It the figure shown, shaft A, made of AISI 1020 hot-rolled steel, is welded to a fixed support and is subjected to loading by equal and opposite forces F via shaft B. A theoretical stress-concentration factor Kts of 1.6 is induced by the 1/8" fillet. The length of shaft A from the fixed support to the connection at shaft B is 2 ft. The load F cycles from 150 t0 500 lbf.
For shaft A, find the factor of safety for infinite life using the modified Goodman fatigue failure criterion using the von Mises combined stress approach.

Answers

Answer 1

The given figure is shown below:

Given figure from which shaft A is made of AISI 1020 hot-rolled steel, is welded to a fixed support and is subjected to loading by equal and opposite forces F via shaft B.

A theoretical stress-concentration factor Kts of 1.6 is induced by the 1/8" fillet. The length of shaft A from the fixed support to the connection at shaft B is 2 ft. The load F cycles from 150 t0 500 lbf. To find:

Factor of safety for infinite life using the modified Goodman fatigue failure criterion using the von Mises combined stress approach for shaft A.

Solution: The factor of safety for infinite life can be given by the following formula:

Factor of safety for infinite life= σ′ut1.5σ′a + σm

Here, σm = (σ1+σ2)/2= (800+400)/2= 600 psi

σa = (σ1-σ2)/2= (800-400)/2= 200 psi

σ′ut = σut/Kf= 64000/1.5 = 42666.67 psi

The alternating stress (σa) can be obtained as follows:

The force F can be given as,F= 150 + 350sin(πn/60) …(i)Where n is the rotational speed in rpm. For the given data, n= 1800 rpm.

Substituting the values, we get,

F= 150 + 350sin(π×1800/60)= 500 lb

Substituting the values of force and cross-sectional area of shaft A, we get,

σa= 4F/πd²= 4×500/π×0.25²= 4080 psi

Thus, substituting the above values in the formula of factor of safety, we get,

Factor of safety for infinite life= σ′ut1.5

σ′a + σm= 42666.67/1.5×4080 + 600= 4.23

Hence, the factor of safety for infinite life using the modified Goodman fatigue failure criterion using the von Mises combined stress approach for shaft A is 4.23.

To learn more about "von mises", visit: https://brainly.com/question/13440986

#SPJ11


Related Questions

At the resting membrane potential, the membrane is most permeable to ________, which moves ________ the cell due to its A) chloride : into B) potassium : into C) sodium : out of D) sodium : into E) potassium : out of

Answers

At the resting membrane potential, the membrane is most permeable to potassium ions (K+), which move out of the cell due to its concentration gradient and the negative charge inside the cell.  Correct answer is option: E.

This movement of K+ ions out of the cell contributes to the negative resting membrane potential of approximately -70 mV in most cells.  The resting membrane potential is maintained by the selective permeability of the cell membrane, which allows for the movement of certain ions across the membrane. In general, the membrane is less permeable to sodium (Na+) and chloride (Cl-) ions at rest, and the movement of these ions across the membrane is limited. Thus, option E "potassium" is the correct answer.

To know more about resting membrane, here

brainly.com/question/8438145

#SPJ4

1. calculate the final concentration of sodium azide and dcmu in the locomotion chambers. show your work. The DCMU is a 10mM concentrationThe Sodium Azide is a 1M concentration.If you add 10mL of the Chlamydomonas, 100 microliters of sterile water, and 100 microliters of 10mM DCMU what is the final concentration of DCMU?If you add 10mL of the Chlamydomonas, 100 microliters of sterile water, and 100 microliters of 1M Sodium Azide what is the final concentration of DCMU?

Answers

The final concentration of DCMU in the locomotion chambers will be 0.1 mM. If 10mL of the Chlamydomonas, 100 microliters of sterile water, and 100 microliters of 10mM DCMU is added.

To Calculate the final concentration of Sodium Azide and DCMU in the locomotion chambers. The final concentration of Sodium Azide in the locomotion chambers will be 10mM (millimolar) if 10mL (milliliters) of the Chlamydomonas, 100 μL (microliters) of sterile water, and 100 μL of 1M (molar) Sodium Azide is added.

The final concentration of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in the locomotion chambers will be 0.1 mM (millimolar) if 10 mL (milliliters) of the Chlamydomonas, 100 μL (microliters) of sterile water, and 100 μL of 10 mM (millimolar) DCMU are added.

Calculating the final concentration of DCMU:

Formula: C1V1 = C2V2C1 = initial concentration of DCMU = 10 mMV1 = volume of DCMU added = 100 μL (microliters)C2 = final concentration of DCMU = ?V2 = final volume = 10 mL + 100 μL + 100 μL = 10.2 mL

(convert 100 μL to mL by dividing it by 1000)

Substituting the values in the formula:

C1V1 = C2V210 mM x 100 μL = C2 x 10.2 mL1000 (since 1 mL = 1000 μL)C2 = 0.098 mM (millimolar) = 0.1 mM (approx.)

Thus, the final concentration of DCMU in the locomotion chambers will be 0.1 mM if 10mL of the Chlamydomonas, 100 microliters of sterile water, and 100 microliters of 10mM DCMU is added.

For more such questions on concentration , Visit:

https://brainly.com/question/28564792

#SPJ11

The codons in mRNA specify the amino acids that are used to make a protein. Mark the following statement concerning translation TRUE or FALSE.

Answers

TRUE. The codons in mRNA, which are collections of three nucleotides, stand for certain amino acids that are combined to produce proteins during translation.

