By the congruence postulate, we have shown that the quadrilateral is ΔAED ≅ ΔCED.
Let's start by showing that AD = CD. Since AB = AD and BC = CD, we can rewrite AB + BC as AD + CD. This means that AD = AB + BC - CD. But we know that AB = AD, so we can substitute AD for AB to get AD + BC = 2AD + CD. Simplifying this equation, we get AD = CD.
Next, we can show that AE = CE. Since AC is a diagonal of the kite, we know that AC bisects angle BAD and angle BCD. This means that angle BAC = angle DAC and angle BDC = angle CDC. Since AD = CD, we know that triangle ACD is isosceles, so angle ACD = angle CAD.
Using these angle equalities, we can conclude that angle CAE = angle CDE. Since AC ⊥ BD, we know that angle CAD = angle CDE, so we can conclude that triangle ACE is isosceles, which means that AE = CE.
Finally, we need to show that angle AED = angle CED. Since AD = CD and AE = CE, we know that triangles AED and CED have two pairs of congruent sides. Additionally, we know that AC is a common side of the triangles.
Since AC is perpendicular to BD, we know that angle ACD and angle BDC are complementary angles.
This means that angle ACD = 90 - angle BDC and angle CAD = 90 - angle BAC. Using these angle equalities, we can conclude that angle AED = angle CED.
To know more about quadrilateral here
https://brainly.com/question/29934440
#SPJ4
when performing regression, why would you want to have a quadratic term? group of answer choices you never want to add a quadratic term when performing regression to better fit a scatterplot with too many outliers to better fit a scatterplot that shows a curve in the data to better fit linear data
So, the right response is that, in order to more accurately fit the scatterplot that depicts a curve in the data, you need add a quadratic component while performing regression.
What is the quadratic term count?As ax² +bx + c, a quadratic equation can be expressed. In a quadratic equation, the largest exponent is 2, which limits the number of terms to a maximum of 3. These terms are exponent 2 (ax²) and exponent 1 (bx) fixed term.
Regression can be improved by including a quadratic component to better match scatterplots of data that display curves. This is so that the independent and dependent variables can have a nonlinear connection, which is made possible by a quadratic term. A quadratic component can assist capture inherent curvature of a data and enhance the fit of a regression model in cases where the connection between both the variables isn't really strictly linear.
A quadratic term may not be appropriate or required, though. A quadratic factor would not increase the model's fit if the variables' relationships are strictly linear and might even result in overfitting. In addition, if the scatterplot contains too many anomalies or the data is not consistent, adding a quadratic factor might not be beneficial.
In order to properly fit a scatter plot graph that depicts a curve in the data, the correct response is you would like to add a quadratic term while performing regression.
To know more about quadratic visit:
brainly.com/question/22364785
#SPJ1
Let X >0 denote a random variable with p.d.f. fx(2) and c.d.f. Fx (I). Assume Fx() is monotone increasing, and let Y = FX(X). That is, Y is a random variable that takes the value Fx (1) when X = r. Find fy(y). Mark the correct answer (a) fy(y) = 1,0
The probability density function (PDF) of Y can be determined by the transformation of the PDF of X. Using the transformation rule, we can calculate that fy(y) = fx(x) |dx/dy|, where x is a function of y, since y = Fx(x).
We can use the Chain Rule to determine the derivative of x with respect to y. Since Fx is a monotone increasing function, dx/dy = 1/F'x(x). Substituting this into the transformation rule, fy(y) = fx(x) / F'x(x).
Therefore, to find fy(y), we need to calculate F'x(x). Fx is the cumulative distribution function, which means that its derivative F'x(x) is the probability density function of X, or fx(x). Substituting this into the transformation rule, fy(y) = fx(x) / fx(x). Since fx(x) = fx(2) and fx(2) is a constant, fy(y) = 1/fx(2).
To summarize, the probability density function of Y is given by fy(y) = 1/fx(2).
for such more questions on probability density function
https://brainly.com/question/28705601
#SPJ11
Weight: 20kg Order: 10 mg q6 hours Therapeutic range : 2-3 mg/kg/day. What is daily dose? Is it safe? Is it therapeutic?
