instrument used in measurement Amount of substance

Answers

Answer 1

Answer:

For liquids: A measuring cylinder is used.

For solid: Over flow can is used

Answer 2

Answer:

i think a measuring cylinder


Related Questions

A child throws a ball vertically upward to a friend on a balcony 28 m above him. The friend misses the ball on its upward flight but catches it as it is falling back to earth. If the friend catches the ball 3.0 s after it is thrown, at what time did it pass him on its upward flight

Answers

Answer:

[tex]t=1.9 sec[/tex]

Explanation:

From the question we are told that:

Height [tex]h=28m[/tex]

Time [tex]t=3s[/tex]

Generally the Newton's equation for Initial velocity upward is mathematically given by

 [tex]s=ut+\frtac{1}{2}at^2[/tex]

 [tex]28=3u-\frac{1}{2}*9.8*3^2[/tex]

 [tex]u=24.03m/s[/tex]

Generally the velocity at  elevation and depression occurs  as ball arrives and passes through S=28

 [tex]v=\sqrt{24.03-2*9.8*28}[/tex]

 [tex]v=5.35m/s and -5.35m/s[/tex]

Generally the Newton's equation for time to reach initial velocity  is mathematically given by

 [tex]v=u+at[/tex]

 [tex]5.35=24.03-9.8t[/tex]

 [tex]t=\frac{28.03-5.35}{9.8}[/tex]

 [tex]t=1.9 sec[/tex]

A police car in hot pursuit goes speeding past you. While the siren is approaching, the frequency of the sound you hear is 5500 Hz. When the siren is receding away from you, the frequency of the sound is 4500 Hz. Use the Doppler formula to determine the velocity of the police car. Use vsound=330 m/s.
What is the velocity v of the police car ?

Answers

Vs = 34m/s
I don’t have an explanation my apologies.

When a police car in hot pursuit goes speeding past you, the velocity v of the police car is 33 m/s.

What is the Doppler formula?

The formula is used when there exists a Doppler shift. The Doppler shift is due to the relative motion of sound waves between the source and observer.

The frequency increase by the Doppler effect is represented by the formula

f' = [tex]\dfrac{v-v_{o} }{v-v_{s} }[/tex]× f

Given the frequency of source f' is 5500 Hz . Velocity of the observer v₀  is 0.

Substituting the value into the equation will give us the velocity of the police car.

[tex]5500 = \dfrac{330}{330-v} \times f[/tex]...........(1)

When the car is receding, the frequency of the receiving signal f = 4500 Hz.

[tex]4500 = \dfrac{330}{330+v} \times f[/tex]..........(2)

Solving both equation, we get the velocity of a police car.

v = 33 m/s

Therefore, the velocity v of the police car is 33 m/s.

Learn more about Doppler equation.

https://brainly.com/question/15318474

#SPJ2

why are you teachers regarded as professionals​

Answers

Answer:

coz teaching is their profession.

Determine the tension in the string that connects M2 and M3.

Answers

therefore mass m1=4.8 kg and the tension in the horizontal spring T2=10N.

HOPE IT HELPS YOU

PLEASE Mark me as brainliest.

☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️✌️✌️✌️✌️✌️✌️✌️✌️❤️❤️❤️

ou charge a piece of aluminum foil (mass = 4.99 g) by touching it to a charged rod. The charged rod gives the aluminum foil a charge of 13 µC. Your professor brings a charged plate over and tells you to put the aluminum foil on top of the plate. To your surprise the aluminum foil hovers motionless in the air above it! Calculate the value of the electric field from the charged plate (assume it is a uniform field and the aluminum foil is a point charge).

Answers

Answer:

The appropriate answer is "3761.69 N/C".

