
If X is a normal random variable with a mean of 6 and a standard deviation of 3.0, then find the value x such that P(Z>x)is equal to .7054.
-----
Find the z-value with a right tail of 0.7054
z = invNorm(1-0.7054) = -0.5400
x = zs+u
x = -5400*3+6 = 4.38
How much do I need to subtract from 67/10 to make 6
Answer:
0.7
Step-by-step explanation:
67/10 is the same as 6.7 when you subtract the 0.7 you will remain with 6
What are the slope and the y-intercept of the linear function that is represented by the graph?
Answer:
The slope is -3/4 because it rises goes down 3 and runs 4. the Y-intercept or where the line meets the y line is 3.
Can someone answer these?
Answer: hello there here are your answers:
5.d associate property of addition
6.b multiplicative identify
7. c Additive identify
Step-by-step explanation:
5) they are just changing up the number in the ()
6) Its the same number or equation on both sides just wrote different
7) that in a given mathematical system leaves unchanged any element to which it is added.
hope this help have a good day bye!
Suppose the random variables X, Y, and Z have the following joint probability distribution. x y z f ( x , y , z ) 1 1 1 0.05 1 1 2 0.10 1 2 1 0.15 1 2 2 0.20 2 1 1 0.20 2 1 2 0.15 2 2 1 0.10 2 2 2 0.05 Determine the conditional probability distribution of X given that Y
Answer:
Determine the conditional probability distribution of X given that Y = 1 and Z = 2. Round your answers to two decimal places (e.g. 98.76).
answer:
Given that Y = 1 : 2/5
Given that Z = 2 : 3/5
Step-by-step explanation:
The conditional probability distribution of X F x | yz^( x )
Given that Y = 1
F x | yz . ( x | yz ) = 2/5
Given that z = 2
= 3/5
attached below is the detailed solution
HELP PLEASE. Will give maximum points (100). I’m desperate. Will give brainiest for the correct answer, if wrong answer is given on purpose, I will report. Plz help.
Answer:
C, D, D.
Step-by-step explanation:
Problem 6)
We want to determine the equation of the graphed inequality.
First, let's determine the equation of the line for the inequality. We can see that it passes through the points (-2, 0) and (0, 2). Find the slope:
[tex]\displaystyle m=\frac{\Delta y}{\Delta x}=\frac{2-0}{0-(-2)}=\frac{2}{2}=1[/tex]
So, the slope of the line is one.
And since it passes through the point (0, 2), our y-intercept is two. Therefore, the equation of the line is:
[tex]y=x+2[/tex]
Next, notice that the shaded region is below the line. Also, the line itself is also shaded.
Since the shaded region is below the line, y is less than the graph of the line and since the line itself is shaded, our sign is less than or equal to.
Hence:
[tex]y \leq x + 2[/tex]
Our answer is C.
Problem 7)
We have the inequality:
[tex]-2x+8+5x>2x+1[/tex]
First, solve the inequality. Combine like terms:
[tex]3x+8>2x+1[/tex]
Subtract x from both sides:
[tex]x+8>1[/tex]
And subtract 8 from both sides:
[tex]x>-7[/tex]
Therefore, any value greater than -7 will satisfy the inequality.
Out of the choices, the only choice greater than -7 is -5.
So, our answer is D.
Problem 8)
We have the inequality:
[tex]5x+7\leq 8x-3+2x[/tex]
Again, solve the inequality. Combine like terms:
[tex]5x+7\leq 10x-3[/tex]
Subtract 5x from both sides:
[tex]7\leq 5x-3[/tex]
And add three to both sides:
[tex]10\leq 5x[/tex]
Divide both sides by five:
[tex]2\leq x[/tex]
Flip:
[tex]x\geq 2[/tex]
Therfore, any value greater than or equal to 2 will satisfy the inequality.
Out of the choices, the only choice greater than or equal to 2 is 2.
So, our answer is D.