The daily dose is 40mg, this dose per kilogram per day is within the therapeutic range of 2-3mg/kg/day, which means that the medication is within the safe and effective range for this patient's weight.
The weight of the patient is 20kg, and the prescribed dosage is 10mg every 6 hours. To calculate the daily dose, we need to multiply the prescribed dosage by the number of doses per day. Since the medication is prescribed every 6 hours, this means that the patient will take it 4 times a day.
=> (10mg x 4 doses) = 40 mg
The therapeutic range is the range of doses at which the medication is most effective and safe. In this case, the therapeutic range is 2-3mg/kg/day. To determine if the daily dose is within the therapeutic range, we need to divide the daily dose (40mg) by the patient's weight (20kg) to get the dose per kilogram per day, which is 2mg/kg/day.
However, it's important to note that the therapeutic range is a general guideline and may vary depending on the patient's individual circumstances and medical history.
To know more about therapeutic here
https://brainly.com/question/14598348
#SPJ4
Suppose that the insurance companies did do a survey. They randomly surveyed 400 drivers and found that 320 claimed they always buckle up. We are interested in the population proportion of drivers who claim they always buckle up.a.i. x = __________ii. n = __________iii. p′ = __________b. Define the random variables X and P′, in words.c. Which distribution should you use for this problem? Explain your choice.d. Construct a 95% confidence interval for the population proportion who claim they always buckle up.i. State the confidence interval.ii. Sketch the graph.iii. Calculate the error bound.e. If this survey were done by telephone, list three difficulties the companies might have in obtaining random results.
We are interested in the population proportion of drivers who claim they always buckle upa.i. x = 320 ii. n = 400 iii. p′ = 0.8
b. The random variable X represents the number of drivers out of the sample of 400 who claim they always buckle up, while P′ represents the sample proportion of drivers who claim they always buckle up.
c. The distribution to use for this problem is the normal distribution because the sample size is large enough (n=400) and the population proportion is not known.
d. i. The 95% confidence interval for the population proportion who claim they always buckle up is (0.7709, 0.8291).
ii. The graph is a normal distribution curve with mean p′ = 0.8 and standard deviation σ = sqrt[p′(1-p′)/n].
iii. The error bound is 0.0291.
e. Three difficulties the insurance companies might have in obtaining random results from a telephone survey are:
Selection bias: The survey might not be truly random if the telephone numbers selected are not representative of the population of interest.
Nonresponse bias: People may choose not to participate in the survey or may not be reached, which could bias the results.
Social desirability bias: Respondents may give socially desirable answers rather than their true opinions, which could also bias the results.
For more questions like Variable click the link below:
https://brainly.com/question/17344045
#SPJ11
[Pre-calculus honors, grade 11] The light from a lighthouse can be seen from an 18-mile radius. A boat is anchored so that it can just see the light from the lighthouse. A second boat is located 25 miles from the lighthouse and is headed straight toward it, making a 44° angle with the lighthouse and the first boat. Find the distance between the two boats when the second boat enters the radius of the lighthouse light.
Using trigonometry, the distance between the two vessels when the second boat enters the lighthouse's radius is 13.46 miles.
Trigonometry: What Is It?The relationships between angles and length ratios are investigated in the branch of mathematics known as trigonometry. The use of geometry in astronomical study led to the establishment of the field during the Hellenistic era in the third century BC.
The distance between the two boats when the second boat enters the radius of the lighthouse light is 13.46 miles using trigonometry.
Triangle - what is it?A triangle is a polygon with three edges and three vertices. It belongs to the basic geometric shapes. A triangle with the vertices A, B, and C is represented by the Δ ABC.
Any three points that are not collinear create a singular triangle and a singular plane in Euclidean geometry. (i.e. a two-dimensional Euclidean space). In other words, every triangle is a part of a plane, and that triangle is a part of only one plane. In the Euclidean plane, all triangles are contained within a single plane, but in higher-dimensional Euclidean spaces, this is no longer the case. This page covers triangles in Euclidean geometry, especially the Euclidean plane, unless otherwise specified.