Explanation:

Given that:

Mass,

m = 4.99 g

or,

   = [tex]4.99\times 10^{-3} \ kg[/tex]

Charge,

q = 13 µC

or,

  = [tex]13\times 10^{-6} \ C[/tex]

As we know,

⇒ [tex]F=mg=Eq[/tex]

then,

⇒ [tex]E=\frac{mg}{q}[/tex]

By putting the values, we get

        [tex]=\frac{4.99\times 10^{-3}\times 9.8}{13\times 10^{-6}}[/tex]

        [tex]=3761.69 \ N/C[/tex]

what change occurs to the mass of an object when a unbalanced

Answers

Answer:

The mass decreases

Explanation:

Just smart

A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12.0 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping

Answers

Explanation:

The centripetal force [tex]F_c[/tex] on the car must equal the frictional force f in order to avoid slipping off the road. Let's apply Newton's 2nd law to the y- and x-axes.

[tex]y:\:\:\:\:N - mg = 0[/tex]

[tex]x:\:\:F_c = f \Rightarrow \:\:\:m \dfrac{v^2}{r} = \mu N[/tex]

or

[tex]m \dfrac{v^2}{r} = \mu mg[/tex]

Solving for [tex]\mu[/tex],

[tex]\mu = \dfrac{v^2}{gr} = \dfrac{(12.0\:\frac{m}{s})^2}{(9.8\:\frac{m}{s^2})(52\:m)} = 0.28[/tex]

which of the following is a correct statement. a. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are constant. b. In dc steady state conditions, the voltages across the capacitors are zero and the currents through the capacitance are constant. The current through the inductors are constant and the voltage across the inductances are zero. c. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are zero and the voltage across the inductances are constant. d. WIn dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.

Answers

Answer:

d. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.

Explanation:

The current through a capacitor is given by i = CdV/dt where C = capacitance of capacitor and V = voltage across capacitor. At steady state dV/dt = 0 and V = constant. So, i = CdV/dt = C × 0 = 0.

So, in dc steady state, the voltage across a capacitor is constant and the current zero.

The voltage across an inductor is given by V = Ldi/dt where L = inductance of inductor and i = current through inductor. At steady state di/dt = 0 and V = constant. So, V = Ldi/dt = L × 0 = 0.

So, in dc steady state, the voltage across an inductor is zero and the current constant.

So, In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.

The answer is d.

Who stated that man is an animal

Answers

aristotle is the answer to this question

Your car breaks down in the middle of nowhere. A tow truck weighing 4000 lbs. comes along and agrees to tow your car, which weighs 2000 lbs., to the nearest town. The driver of the truck attaches his cable to your car at an angle of 20 degrees to horizontal. He tells you that his cable has a strength of 500 lbs. He plans to take 10 secs to tow your car at a constant acceleration from rest in a straight line along a flat road until he reaches the maximum speed of 45 m.p.h. Can the driver carry out the plan

Answers

Answer:

F = 1010 Lb

the tension on the cable is greater than its resistance, which is why the plan is not viable

Explanation:

For this exercise we can use the kinematic relations to find the acceleration and with Newton's second law find the force to which the cable is subjected.

          v = v₀ + a t

how the car comes out of rest v₀ = 0

          a = v / t

let's reduce to the english system

          v = 45 mph (5280 ft / 1 mile) (1h / 3600) = 66 ft / s

let's calculate

          a = 66/10

          a = 6.6 ft / s²

now let's write Newton's second law

X axis

         Fₓ = ma

with trigonometry

         cos 20 = Fₓ / F

         Fₓ = F cos 20

we substitute

          F cos 20 = m a

          F = m a / cos20

          W = mg

          F = [tex]\frac{W}{g} \ \frac{a}{cos 20}[/tex]

let's calculate

          F = [tex]\frac{2000}{32} \ \frac{6.6 }{cos20}[/tex](2000/32) 6.6 / cos 20

          F = 1010 Lb

Under these conditions, the tension on the cable is greater than its resistance, which is why the plan is not viable.

g you hang an object of mass m on a spring with spring constant k and find that it has a period of T. If you change the spring to one that has a spring constant of 2 k, the new period is