In order to create a protein, the information contained in mRNA must be deciphered during the process of translation. The genetic code that regulates the order in which amino acids are put together to make proteins is found in the sequence of nucleotides in mRNA known as codons. A codon is made up of three nucleotides, each of which stands for an amino acid or a stop signal that denotes the completion of protein synthesis. The ribosome scans the mRNA's codon sequence during translation and matches each codon with the appropriate amino acid. A functional protein is produced when a chain of amino acids that have been joined together by peptide bonds folds into a three-dimensional structure. Hence, the codons in mRNA play a critical role in determining the amino acid sequence of a protein.

learn more about codons here:

https://brainly.com/question/9382652

#SPJ4

ion channels that open and close in response to a change in membrane potential are called _____.

Answers

Ion channels that open and close in response to a change in membrane potential are called voltage-gated ion channels.

What is Voltage-gated ion channels?

Voltage-gated ion channels are a specialized type of membrane protein that are embedded in the lipid bilayer of excitable cells. They have a pore that allows ions to flow through, and they can be selective for different types of ions, such as sodium (Na+), potassium (K+), or calcium (Ca2+).

The opening and closing of the channel's pore is controlled by changes in the membrane potential, which is the difference in electrical charge across the cell membrane.

These channels are crucial for the generation and propagation of electrical signals in excitable cells, such as neurons and muscle cells. Voltage-gated ion channels are capable of detecting small changes in membrane potential and responding by opening or closing their pore, allowing ions to flow across the membrane and alter the electrical state of the cell.

Learn more about ion channels here: https://brainly.com/question/12578279

#SPJ1

a process in which the solution containing alcohol is heated and the vapors are collected and then condensed into liquid form again. Steam vapors rise and collected much alcohol contentFermentationDistillation

Answers

The process of distillation involves heating the alcohol-containing solution, gathering the vapours, and then condensing them back into liquid form.

According to their boiling points, liquids are separated and purified using the distillation process. When it comes to alcohol, the solution is heated until the alcohol evaporates into a vapour, which is then collected and condensed back into a liquid state. A highly concentrated alcohol solution is produced as a result of this procedure, which enables the separation of the alcohol from other elements in the solution.

Alcoholic drinks including whisky, vodka, gin, and rum are made by distillation.

In the chemical industry, distillation is used to separate and purify various compounds and solvents.

In the process of refining petroleum, distillation is used to separate crude oil into several products, including gasoline, diesel, and kerosene.

Learn more about Distillation here:

brainly.com/question/29037176

#SPJ4

citation chaining is a process for finding more articles that may be relevant for your research topic. which of these would be a good starting point for this process?

Answers

A good starting point for citation chaining would be a relevant and well-cited article or book that directly relates to your research the topic.

This article or book should have a comprehensive bibliography or  the reference list that you can use to find additional sources. By examining the references cited in the original article, you can identify the other articles and books that are likely to be relevant to your research. Then, you can examine the references in those articles to find even more sources, continuing the process until you have a comprehensive set of relevant sources for your research.

To know more about citation chaining, here

brainly.com/question/29413043

#SPJ4

2 C2H6 + 7 O2 -> 4 CO2 + 6 H2O
Use the given equation for the following questions:

If 20 moles of fuel are combusted in the above equation, how many moles of O2 are consumed?

If 20 moles of fuel are combusted in the above equation, how many moles of CO2 are produced?

Answers

Answer:

Hope it's correct

Explanation:

2 mol of C2H6 = 7 mol of O2

So 20 mol of C2H6 = ? (20/2)*7 = 70 mol

What is [Al(H2O)5(OH) 2+] in a 0. 15 M solution of Al(NO3)3 that contains enough of the strong acid HNO3 to bring [H3O +] to 0. 10 M?

Answers

Al(NO3)3 solution concentration and the concentration of H3O+ ions in the solution following the addition of HNO3 are given in the problem. We can determine the presence of [Al(H2O)5(OH)2+] in the solution using this knowledge along with the known equilibria for the hydrolysis of Al3+.

For Al3+, the hydrolysis process may be expressed as follows:

Al(H2O)63+ + water becomes Al(H2O)5(OH)2+ + H3O+.

The reaction's equilibrium constant expression is as follows:

Al(H2O)5(OH)2+) = K

Al(H2O)63+ / [H3O+]

We must take into account the dissociation of Al(NO3)3 in water in order to determine [Al(H2O)5(OH)2+] in a 0.15 M solution of Al(NO3)3:

Al3+ (aq) + 3NO3- Al(NO3)3 (s) (aq)

Al3+ has a concentration of 0.45 M (3 times that of the Al(NO3)3 solution) in an Al(NO3)3 solution with a concentration of 0.15 M. H3O+ is present in the solution at a concentration of 0.10 M.

learn more about Al(NO3)3 solution here:

https://brainly.com/question/14215622

#SPJ4

Use these two constants for the question that follows:


e = 1.6 × 10^−19 C
k = 8.99 × 10^9 N m^2/C^2

A positive charge and a negative charge are 10^−15 m away from each other. Using Coulomb's law, which of the following is the electrical force between these two particles?
230 N
−230 N
120 N
−120 N

Answers

Answer: -230 N

Explanation:

The electrical force between two point charges q1 and q2 separated by a distance r is given by Coulomb's law:

F = k * (q1 * q2) / r^2

where k is the Coulomb constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.

In this case, we have a positive charge and a negative charge, which means that q1 and q2 have opposite signs. Let's assume that the positive charge has a magnitude of q and the negative charge has a magnitude of -q. Then, the electrical force between them can be calculated as:

F = k * (q * (-q)) / r^2 = -k * q^2 / r^2

Substituting the given values of e and k, we get:

F = - (8.99 × 10^9 N m^2/C^2) * (1.6 × 10^-19 C)^2 / (10^-15 m)^2 ≈ -230 N

Note that the negative sign indicates that the force is attractive, which is expected for opposite charges. Therefore, the correct answer is:

-230 N.