In this question,
The side of the isosceles triangle is given by,
l=2a sin(θ/2)
where a= 18 miles
θ= 44°
l= 2*18*sin 22°
= 36*0.374
= 13.46 miles
To know more about Trigonometry, visit
https://brainly.com/question/29002217
#SPJ1
calculate the expected value, the variance, and the standard deviation of the given random variable x. (round all answers to two decimal places.) x is the number of red marbles that suzan has in her hand after she selects three marbles from a bag containing three red marbles and two green ones. expected value variance standard deviation
The expected value of x is 1.80, the variance is 0.72, and the standard deviation is 0.85.
Calculate the expected value, variance, and standard deviation of the random variable x as follows. Round all answers to two decimal places, and keep in mind that x is the number of red marbles that Suzan has in her hand after selecting three marbles from a bag containing three red marbles and two green ones.
Expected Value: Since there are 3 red marbles and 2 green marbles in the bag, the probability of drawing a red marble is: P(R) = 3/5The probability of drawing a green marble is P(G) = 2/5Therefore, the expected value of the random variable X is: E(X) = μ = np = 3/5 * 3 = 1.80
Variance can be calculated using the following formula: Var(X) = npq, where p is the probability of success and q is the probability of failure of the event. In this scenario, the probability of drawing a red marble is P(R) = 3/5, and the probability of drawing a green marble is P(G) = 2/5.
Therefore, Var(X) = npq Var(X) = (3/5)*(2/5)*3Var(X) = 1.80 * 0.4Var(X) = 0.72Standard Deviation: The square root of the variance is equal to the standard deviation. Hence, the formula for standard deviation is: S.D. = √Var(X)S.D. = √0.72S.D. = 0.85
Learn more about Standard deviation
brainly.com/question/23907081
#SPJ11
Let n be a positive integer. If a == (3^{2n}+4)^-1 mod(9), what is the remainder when a is divided by 9?
Let n be a positive integer. We can use the properties of modular arithmetic to calculate this remainder. Let's start with a = (32n + 4)-1 mod 9. We can rewrite this as a = 9 - (32n + 4)-1 because 9 = 0 mod 9.
We can use Fermat's Little Theorem to calculate (32n + 4)-1. This theorem states that (32n + 4)-1 mod 9 = (32n + 4)8 mod 9.
Using the identity (a + b)n mod m = ((a mod m) + (b mod m))n mod m, we can simplify the equation to (32n mod 9 + 4 mod 9)8 mod 9.
32n mod 9 = 0, so (32n mod 9 + 4 mod 9)8 mod 9 = 48 mod 9 = 1.
Finally, a = 9 - 1 = 8 mod 9, so the remainder when a is divided by 9 is 8.
Learn more about positive integer:
https://brainly.com/question/16952898
#SPJ11
Find the value of 2 - 3x when x = 7
2 - 3x is a(n)__________.
Therefore, when the equation x = 72 - 3x, the value of 2 - 3x is -52.
What is equation?An equation is a mathematical statement that shows the equality of two expressions. It typically contains one or more variables, which are symbols that can represent any number or value. The expressions on both sides of the equal sign are called the left-hand side (LHS) and the right-hand side (RHS) of the equation. Equations are used to describe relationships between quantities or to solve problems. They can be represented in various forms, including linear equations, quadratic equations, exponential equations, and trigonometric equations. Equations can be solved by performing operations on both sides of the equation to isolate the variable or variables.
Here,
When we are given that x = 72 - 3x, we can solve for x by first adding 3x to both sides of the equation:
x + 3x = 72
Combining like terms, we get:
4x = 72
Dividing both sides by 4, we get:
x = 18
Now that we know x = 18, we can substitute this value into the expression 2 - 3x:
2 - 3x = 2 - 3(18)
2 - 3x = 2 - 54
2 - 3x = -52
To know more about equation,
https://brainly.com/question/28243079
#SPJ1
Michaela holds her state high school record for the 500-meter freestyle swimming event. She can swim the event in 4 minutes and 50 seconds. At this same rate, how far will she swim in 10 minutes?
Answer: To solve the problem, we need to use the given time to find Michaela's swimming rate in meters per second, and then use that rate to calculate the distance she will swim in 10 minutes.