PLEASE HELP!!! What is the domain of D(t) as it applies in this situation?!?!
Answer:
This Question Is From The Novel Of The Fantastic Mr.Fox
Q. Boggis , Bunce and Bean are Offering a reward for Mr.Fox , They are tired of Losing Chickens Geese and Cider , Create a Description And Drawing of Mr.Fox to allow him to be captured , use the word bank....
________________________________
Swift | Slay | Ginger | Rough | Fast
Thief. | Clever | Fur | Tail | Wife | Night
Cunning | Bushy | wiry | bush | Den | trick
________________________________
The function f(x) is shown in this graph. The function g(x) = -7x - 1. Compare the slopes.
Answer:
D
Step-by-step explanation:
Slope of the first line = (1-3)/1 = -2
Plz help. Last one today. 20 points. Thx!
The difference between seven times a number and 9 is equal to five times
the sum of the number and 2. Find the number. Hint: There will be
parenthesis in your equation.
Answer:
The number is 9.5
Step-by-step explanation:
Look at the picture above, it explains everything
according to byu idaho enrollment statisct there are 1200 femaile studnet here on campus during any given semester of those 3500 have serced a msion what is the probability that a radnoly selcted femal studne ton cmapus wil have served a mission g
Answer:
0.2917 = 29.17% probability that a randomly selected female student on campus will have served a mission.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question:
1200 female students, out of them, 350 have served a mission. So
[tex]p = \frac{350}{1200} = 0.2917[/tex]
0.2917 = 29.17% probability that a randomly selected female student on campus will have served a mission.
Can someone do eight nine one and two ?
Answer: hello there here are your answers:
8) B multiplication property of zero
9) C additive identify
1) 8
2) -2a-7
Step-by-step explanation:
1) [tex]\frac{3+u}8^{2} \\u=5 \\so\\ \frac{3+5}8^{2} \\3+5=8^{2} \\8^{2} =\\64 \\\\ 64/8=\\\\\\8 \\there.\\\\\\[/tex]
2)[tex]-2(a-7)\\\\-2(a)(-7)\\\\=-2a+14\\\\\\there[/tex]
If someone can pls give me the answer the would be greatly appreciated :)
Step-by-step explanation:
The Answer Is Provided Below ➳
(2²)² = 2⁴/2⁴ = 2⁰ × 2⁰ = 2⁰/2⁰
Suppose that on the average, 7 students enrolled in a small liberal arts college have their automobiles stolen during the semester. What is the probability that less than 1 student will have his automobile stolen during the current semester
Answer:
[tex]P(x>1)=0.9927[/tex]
Step-by-step explanation:
From the question we are told that:
Mean [tex]\=x =7[/tex]
Generally the Poisson equation for \=x is mathematically given by
[tex]P(x>1)=1-P(x \leq 1)[/tex]
Therefor
[tex]P(x>1)=1-(\frac{e^{-7}*7^0}{0!}+{\frac{e^{-7}*7^1}{1!})[/tex]
[tex]P(x>1)=1-(9.1*10^{-4}+6.3*10^{-3})[/tex]
[tex]P(x>1)=1-(7.3*10^{-3}[/tex]
[tex]P(x>1)=0.9927[/tex]
If a person high jumps 6 feet 2 inches, how many inches is the jump?
Answer:
74 inches
Step-by-step explanation:
1 foot is 12 inches, so 6 x 12 = 72, and just add the other 2 inches to get 74 inches.
Answer:
74 inches.
Step-by-step explanation:
Each foot has 12 inches, so multiply 6 by 12 to get 72 inches. Then add the remaining two inches to get a total of 74 inches.
Is AABC-ADEF? If so, name which similarity postulate or theorem applies.
75
A. Similar - SSS
B. Similar - AA
0
C. Similar - SAS
D. Cannot be determined
Answer:
B. Similar - AA
Step-by-step explanation:
Two angles in ∆ABC are congruent to two corresponding angles in ∆DEF. Thus, it follows that the third pair of angles of both triangles would also be congruent.