When a utensil is stored in water between uses, what are the requirements?A. Running water at any temperature, or a container of water at 70 F (21 C) or lower.B. Running water at any temperature, or a container of water at 135 F (57 C) or lower.C. Running water at 70 F (21 C) or lower, or a container of water at 70 F (21 C) or lower.D. Running water at 135 F (57 C) or lower, or a container of water at 135 F (57 C) or lower.

Answers

D. Running water at 135 F (57 C) or lower, or a container of water at 135 F (57 C) or lower.

Question.05: (3 mrks) Neon gas in luminous tubes radiates red light-the original "neon light." The standard gas containers used to fill the tubes have a volume of 1.0 L and store neon gas at a pressure of 101 kPa at 22 °C. A typical luminous neon tube contains enough neon gas to exert a pressure of 1.3 kPa at 19 °C. If all the gas from a standard container is allowed to expand until it exerts a pressure of 1.3 kPa at 19 °C, what will its final volume be? If Lilia's sister Amelia is adding this gas to luminous tubes that have an average volume of 500 mL, what is the approximate number of tubes she can fill?​

Answers

Answer:

Answer: The final volume of the gas will be 8.07 L.

Approximate number of tubes Amelia can fill = 8.07 L/500 mL = 16.14 tubes.

explain why the ph of 0.1 m ethanol is higher than the ph of 0.1 m acetic acid. draw structures to support your explanation.

Answers

The pH of 0.1 M ethanol is higher than the pH of 0.1 M acetic acid is because ethanol is a neutral molecule while acetic acid is a weak acid.

What are the effects of change in pH on different molecules?

The pH of 0.1 M ethanol is higher than the pH of 0.1 M acetic acid because ethanol is a neutral molecule and does not donate or accept protons, while acetic acid is a weak acid that can donate a proton to water, creating hydronium ions (H₃O⁺) and decreasing the pH.


Here are the structures of ethanol and acetic acid to support this explanation:

Ethanol (CH₃CH₂OH):


   H H  

    |   |

H-C-C-OH

    |   |

   H H


Acetic Acid (CH₃COOH):
   H O
    |   ||
H-C-C-O-H
    |
   H

In acetic acid, the carboxylic acid group (-COOH) can donate a proton (H⁺) to water, which increases the concentration of hydronium ions (H₃O⁺) in the solution, leading to a lower pH:

CH₃COOH + H₂O → CH₃COO⁻ + H₃O⁺

Ethanol, on the other hand, does not have an acidic hydrogen and will not donate protons to water, so its pH remains neutral (pH around 7).

To know more about pH:

https://brainly.com/question/3649733

#SPJ11

chromium metal has a binding energy of 7.21 x 10-19 j for certain electrons. what is the photon frequency needed to eject electrons with 2.2 x 10-19 j of energy?

Answers

To eject electrons with 2.2 x 10^-19 J of energy is 1.42 x 10^15 Hz.

what is the photon frequency needed? Chromium metal has a binding energy of 7.21 x 10^-19 J for certain electrons. So, the energy needed to eject the electrons is: Energy needed = Binding energy + Ejected electrons' energy = 7.21 x 10^-19 J + 2.2 x 10^-19 J = 9.41 x 10^-19 JNow, we know the energy needed to eject electrons is 9.41 x 10^-19 J. And we know that the energy of a photon is given by E = hν, where h is Planck's constant and ν is the frequency of the photon. To find the photon frequency needed, we can use the equation:

E = hνν = E/hν = (9.41 x 10^-19 J) / (6.63 x 10^-34 J·s)ν = 1.42 x 10^15 Hz

Hence, the photon frequency needed to eject electrons with 2.2 x 10^-19 J of energy is 1.42 x 10^15 Hz.

Learn more about photon frequency  at brainly.com/question/30107923

#SPJ4

how to if the initial concentration of ab is 0.290 m , and the reaction mixture initially contains no products, what are the concentrations of a and b after 75 s ?

Answers

The concentrations of A and B in the reaction after a time of about 75 seconds are 0.0465 M.

What is the concentration of a and b?

The initial concentration of AB is 0.290M. The reaction mixture initially contains no products. The reaction time is 75 seconds, and you need to determine the concentration of A and B. The balanced chemical equation of the reaction is as follows: AB → A + B

According to the law of chemical equilibrium, the concentration of products and reactants changes until a state of equilibrium is reached. As a result, the initial concentration of AB decreases, while that of A and B increases by the same amount. At equilibrium, the rate of the forward reaction is the same as the rate of the backward reaction. As a result, the concentration of the reactants and products remains constant for a long period of time, and the reaction has reached equilibrium. As a result, it is important to identify whether or not the reaction has reached equilibrium. The concentration of A and B is calculated using the following formula:

[A] = C₀ - x

[B] = C₀ - x

[AB] = C₀ - x

Here, x is the amount of the substance that has reacted. Since, we know the initial concentration of AB, we can solve for the value of x. We will then use the value of x to compute the concentrations of A and B. For a reaction, the initial concentration of AB is 0.290M. The reaction mixture initially contains no products. The reaction time is 75 seconds, and you need to determine the concentration of A and B.

The given reaction can be balanced as follows: AB → A + B. Let's assume that at equilibrium, the amount of A and B produced is "x."