1 minute = 60 seconds
4 minutes and 50 seconds = 4 x 60 + 50 = 290 seconds
So, Michaela's rate is:
distance / time = x / 290 seconds
where x is the distance she can swim in 290 seconds.
Simplifying the equation:
x = distance = (time x distance) / time = (290 seconds x distance) / 290 seconds = distance
We know that Michaela can swim 500 meters in 290 seconds:
500 meters / 290 seconds = 1.724 meters per second
Therefore, in 10 minutes (600 seconds), she will swim:
distance = rate x time = 1.724 meters/second x 600 seconds = 1034.4 meters
So, Michaela will swim 1034.4 meters in 10 minutes.
Step-by-step explanation:
I need help asap I just need atleast one of these explained and I can do the rest
The factοred fοrm οf a pοlynοmial is
1. 30b³- 54b² = 6b²(5b−9)
2. 3y⁵ - 48y³ = 3y³(y −4)(y + 4)
3. x³ + 8 = (x + 2) (x² – 2x + 2²)
4. y³ - 64 = (y - 4) (y² – 4y + 4²)
5. 8c³ + 343(2c + 7)(4c² − 14c + 49)
What dοes a pοlynοmial functiοn in factοred fοrm lοοk like?The factοred fοrm οf a pοlynοmial is represented as a³ + b³ = (a + b) (a² – ab + b²). All equatiοns are cοmpοsed οf pοlynοmials. Earlier we've οnly shοwn yοu hοw tο sοlve equatiοns cοntaining pοlynοmials οf the first degree, but it is οf cοurse pοssible tο sοlve equatiοns οf a higher degree.
One way tο sοlve a pοlynοmial equatiοn is tο use the zerο-prοduct prοperty. If yοu remember frοm earlier chapters the prοperty οf zerο tells us that the prοduct οf any real number and zerο is zerο.
We will use the formula
a³ + b³ = (a + b) (a² – ab + b²)
And
a³ - b³ = (a - b) (a² – ab + b²)
1. [tex]30b^3-\ 54b^2[/tex]
⇒ 6b²(5b−9)
2. 3y⁵ - 48y³
⇒ 3y³( y² - 16y)
⇒ 3y³( y² - 4 + 4 - 16y)
⇒ 3y³(y −4)(y + 4)
3. x³ + 8
⇒ x³ + 2³
Using a³ + b³ = (a + b) (a² – ab + b²)
⇒ x³ + 2³
⇒ (x + 2) (x² – 2x + 2²)
4. y³ - 64
⇒ y³ - 4³
Using a³ - b³ = (a - b) (a² – ab + b²)
⇒ y³ - 4³
⇒ (y - 4) (y² – 4y + 4²)
5. 8c³ + 343
Using a³ + b³ = (a + b) (a² – ab + b²)
2c + 7
(2c + 7)(4c² − 14c + 49)
To know more about factored form visit:-
brainly.com/question/29065045
#SPJ1
the number of minutes needed to complete a job, m, varies inversely with the number of workers, w. three workers can complete a job in 30 minutes. how many minutes would it take 6 workers to complete the job?
The number of minutes needed to complete a job, m, varies inversely with the number of workers, w.
Three workers can complete a job in 30 minutes.
To find, out how many minutes would it take 6 workers to complete the job.
The formula used for inverse variation is, m1w1 = m2w2
Where, m1 = 30,
w1 = 3,
m2 = ?
and w2 = 6
Substitute the given values in the above formula, 30 × 3 = m2 × 6
Simplify the above expression,90 = 6m2
Divide both sides by 6,90 / 6 = m2m2 = 15
Hence, it will take 15 minutes for 6 workers to complete the job.
To learn more about “inverse variation” refer to the https://brainly.com/question/13998680
#SPJ11
Write the HCF of x
3y
4z
2 and x
2y
3z
5, where x, y, z are
distinct prime numbers
the HCF of x, 2y, 3y, 4z, x², 3z, and 5, where x, y, z are
distinct prime numbers is 1.
To find the highest common factor (HCF) of the given numbers, we need to find the common factors of each pair of numbers and then find the highest common factor of all the resulting common factors.