Therefore, the three sides of ∆ABC and corresponding sides of ∆DEF will be proportional to each other.
This satisfies the AA Similarity Criterion. Therefore, ∆ABC ~ ∆DEF by AA.
Pls help quick:
The following figures are not drawn to scale but
AB and CD (if present in the picture) are straight lines. Find x:
Step-by-step explanation:
2x+60°= 110°
2x= 110-60
2x= 50
x= 25°
The point-slope form of a line that has a slope of -2 and passes through point (5,-2) is shown below.
y+2=-2(x-5)
What is the equation in slope-intercept form?
O y=-2x+12
O y=-2x+8
O y=-22-7
O y=-2x-3
Savait
Answer:
y = -2x + 8Step-by-step explanation:
The equation in slope-intercept form: y = mx + b
y + 2 = -2(x - 5)
y + 2 = -2x + 10 {subtract 2 from both sides
y = -2x + 8
Leroy borrowed $1500 at an annual simple interest rate of 12%. He paid $270 in interest. For what time period did Leroy borrow the money?
Answer:
i hope you understand easily
mark me brainlist
Step-by-step explanation:
(x-5)(X+12)=-70
[tex](x - 5)(x + 12) = - 70[/tex]
Answer:
[tex]x = - 2[/tex]
[tex]x = - 5[/tex]
Step-by-step explanation:
Give
[tex](x - 5)(x + 12)[/tex]
Apply FOIL Method
[tex]x {}^{2} + 7x - 60 = - 70[/tex]
Add 70 on both sides
[tex] {x}^{2} + 7x + 10[/tex]
Factor
[tex](x + 2)(x + 5)[/tex]
So our roots are
x=-2
x=-5
Answer:
dtet
Step-by-step explanation:
dgbyn
testing for a disease can be made more efficient by combining samples. If the samples from two people are combined and the mixture tests negative, then both samples are negative. On the other hand, one positive sample will always test positive, no matter how many negative samples it is mixed with. Assuming the probability of a single sample testing positive is 0.15, find the probability of a positive result for two samples combined into one mixture. Is the probability low enough so that further testing of the individual samples is rarely necessary?w./search?q=%E2%80%8B"At+least%E2%80%8B+one"+is+equivalent+to%E2%80%8B+_______.&oq=%E2%80%8B"At+least%E2%80%8B+one"+is+equivalent+to%E2%80%8B+_______.&aqs=chrome..69i57j0i22i30l3.409j0j4&sourceid=chrome&ie=UTF-8 The probability of a positive test result is nothing
Answer:
(a) [tex]P(Two\ Positive) = 0.2775[/tex]
(b) It is not too low
Step-by-step explanation:
Given
[tex]P(Single\ Positive) = 0.15[/tex]
[tex]n = 2[/tex]
Solving (a):
[tex]P(Two\ Positive)[/tex]
First, calculate the probability of single negative
[tex]P(Single\ Negative) =1 - P(Single\ Positive)[/tex] --- complement rule
[tex]P(Single\ Negative) =1 - 0.15[/tex]
[tex]P(Single\ Negative) =0.85[/tex]
The probability that two combined tests are negative is:
[tex]P(Two\ Negative) = P(Single\ Negative) *P(Single\ Negative)[/tex]
[tex]P(Two\ Negative) = 0.85 * 0.85[/tex]
[tex]P(Two\ Negative) = 0.7225[/tex]
Using the complement rule, we have:
[tex]P(Two\ Positive) = 1 - P(Two\ Negative)[/tex]
So, we have:
[tex]P(Two\ Positive) = 1 - 0.7225[/tex]
[tex]P(Two\ Positive) = 0.2775[/tex]
Solving (b): Is (a) low enough?
Generally, when a probability is less than or equal to 0.05; such probabilities are extremely not likely to occur
By comparison:
[tex]0.2775 > 0.05[/tex]
Hence, it is not too low