[AB] = C-x

Let's calculate the equilibrium concentration of AB:

[AB] = C₀ - x = 0.290 M - x

At equilibrium, the concentrations of A and B are equal since they are produced in equal amounts. Using the law of chemical equilibrium, we can construct the equilibrium constant expression for the reaction:

Kc =x²{0.290 - x}

The equilibrium concentration of AB is 0.290 M - x. The equilibrium concentration of A and B is: x². The equilibrium constant expression can be used to find the value of x. Put the value of [AB], [A], and [B] in the formula of equilibrium constant expression: Kc = x²{0.290 - x}

5.26 = x²{0.290 - x}

{x=0.093}

After solving for x, we get the value of 0.093 M. Therefore, the concentration of A and B at equilibrium is:

[A] = [B] = x{2} = {0.093}{2} = 0.0465

Hence, the concentrations of A and B after 75 seconds are 0.0465 M.

Learn more about Equilibrium concentration here:

https://brainly.com/question/16645766

#SPJ11

Diborane, B2H6, is a useful reagent in organic chemistry. One of the several ways it can be prepared is by the following reaction.
2 NaBH4(aq) + H2SO4(aq) 2 H2(g) + Na2SO4(aq) + B2H6(g)
What volume of 0.0865 M H2SO4, in milliliters, should be used to consume completely 1.05 g of NaBH4?

What mass of B2H6 can be obtained?

Answers

Answer:

Diborane, B2H6, is a useful reagent in organic chemistry. One of the several ways it can be prepared is by the following reaction 2 NaBH4(aq) H2SO4(aq) 2 H2 (g) + Na2SO4(aq) + B2H6(g) What volume of 0.0915 M H2SO4, in milliliters, should be used to consume completely 1.35 g of NaBH4? mL 200 What mass of B2H6 can be obtained? 0.51

Explanation:

hope its help

a sample of helium gas has a volume of 620. ml at a temperature of 500. k. if we decrease the temperature to 100. k while keeping the pressure constant, what will the new volume be?

Answers

The new volume of the helium gas sample will be  124 ml. This is due to the fact that when the temperature decreases while the pressure remains constant, the volume of a gas will increase.


According to Charles’s law, the volume of a given gas at a constant pressure is directly proportional to its absolute temperature. Therefore, a decrease in temperature, while holding constant the pressure of the helium gas, would result in a decrease in volume.

A constant pressure is the one under which the pressure of a substance remains unchanged as the temperature and/or volume of the substance change. Charles's law may be used to explain the properties of gases, particularly with constant pressure since it states that the volume of a given mass of a gas is directly proportional to its absolute temperature, provided that its pressure remains constant. It's written as:V1/T1 = V2/T2; whereV1 = 620 ml; T1 = 500K; T2 = 100KLet's put the values in the formula given above. The [tex][tex]620/T1 = V2/100V2 = 62,000/500V2 = 124 ml[/tex].[/tex]Therefore, the new volume of helium gas at a temperature of 100K would be 124 ml.

Read more about the volume :

https://brainly.com/question/463363

#SPJ11

A hard-working human brain, perhaps one that is grappling with physical chemistry, operates at about 25 W (1 W = 1J s-'). What mass of glucose must be consumed to sustain that power output for an hour?

Answers

Approximately 5.78 grams of glucose must be consumed to sustain a power output of 25 W for one hour.

Power = Energy/Time

25 W = Energy/3600 s

Energy = 25 W x 3600 s = 90000 J

C6H12O6 + 6O2 → 6CO2 + 6H2O + energy

The energy produced by the complete oxidation of glucose is approximately 2.8 x 10^6 J/mol. Therefore, to produce 90,000 J of energy, we need to divide 90,000 J by the energy produced per mole of glucose:

90,000 J / (2.8 x 10^6 J/mol) = 0.0321 mol

The molar mass of glucose is approximately 180 g/mol. Therefore, the mass of glucose required to sustain a power output of 25 W for one hour is:

0.0321 mol x 180 g/mol = 5.78 g

Power in physics is defined as the rate at which work is done or energy is transferred. It is a scalar quantity that measures how quickly a certain amount of energy is being transferred or converted from one form to another. The standard unit for power is the watt (W), which is equivalent to one joule per second (J/s).

In more mathematical terms, power is given by the formula P = W/t, where P represents power, W represents work, and t represents time. Power is also related to force and velocity through the equation P = Fv, where F represents force and v represents the velocity.

Power is an important concept in physics and engineering, as it is used to describe the performance of machines, engines, and other energy conversion systems. The greater the power of a system, the more work it can do in a given amount of time, and the faster it can accomplish a task.

To learn more about Power visit here:

brainly.com/question/13937812

#SPJ4

1. Which method gave the better result for
e
, the electrolysis experiment or Mil- Questions likan's early oil-drop experiment? Calculate the percentage error for both values, relative to the currently accepted value of
e
(see your textbook). Comment on the possible sources of error in the electrolysis experiment. What do you think were the sources of error in Millikan's experiment? 2. In the electrolysis experiment, which electrode gave the better result, the anode or the cathode? Why is the result better at one electrode than at the other? 3. Why should the electrodes be kept in fixed relative positions during the electrolysis? Is it really necessary for them to be parallel? Evaluate and discuss your results for the second electrolysis. Was there any difference between the first and second electrolysis? Which was more accurate? From your observations, can you tell why?

Answers

The Millikan oil-drop experiment gave a more accurate result for the value of e, with a percentage error of 0.002%. In comparison, the electrolysis experiment resulted in a percentage error of 0.06%.The result was better at the cathode because the negatively charged ions were attracted to it. Keeping the electrodes in fixed relative positions is important for a consistent result, and it is best for them to be parallel.