First, let's find the prime factors of the given numbers:
x = a prime number (distinct from y and z)
2y = 2 × y
3y = 3 × y
4z = 2² × z
3z = 3 × z
x² = a prime number squared (distinct from y and z)
5 = a prime number
Next, we can pair up the numbers and find their common factors:
Common factors of x and 2y: 1, 2, y
Common factors of 3y and 4z: 1, 2, 3, y, z, 6
Common factors of x² and 3z: 1, 3, x, z, xz
Common factors of 5 and 2: 1
Finally, we find the highest common factor of all the resulting common factors:
The highest common factor of x, 2y, 3y, 4z, x², 3z, and 5 is 1, since it is the only factor that is common to all the pairs.
Therefore, the HCF of x, 2y, 3y, 4z, x², 3z, and 5 is 1.
To learn more about prime numbers click here
brainly.com/question/30358834
#SPJ4
Helppppp will give brainlyest
Answer: 4
Step-by-step explanation:
4. shift the boundary line up 1
One little cat can eat a bag of treats in 15 minutes while another cat can eat the same bag of treats in 10 minutes. What part of the bag can they eat together in the given time? 1 minute. 2 minute, and 3 min
Answer:
1 minute = 1/6
2 minutes = 1/3
3 minutes =1/2
Step-by-step explanation:
one can eat a bag in 15 minutes so in 1 minute this cat can eat 1/15 of a bag
the other cat can eat a bag in 10 minutes so in 1 minute the cat can eat 1/10 of the bag
to find how much they can eat in 1 minute, add 1/10 and 1/15 which gives you 1/6. to find 2 and 3 minutes just multiply by 1/6 by 2 or 3
8. A department store
buys 300 shirts for
a total cost of $7,200 and sells them for
$30 each. Find the percent markup.
The percent markup is 25%.
What is percent markup?Markup percentage is calculated by dividing the gross profit of a unit (its sales price minus it's cost to make or purchase for resale) by the cost of that unit.
Given that, A department store buys 300 shirts for a total cost of $7,200 and sells them for $30 each.
Cost of one shirt [tex]= 7200 \div 300 = \$24[/tex]
And they sold at $30 each,
Percent markup [tex]= 30-24 \div 24 \times 100[/tex]
[tex]= 25\%[/tex]
Hence, the percent markup is 25%.
Learn more about Markup percentage, click:
https://brainly.com/question/28945726
7,600 dollars is placed in a savings account with an annual interest rate of 6%. If no money is added or removed from the account, which equation represents how much will be in the account after 7 years?
Answers:
M=7,600(1+0.06)(1+0.06)
M=7,600(1-0.06)^7
M=7,600(1+0.06)^7
M=7,600(0.06)^7
Step-by-step explanation:
The equation that represents how much will be in the account after 7 years is:
M = 7,600(1+0.06)^7
Here's the explanation:
The formula for calculating the future value (M) of a present value (P) invested at an annual interest rate (r) for a certain number of years (t) is M = P(1+r)^t.
In this case, the present value (P) is 7,600 dollars, the annual interest rate (r) is 6% or 0.06, and the number of years (t) is 7.
Substituting these values into the formula, we get M = 7,600(1+0.06)^7. This represents how much will be in the account after 7 years if no money is added or removed from the account.
HELP PLS ILL GIVE U POINTS
Answer:
i think 16 im not sure
Step-by-step explanation:
how to calculate the product of two random variable that follows normal distribution with mean 0 and variance 1
The product of two random variables that follows the normal distribution with mean 0 and variance 1 is expected 0.
To compute the product of two random variables that are normal distributed with a mean of 0 and a variance of 1, the following procedure can be employed:
Since the mean of the normal distribution is 0 and the variance is 1, we can assume that the standard deviation is also 1.Thus, we can write the probability density function of the normal distribution as:
f(x) = (1/√2π) * e^(-x^2/2)
Using the definition of expected value, we can write the expected value of a random variable X as:E[X] = ∫x * f(x) dx, where the integral is taken over the entire range of X.
Similarly, we can write the expected value of a random variable Y as:E[Y] = ∫y * f(y) dy, where the integral is taken over the entire range of Y.