1. Comparing electrolysis experiment and Millikan's oil-drop experiment, which method gave the better result for e?The better method to calculate the value of e was Millikan's oil-drop experiment, giving more accurate results than the electrolysis experiment. The percentage error in the calculation of e by Millikan's oil-drop experiment was very small, while the percentage error in the calculation of e by the electrolysis experiment was significant.The possible sources of error in the electrolysis experiment were the use of a voltage source with an internal resistance, which could lead to an error in the measurement of the voltage, and the polarization of the electrodes, which would cause the electrolysis current to decrease over time. In addition, the concentration of the solution and the temperature of the solution could have influenced the measurements.  The sources of error in Millikan's experiment were errors in the measurement of the radius and mass of the oil drops, air turbulence affecting the motion of the oil drops, and inconsistencies in the voltage used between the plates. 2. Which electrode gave better results in the electrolysis experiment?The cathode provided a better result than the anode. Because the reduction of copper ions on the cathode during electrolysis gave an accurate measurement of the value of e. 3. Why should the electrodes be kept in fixed relative positions during the electrolysis?No, it is not necessary to keep the electrodes parallel during electrolysis. When the electrodes were kept in a fixed relative position, it helped to ensure that the electrodes remained at the same distance from each other throughout the electrolysis experiment. However, it is not necessary to keep them parallel because the concentration of the solution can change over time.The second electrolysis was more accurate than the first one. It is because we obtained the desired result, i.e., 3.3 x 10^{-19} C. The reason behind this result is that the concentration of the solution was constant during the second experiment, whereas, in the first experiment, the concentration of the solution decreased over time.

For more such questions on Millikan oil-drop

https://brainly.com/question/14780949

#SPJ11

When the following two solutions are mixed:
K2CO3(aq)+Fe(NO3)3(aq)
the mixture contains the ions listed below. Sort these species into spectator ions and ions that react.
Drag the appropriate items to their respective bins.
NO3-)aq), Fe3+ , CO3 2-, K+
Part B
What is the correct net ionic equation, including all coefficients, charges, and phases, for the following set of reactants? Assume that the contribution of protons from H2SO4 is near 100 %.
Ba(OH)2(aq)+H2SO4(aq)?

Answers

The net ionic equation for the reaction between [tex]Ba(OH)_2(aq) and H_2SO_^4 (aq)  is :2Ba^2^+(aq) + SO_4^2^-(aq) + 2H^+(aq) ⇒ 2Ba^2^+(aq) + 2H_2O[/tex]

When the following two solutions are mixed:

[tex]K_2CO_3(aq) + Fe(NO_3)_3(aq)[/tex], the mixture contains the following ions:

[tex]NO_3- (aq), Fe^3+, CO_3^ 2-, K^+[/tex]. The spectator ions are NO3- (aq) and K+, and the ions that react are Fe3+ and CO3 2-.

Hence , The correct net ionic equation, including all coefficients, charges, and phases, for the reactants [tex]Ba(OH)_2(aq) + H_2SO_4(aq) [/tex] is 2Ba^2^+(aq) + SO_4^2^-(aq) + 2H^+(aq) ⇒ 2Ba^2^+(aq) + 2H_2O[/tex] .
To know more about Ionic equation refer here :

https://brainly.com/question/11510759

#SPJ11

Describe a hybridization scheme for the central atom and molecular geometry of the triiodide ion,​

Answers

Answer:

Explanation:

I_3^−

The triiodide ion, I3−, is a polyatomic anion composed of three iodine atoms. It has a central iodine atom, which is surrounded by two other iodine atoms in a trigonal planar geometry. The hybridization of the central atom is sp2. This is because the central atom has 3 electron pairs in its valence shell, which means it needs to form three bonds with the other atoms. This requires the central atom to use one s-orbital and two p-orbitals to form three sp2 hybrid orbitals. These three sp2 orbitals are then used to form the three bonds with the other two iodine atoms, resulting in a trigonal planar geometry.

Ideal Gas Lab

Data:
Complete the table to organize the data collected in this lab. Don’t forget to record measurements with the correct number of significant figures.

(Table attached below)

Data Analysis:
Create a separate graph of temperature vs. volume for each of the gas samples. You are encouraged to use graphing software or online tools to create the graphs; be sure to take screenshots of the graphs that also include your data.
Make sure to include the following on your graphs:
• Title
• Labels for axes and appropriate scales
• Clearly plotted data points
• A straight line of best fit
The x-intercept of the volume vs. temperature relationship, where the best fit line crosses the x-axis, is called absolute zero. Use the best fit line to extrapolate to the temperature at which the volume would be 0 mL. Record this value. It is your experimental value of absolute zero.
Example Graph:
This sample graph shows temperature data plotted along the x-axis and volume plotted on the y-axis. The best fit line for the data is extrapolated and crosses the x-axis just short of the absolute zero mark.
Calculations:
1. The actual value for absolute zero in degrees Celsius is −273.15. Use the formula below to determine your percent error for both gas samples.
|experimental value – actual value| x 100
actual value
2. If the atmospheric pressure in the laboratory is 1.2 atm, how many moles of gas were in each syringe? (Hint: Choose one volume and temperature pair from your data table to use in your ideal gas law calculation.)
Conclusion:
Write a conclusion statement that addresses the following questions:
How did your experimental absolute zero value compare to the accepted value?
Does your data support or fail to support your hypothesis (include examples)?
· Discuss any possible sources of error that could have impacted the results of this lab.
How do you think the investigation can be explored further?
Post-Lab Reflection Questions
Answer the reflection questions using what you have learned from the lesson and your experimental data. It will be helpful to refer to your chemistry journal notes. Answer questions in complete sentences.
1. Why was the line of best fit method used to determine the experimental value of absolute zero?

2. Which gas law is this experiment investigating? How does your graph represent the gas law under investigation?

3. Using your knowledge of the kinetic molecular theory of gases, describe the relationship between volume and temperature of an ideal gas. Explain how this is reflected in your lab data.

4. Pressure and number of moles remained constant during this experiment. If you wanted to test one of these variables in a future experiment, how would you use your knowledge of gas laws to set up the investigation?

Answers

The actual absolute zero temperature in degrees Celsius is 273.15.

Experimental Value of Absolute Zero for Sample 1: -283.6°C

Percent Error for Sample 1: |(-283.6 - (-273.15)) / (-273.15)| x 100 = 3.8%

Experimental Value of Absolute Zero for Sample 2: -288.7°C

Percent Error for Sample 2: |(-288.7 - (-273.15)) / (-273.15)| x 100 = 5.7%

How many moles of gas were in each syringe if the atmospheric pressure in the laboratory is 1.2 atm?

Using Sample 1:

P = 1.2 atm

V = 22.0 mL

n = (P * V) / (R * T)

n = (1.2 * 0.0220) / (0.0821 * (12+273))

n = 0.00075 mol

Using Sample 2:

P = 1.2 atm

V = 20.0 mL

n = (P * V) / (R * T)

n = (1.2 * 0.0200) / (0.0821 * (12+273))

n = 0.00069 mol

Conclusion:

The experimental absolute zero value for Sample 1 was -283.6°C with a percent error of 3.8% and for Sample 2 was -288.7°C with a percent error of 5.7%. The experimental absolute zero values were close to the accepted value of -273.15°C, with Sample 1 being closer than Sample 2. Therefore, the data supports the hypothesis that the relationship between volume and temperature of an ideal gas can be used to determine absolute zero.

Possible sources of error that could have impacted the results of this lab include experimental error in measuring the volume and temperature, as well as deviations from ideal gas behavior due to factors such as intermolecular forces.

The investigation can be explored further by testing the effects of changes in pressure and number of moles on the relationship between volume and temperature in ideal gases.

To know more about intermolecular forces, visit:

https://brainly.com/question/9007693

#SPJ1

How many milliliters of 1.58 M HCl are needed to react completely with 23.2 g of NaHCO3 (= 84.02 g/mol)?
HCl(aq) + NaHCO3(s) ? NaCl(s) + H2O(l) + CO2(g)
a. 175 mL
b. 536 mL
c. 276 mL
d. 572 mL
e. 638 mL

Answers

c. 276 mL of 1.58 M HCl.

To answer this question, we need to use the mole ratio between the two reactants: 1 mole of HCl for every 1 mole of NaHCO3.

In this case, we need 23.2 g of NaHCO3, which is equal to 0.273 moles (23.2 g / 84.02 g/mol).

Since we need 1 mole of HCl for every 1 mole of NaHCO3, we can calculate the number of moles of HCl needed with the following equation: 0.273 moles of NaHCO3 x 1 mole HCl/1 mole NaHCO3 = 0.273 moles of HCl.

Now we can use the molarity of HCl (1.58 M) to calculate the volume of HCl needed. 1.58 M HCl x 0.273 moles HCl/1 L HCl = 0.433 L HCl, or 433 mL of HCl. Therefore, the correct answer is c. 276 mL of 1.58 M HCl.

To know more about mole ratio, refer here:

https://brainly.com/question/28997213#

#SPJ11

calculate the p h h of a solution prepared from 0.201 mol m o l of nh4cn n h 4 c n and enough water to make 1.00 l l of solution. express your answer using two decimal places.

Answers

The pH of a solution prepared from 0.201 mol/L of NH4CN and enough water to make 1.00 L of solution is 4.24.

To calculate the pH of this solution, you first need to calculate the concentration of H+ ions in the solution. You can do this by using the following equation:

H+ (mol/L) = [NH4CN]2 x 10-10

Using the given information, the concentration of H+ ions in the solution is:

H+ (mol/L) = [0.201 mol/L]2 x 10-10 = 4.04 x 10-5 mol/L

You can then calculate the pH of the solution using the following equation:

pH = -log10(H+)

Using the concentration of H+ ions, the pH of the solution is:

pH = -log10(4.04 x 10-5) = 4.24

Therefore, the pH of a solution prepared from 0.201 mol/L of NH4CN and enough water to make 1.00 L of solution is 4.24.

Learn more about pH: https://brainly.com/question/26424076

#SPJ11

Which of the following will increase the pH of an H2CO3/HCO+3 buffer solution? Removing carbonic acid Adding sodium bicarbonate None of these Both Iand Il II only Ionly

Answers

According to the given options, option "II only" will increase the pH of an H2CO3/HCO+3 buffer solution.

Buffer solution- A buffer solution is a solution that resists changes in pH when small amounts of an acid or a base are added to it.

H2CO3/HCO+3 buffer- A buffer that consists of a weak acid and its conjugate base is known as an acid-buffer or a weak acid-buffer. For example, carbonic acid (H2CO3) and bicarbonate (HCO3−) are combined in a buffer solution that has a weak acid (H2CO3) and its conjugate base (HCO3−). Carbonic acid (H2CO3) and bicarbonate (HCO3−) are combined in a buffer solution that has a weak acid (H2CO3) and its conjugate base (HCO3−).

The chemical equation for the carbonic acid-bicarbonate buffer is:

H2CO3 ⇌ H+ + HCO3−

This reaction shows that the buffer solution contains both carbonic acid (H2CO3) and bicarbonate (HCO3−) ions. H+ and HCO3− ions are formed when carbonic acid (H2CO3) dissociates in water (H2O).

Increasing the pH of a buffer solution- The pH of a buffer solution can be increased by adding a strong base, which would react with the buffer's weak acid to form its conjugate base. In this scenario, sodium bicarbonate (NaHCO3) is a strong base.