Since the two random variables are independent, the expected value of their product is the product of their expected values. Thus, we can write:E[XY] = E[X] * E[Y]
Substituting the probability density function of the normal distribution into the expected value formula, we can write:E[X] = ∫x * f(x) dx = ∫x * (1/√2π) * e^(-x^2/2) dx = 0
E[Y] = ∫y * f(y) dy = ∫y * (1/√2π) * e^(-y^2/2) dy = 0
Thus, the expected value of the product of two random variables that follow a normal distribution with mean 0 and variance 1 is:E[XY] = E[X] * E[Y]
= 0 * 0 ⇒ 0
Therefore, the product of two random variables that follow a normal distribution with mean 0 and variance 1 has an expected value of 0.
To know more about the "normal distribution": https://brainly.com/question/4079902
#SPJ11
1 0 6
0 1 1
0 0 0
Find the solution(s) to the system, if it exists. State the solution as a point (be sure to use parentheses), use parameter(s) s and t if needed. If the system is inconsistent, then state no solution.
The system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
To solve the system of equations:
1x + 0y + 60z = 1
1x + 10y + 0z = 0
0x + 0y + 0z = 0
The third equation is an identity, implying that it does not give us any new information. The first two equations can be used to solve for x, y, and z:
From the first equation, we get x = 1 - 60z
From the second equation, we get y = 0 - 10x = -10(1 - 60z) = -10 + 600z
Therefore, the solution to the system can be written as a point in terms of z as:
(x, y, z) = (1 - 60z, -10 + 600z, z)
Since z can take on any value, there are infinitely many solutions to the system, which can be parameterized as:
(x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
he system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
For more questions like Equation click the link below:
https://brainly.com/question/29657983
#SPJ11
find the area and circumference of the circle below.round your answers to the nearest hundredth
Answer:
Step-by-step explanation:
The area of given circle is 28.27 sq.m. The circumference of given circle is 18.85 m (rounded to the nearest hundredth).
Give a short note on Circumference?The circumference of a circle is the distance around the edge or boundary of the circle. It is also the perimeter of the circle. The circumference is calculated using the formula:
C = 2πr
where "C" is the circumference, "π" is a mathematical constant approximately equal to 3.14159, and "r" is the radius of the circle.
The circumference of a circle is proportional to its diameter, which is the distance across the circle passing through its center. Specifically, the circumference is equal to the diameter multiplied by π, or:
C = πd
where "d" is the diameter of the circle.
Given that the diameter of the circle is 6m.
We know that the radius (r) of the circle is half of the diameter (d), so:
r = d/2 = 6/2 = 3m
The area (A) of the circle is given by the formula:
A = πr²
Substituting the value of r, we get:
A = π(3)² = 9π ≈ 28.27 sq.m (rounded to the nearest hundredth)
The circumference (C) of the circle is given by the formula:
C = 2πr
Substituting the value of r, we get:
C = 2π(3) = 6π ≈ 18.85 m (rounded to the nearest hundredth)
To know more about area visit:
https://brainly.com/question/28642423
#SPJ1
The complete question is:
Question
Find the value of y
for the given value of x
.
y=x+5;x=3
Answer: y is equal to 8
Step-by-step explanation:
by substituting the x for its vale of three we can add the two values to get 8 or y=8
write down the name of shape W
A hexagon with two lines
hope helped you please make me brainalist and keep smiling dude
I hope you are form India
evaluate the diagram below, and find the measures of the missing angles
Answer:
A=100
B= 80
C=80
D=100
E=80
F=80
G=100
Step-by-step explanation:
It is well documented that a typical washing machine can last anywhere between 5 to 20 years. Let the life of a washing machine be represented by a lognormal variable, Y = eX where X is normally distributed. In addition, let the mean and standard deviation of the life of a washing machine be 14 years and 2 years, respectively. [You may find it useful to reference the z table.] a. Compute the mean and the standard deviation of X. (Round your intermediate calculations to at least 4 decimal places and final answers to 4 decimal places.) b. What proportion of the washing machines will last for more than 15 years? (Round your intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.) c. What proportion of the washing machines will last for less than 10 years? (Round your intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.) d. Compute the 90th percentile of the life of the washing machines. (Round your intermediate calculations to at least 4 decimal places, "z" value to 3 decimal places, and final answer to the nearest whole number.)