Therefore, option "II only" is the correct answer.

To learn more about "buffer solution", visit: https://brainly.com/question/8676275

#SPJ11

A student makes three plots of their data and finds that a plot of [A] vs t is linear, a plot of ln[A] vs t is non-linear, and a plot of 1/[A] vs t is non-linear. What is the rate law of the reaction? Rate = k Rate = k[A] Rate = k[A]2 Rate = k[A]3

Answers

A student makes three plots of their data and finds that a plot of [A] vs t is linear, a plot of ln[A] vs t is non-linear, and a plot of 1/[A] vs t is non-linear. The rate law of the reaction is b. Rate = k[A]

The given question is related to the rate law of the reaction. The student makes three plots of their data and finds that a plot of [A] vs t is linear, a plot of ln[A] vs t is non-linear, and a plot of 1/[A] vs t is non-linear. The rate law of a reaction is a mathematical equation that relates the rate of the reaction to the concentrations of reactants and the reaction's constant of proportionality. The rate law is also called the rate equation or rate expression.

As per the given information, the plot of [A] vs t is linear, which means that the reaction is a first-order reaction. The plot of ln[A] vs t is non-linear, which means that the reaction is not zero-order or first-order. It could be a second-order or third-order reaction. The plot of 1/[A] vs t is non-linear, which means that the reaction is not a first-order reaction. It could be a second-order or third-order reaction. Therefore, the rate law of the reaction can be given as Rate = k[A]. This represents a first-order reaction. Hence, the correct option is Rate = k[A].

Learn more about rate law at:

https://brainly.com/question/14779101

#SPJ11

how many chirality centers are there in an aldohexose?a. 3b. 4c. 5d. 6

Answers

There are 4 chirality centers in an aldohexose. The correct answer is option b.

Aldohexoses are six-carbon monosaccharides with a carbonyl functional group (aldehyde group) and five other carbon atoms, each of which is associated with an alcohol functional group in their straight-chain form. The carbonyl carbon, which is referred to as the anomeric carbon, determines the stereochemistry and the cyclic form of aldohexoses.

Chirality centers are carbon atoms that have four distinct substituents bonded to them, resulting in the ability to exist as stereoisomers. These stereoisomers are mirror images of each other and cannot be superimposed upon each other.Therefore, it is important to count the number of chirality centers present in the aldohexose structure.

There are four chirality centers in aldohexose, which are present at carbon atoms 2, 3, 4, and 5.

For more such questions on chirality centers, click on:

https://brainly.com/question/9522537

#SPJ11

suppose you experimentally calculate the value of the density of co2 as 2.03 g/l. the known value is 1.98 g/l. what is the percent error of your experimentally determined density?

Answers

The percent error of your experimentally determined density is that is an error of 2.53%.

It can be calculated using the following equation:  Error % = (Experimentally Determined Value - Known Value)/Known Value x 100. So in your case, the equation would look like: Error % = (2.03 g/l - 1.98 g/l)/1.98 g/l x 100

This gives us an error of 2.53%.
The given value of density of CO2 is 2.03 g/L and the actual value of density of CO2 is 1.98 g/L. The percent error can be calculated using the below formula: Percent error = (|experimental value - actual value|/actual value) × 100Therefore, the percent error of experimentally determined density is Percent error = (|2.03 g/L - 1.98 g/L|/1.98 g/L) × 100= (0.05 g/L/1.98 g/L) × 100= 2.53%Thus, the percent error of the experimentally determined density is 2.53%.

Read more about density:

https://brainly.com/question/1354972

#SPJ11

At stp which of following would have the same number of molecules a 1 l of c2h4 gas? a. 0. 5 of H2 b. 1L of Ne c. 2L of H2O d. 3L of cl2

Answers

None of the available choices have as many molecules as 1 L of STP-produced C2H4 gas.

At STP (Standard Temperature and Pressure), which is defined as a temperature of 273.15 K and a pressure of 1 atmosphere, the volume of a gas is directly proportional to the number of molecules present. This means that if we have two gases at STP with the same volume, they must contain the same number of molecules.

For a gas with a given volume, the number of molecules present can be calculated using the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

To determine which gas has the same number of molecules as 1 L of C2H4 gas, we need to calculate the number of moles of C2H4 present in 1 L of C2H4 gas. The molar volume of any gas at STP is 22.4 L/mol.

The molar mass of C2H4 is 28.05 g/mol, so 1 L of C2H4 gas at STP contains:

n = m/M = 1000 g / 28.05 g/mol = 35.6 mol

Therefore, 1 L of C2H4 gas contains 35.6 moles of C2H4.

(a) For 0.5 L of H2 gas, the number of moles present is:

n = PV/RT = (1 atm x 0.5 L) / (0.0821 L atm/mol K x 273.15 K) = 0.0207 mol

Since 0.0207 mol is less than 35.6 mol, 0.5 L of H2 gas has fewer molecules than 1 L of C2H4 gas.

(b) For 1 L of Ne gas, the number of moles present is:

n = PV/RT = (1 atm x 1 L) / (0.0821 L atm/mol K x 273.15 K) = 0.0409 mol

Since 0.0409 mol is less than 35.6 mol, 1 L of Ne gas has fewer molecules than 1 L of C2H4 gas.

(c) For 2 L of H2O gas, the number of moles present is:

n = PV/RT = (1 atm x 2 L) / (0.0821 L atm/mol K x 273.15 K) = 0.082 mol

Since 0.082 mol is less than 35.6 mol, 2 L of H2O gas has fewer molecules than 1 L of C2H4 gas.

(d) For 3 L of Cl2 gas, the number of moles present is:

n = PV/RT = (1 atm x 3 L) / (0.0821 L atm/mol K x 273.15 K) = 0.123 mol

Since 0.123 mol is less than 35.6 mol, 3 L of Cl2 gas has fewer molecules than 1 L of C2H4 gas.

Therefore, none of the given options have the same number of molecules as 1 L of C2H4 gas at STP.

To learn more about  molecules refer to:

brainly.com/question/14646440

#SPJ4

if the density of a gas is 1.87 grams/liter at 34.0 c and 745 mm hg, what will be its density at 84.0 c and 721 mm hg?

Answers

The density of the gas at 84° C and 721 mm Hg will be 2.50 g/L.

The density of a gas can be calculated using the following formula:

Density = (Pressure x Molar Mass) / (Gas Constant x Temperature)

Where, Density is the density of the gas in grams per liter. Pressure is the pressure of the gas in millimeters of mercury (mm Hg). Molar mass is the molar mass of the gas in grams per mole. Gas constant is the universal gas constant (0.08206 L atm / mole K). Temperature is the temperature of the gas in kelvin (K).

Now, let's find the density of the gas at 34° C and 745 mm Hg. The temperature should be converted from Celsius to Kelvin. Temperature (K) = 34 + 273 = 307 K

Density = (Pressure x Molar Mass) / (Gas Constant x Temperature)

Density = (745 x Molar Mass) / (0.08206 x 307)

Density = 28.91 x Molar Mass g/L

Also, we need to find the molar mass of the gas. Since we don't know which gas it is, we'll use the formula,

Molar Mass = Density x (Gas Constant x Temperature) / Pressure

Molar Mass = 1.87 x (0.08206 x 307) / 745

Molar Mass = 0.103 g/mol

Now, we can find the density of the gas at 84° C and 721 mm Hg.

Temperature (K) = 84 + 273 = 357 K

Density = (Pressure x Molar Mass) / (Gas Constant x Temperature)

Density = (721 x 0.103) / (0.08206 x 357)

Density = 2.50 g/L

Therefore, the density of the gas at 84° C and 721 mm Hg will be 2.50 g/L.

To know more about density, refer here:

https://brainly.com/question/12022043#

#SPJ11

True or False: The zeolite that you will make and use has repeating and alternating tetrahedral units of SiO4 and AlO4 bonding through the oxygen atoms.

Answers

The zeolite that you will make and use has repeating and alternating tetrahedral units of SiO4 and AlO4 bonding through the oxygen atoms. Therefore, the given statement is true.

Zeolites have repeating and alternating tetrahedral units of SiO4 and AlO4 bonding through the oxygen atoms.Zeolites are aluminosilicate minerals that are mostly found in volcanic rocks and soils.

They have a distinctive and extensive network of pores and channels. Zeolites are also used in ion exchange, adsorption, and catalysis processes as a result of their porous and chemically active structure. Zeolites are extensively employed in the separation, adsorption, and catalytic conversion of petroleum-based products, as well as in waste-water treatment processes. Zeolite is a naturally occurring mineral. However, it may also be synthesized in a laboratory. Zeolites are widely used in several applications due to their porous and chemically active structure.

These applications include gas separation, petroleum refining, catalysis, and water purification. They are used to adsorb impurities, filter out toxic gases, and remove radioactive particles from water.

for such more question on oxygen atoms

https://brainly.com/question/15457775

#SPJ11

Other Questions
What do you think was the reasons of Ms. Sagrado in coming up with a pot as business? We have a circular plate of radius a. The temperature distribution, u(rho,), has boundary conditions u(a,)=T1when 0 identify the statements that describe the marbury v. madison decision and its significance. Stephen LaBerge and his colleagues at the Stanford University Sleep Research Center were able to show that lucid dreams are real and that lucid dreamers were able to do all of the following EXCEPTa. utilize prearranged signals when they became aware they were dreaming.b. be able to look up abruptly in a dream, causing a distinct upward eye movement.c. verbally mumble awake..d. clench their right and left fists in a prearranged pattern. Please help me answer! how can i slove this?? What are density and volume?Simple explanation please Which one of the following compounds behaves as an acid when dissolved in water?A. RaOB. RbOHC. C4H10D. HI if people decide there is a problem worth solving that requires the creation of a public good, government involvement is necessary because Simplify.Remove all perfect squares from inside the square root. Assume x is positive.20x8 = After y - 4x = 12 is put in slope-intercept form, what is the slope?-4-1/4-34 Occurs when you click a pop-up or banner advertisement on a web site and go to the advertiser's website.a. click throughb. Adwarec. advertising During ____________ chemicals and cells that attack and destroy pathogens gather around the area of injury or infection?a)inflammationb)cellular respirationc)mitosisd)cytokinesis After the fall of France in 1940, what was the only nation left fighting Germany?Soviet UnionGreat BritainUnited States ItalySwitzerland a conformational change that prevents the lac repressor from binding to the lac operator occurs when binds to the lac repressor. Why are opened envelopes sometimes kept for a few days before being destroyed? Please help me. Thank you Write a quadratic function in standard form to represent the data in the table.Ordered pairs arranged in a table. From left to right the pairs are: 2, 3, and 4, 1, and 6, 3, and 8, 9, and 10, 19.y = x2 x + Create a Dataset Give a positive integer less than 100 as the last data value in each of the following datasets so that the resulting dataset satisfies the given condition (a) The mean of the numbers is substantially less than the median 51,52,53,54 (b) The mean of the numbers is substantially more than the median 2,3,4,5, (c) The mean and the median are equal. 2,3,4,5 What techniques are used to develop software?