a. The mean of X is 1.7549 and the standard deviation is 0.3536.
b. To calculate the proportion of washing machines that will last for more than 15 years, we need to use the standard normal distribution table. The z-score for 15 years is (15-14)/0.3536 = 2.822. Using the table, we find that the proportion of washing machines that will last for more than 15 years is 0.9968.
c. To calculate the proportion of washing machines that will last for less than 10 years, we need to use the standard normal distribution table. The z-score for 10 years is (10-14)/0.3536 = -2.822. Using the table, we find that the proportion of washing machines that will last for less than 10 years is 0.0032.
d. To calculate the 90th percentile of the life of the washing machines, we need to use the standard normal distribution table. The z-score for the 90th percentile is 1.28. Using the table, we find that the 90th percentile is 17 years.
To learn more about normal distribution refer :
https://brainly.com/question/29509087
#SPJ11
a parachutist rate during a free fall reaches 132 feet per second. what is this rate in meters per second? at this rate, how many meters will the parachutist fall during 10 seconds of free fall. in your computations, assume that 1 meter is equal to 3.3 feet. (do not round your answer)
Parachutist's rate during free fall is 40 meters per second and will fall approximately 490 meters during 10 seconds of free fall.
How to convert feet to meters?First, we need to convert 132 feet per second to meters per second. We know that 1 meter is equal to 3.3 feet, so we can use the following conversion factor:
[tex]$\frac{3meter}{3.3 feet}[/tex]
To convert feet per second to meters per second, we can multiply by the conversion factor:
[tex]132 (\frac{1}{3.3} ) = 40 meters/second[/tex]
Therefore, the parachutist's rate during free fall is 40 meters per second.
Next, we can use the following formula to find the distance the parachutist falls during 10 seconds of free fall:
distance =[tex]\frac{1}{2}[/tex] * acceleration * time²
where acceleration due to gravity is approximately 9.8 meters/second^2.
Substituting the given values, we get:
distance = [tex]\frac{1}{2}[/tex] * 9.8 meters/second² * (10 seconds)²
distance = 490 meters
Therefore, the parachutist will fall approximately 490 meters during 10 seconds of free fall.
To know more about Foot visit:
brainly.com/question/14230645
#SPJ1
Alfonso wants to purchase a pool membership
for the summer. He has no more than y dollars to
spend. The Aquatics Club charges an initial fee
of $75 plus $20 per month. The Swimming Hole
charges an initial fee of $15 plus $65 per month.
Write a system of inequalities that you can use to
determine which company offers the better deal.
Let x represent the number of months.
The system of inequalities of the company with the better offer is 75 + 20x ≤ y and 15 + 65x ≤ y
Identifying the system of inequalitiesLet's use A to represent the total cost (in dollars) of purchasing a pool membership from the Aquatics Club,
Let S represent the total cost of purchasing a pool membership from the Swimming Hole.
Then we can write the following system of inequalities:
A = 75 + 20x (total cost of Aquatics Club membership)
S = 15 + 65x (total cost of Swimming Hole membership)
Alfonso has no more than y dollars to spend
So, we have
75 + 20x ≤ y
15 + 65x ≤ y
Hence, the system is 75 + 20x ≤ y and 15 + 65x ≤ y
Read more about system of inequalities at
https://brainly.com/question/23093488
#SPJ1
you walk 1 1.5 miles to the gym and then another 1 1/10 miles to a basketball court. How many yards did you walk in all?
You walked a total of 4576 yards to get to the basketball court.
What is unit conversion?In order to represent amounts in a more practical or acceptable unit of measurement, unit conversions are crucial for addressing mathematical issues. In this task, for instance, we were given distances in miles but had to translate them into yards to get the overall distance travelled. We wouldn't be able to compare or combine values that are stated in various units without unit conversions. When working with formulae or equations that contain physical quantities with multiple units, unit conversions are also crucial.
Given that, the distance walked is 1.5 miles and 1 1/10 miles.
Coverting into yards we have:
1.5 miles is equal to 1.5 x 1760 = 2640 yards
1 1/10 miles is equal to (1 + 1/10) x 1760 = 1936 yards
Total distance is:
2640 + 1936 = 4576 yards
Hence, you walked a total of 4576 yards to get to the basketball court.
Learn more about unit conversions here:
https://brainly.com/question/19420601
#SPJ1
Consider a square whose side-length is one unit. Select any five points from inside this square. Prove that at least two of these points are within squareroot 2/2 units of each other.
The given square with a side length of one unit is known to contain five points. One must prove that at least two of these points are within square root 2/2 units of each other.
According to the Pigeonhole principle, "if n items are put into m containers, with n > m, then at least one container must contain more than one item."In this context, the square is the container, and the points inside it are the objects. If more than four points are picked, the theorem is true, and two points are nearer to each other than the square root of 2/2 units.
Let's place four points on the square's four corners. The distance between any two of these points is the square root of two units since the square's side length is 1.
Let's add another point to the mix. That point is either inside the square or outside it. Without loss of generality, let us assume that the point is inside the square. It must then be within the perimeter outlined by joining the square's corners to the point that was not a corner already.
The perimeter of the square described above is a square with a side length of square root 2 units.
Since we have five points in the square, at least two of them must be in the same smaller square, due to the pigeonhole principle. Without loss of generality, let's assume that two of the points are in the upper-left square. As a result, any points within this square are within the square root 2 units of any of the other four points. Hence, at least two points of the five selected are within the square root of 2/2 units of each other.
To know more about the "pigeonhole principle": https://brainly.com/question/13982786
#SPJ11
which part of this graph shows a non-linear relationship
Answer:
A.
Step-by-step explanation:
Find the Laplace transform Y(s) of the solution of the given initial value problem. Then invert to find y(t) . Write uc for the Heaviside function that turns on at c , not uc(t) .y'' + 16y = e^(?2t)u2y(0) = 0 y'(0) = 0Y(s) =y(t) =
The Laplace transform is a mathematical technique used to solve differential equations and analyze signals and systems in engineering, physics, and other fields. It is named after the French mathematician Pierre-Simon Laplace.
The Laplace transform of the given initial value problem is given by:
Y(s) = (2s^2 + 16) / (s^2(s^2+16))
Inverting the Laplace transform to find y(t) gives us:
y(t) = e^(-8t) * (1-cos(4t)) + 2sin(4t) + u2(t)
Where u2(t) is the Heaviside function that turns on at t = 2.
To find the Laplace transform of y(t), we first take the Laplace transform of both sides of the differential equation:
L(y''(t)) + 16L(y(t)) = L(e^(-2t)u_2(t))
Using the property L(y''(t)) = s^2Y(s) - sy(0) - y'(0) and noting that y(0) = 0 and y'(0) = 0, we can simplify to get:
s^2Y(s) + 16Y(s) = L(e^(-2t)u_2(t))
Using the property L(e^(-at)u_c(t)) = 1/(s + a) * e^(-cs), we can substitute to get:
s^2Y(s) + 16Y(s) = 1/(s + 2)^2
Now we can solve for Y(s):
Y(s) = 1/(s^2 + 16) * 1/(s + 2)^2
To find y(t), we need to take the inverse Laplace transform of Y(s). We can use partial fraction decomposition to simplify the expression:
Y(s) = A/(s^2 + 16) + B/(s + 2) + C/(s + 2)^2
Multiplying both sides by the denominator and solving for A, B, and C, we get:
A = 1/8
B = -1/4
C = 1/8
Substituting these values, we get:
Y(s) = 1/8 * 1/(s^2 + 16) - 1/4 * 1/(s + 2) + 1/8 * 1/(s + 2)^2
Taking the inverse Laplace transform of each term, we get:
y(t) = (1/8)sin(4t) - (1/4)e^(-2t) + (1/4)te^(-2t)
Therefore, the solution to the initial value problem y'' + 16y = e^(-2t)u_2(t), y(0) = 0, y'(0) = 0 is y(t) = (1/8)sin(4t) - (1/4)e^(-2t) + (1/4)te^(-2t).
To learn more about “Laplace transform” refer to the https://brainly.com/question/29583725
#SPJ11