Answers

Answer:

a)   T = 2π [tex]\sqrt{\frac{m}{k} }[/tex],  b)  T ’= [tex]\frac{1}{\sqrt{2} } T[/tex]

Explanation:

a) A system formed by a mass and a spring has a simple harmonic motion with angular velocity

          w² = k / m

angular velocity and period are related

          w = 2π /T

     

we substitute

          4π²/ T² = k / m

           T = 2π [tex]\sqrt{\frac{m}{k} }[/tex]

b) We change the spring for another with k ’= 2 k, let's find the period

           T ’= 2π [tex]\sqrt{\frac{m}{k'} }[/tex]

           T ’= 2π [tex]\sqrt{ \frac{m}{2k} }[/tex]

           T ’= [tex]\frac{1}{\sqrt{2} } T[/tex]

A shooting star is actually the track of a meteor, typically a small chunk of debris from a comet that has entered the earth's atmosphere. As the drag force slows the meteor down, its kinetic energy is converted to thermal energy, leaving a glowing trail across the sky. A typical meteor has a surprisingly small mass, but what it lacks in size it makes up for in speed. Assume that a meteor has a mass of 1.5

Answers

Answer:

A. Power generated by meteor = 892857.14 Watts

Yes. It is obvious that the large amount of power generated accounts for the glowing trail of the meteor.

B. Workdone = 981000 J

Power required = 19620 Watts

Note: The question is incomplete. A similar complete question is given below:

A shooting star is actually the track of a meteor, typically a small chunk of debris from a comet that has entered the earth's atmosphere. As the drag force slows the meteor down, its kinetic energy is converted to thermal energy, leaving a glowing trail across the sky. A typical meteor has a surprisingly small mass, but what it lacks in size it makes up for in speed. Assume that a meteor has a mass of 1.5 g and is moving at an impressive 50 km/s, both typical values. What power is generated if the meteor slows down over a typical 2.1 s? Can you see how this tiny object can make a glowing trail that can be seen hundreds of kilometers away? 61. a. How much work does an elevator motor do to lift a 1000 kg elevator a height of 100 m at a constant speed? b. How much power must the motor supply to do this in 50 s at constant speed?

Explanation:

A. Power = workdone / time taken

Workdone = Kinetic energy of the meteor

Kinetic energy = mass × velocity² / 2

Mass of meteor = 1.5 g = 0.0015 kg;

Velocity of meteor = 50 km/s = 50000 m/s

Kinetic energy = 0.0015 × (50000)² / 2 = 1875000 J

Power generated = 1875000/2.1 = 892857.14 Watts

Yes. It is obvious that the large amount of power generated accounts for the glowing trail of the meteor.

B. Work done by elevator against gravity = mass × acceleration due to gravity × height

Work done = 1000 kg × 9.81 m/s² × 100 m

Workdone = 981000 J

Power required = workdone / time

Power = 981000 J / 50 s

Power required = 19620 Watts

Therefore, the motor must supply a power of 19620 Watts in order to lift a 1000 kg to a height of 100 m at a constant speed in 50 seconds.

An 8.50 kg point mass and a 14.5 kg point mass are held in place 50.0 cm apart. A particle of mass (m) is released from a point between the two masses 12.0 cm from the 8.50 kg mass along the line connecting the two fixed masses.Find the magnitude of the acceleration of the particle.

Answers

Answer:

[tex]a=2.8*10^{-9}m/s[/tex]

Explanation:

From the question we are told that:

First Mass [tex]m=8.50kg[/tex]

2nd Mass [tex]m=14.5kg[/tex]

Distance

[tex]d_1=50=>0.50m\\\\d_2=>12cm=>0.12m[/tex]

Generally the Newtons equation for Gravitational force is mathematically given by

[tex]F_n=\frac{Gm_nm}{(r_n)^2}[/tex]

Therefore

Initial force on m

[tex]F_1=\frac{Gm_1m}{(r_1)^2}[/tex]

Final force on m

[tex]F_2=\frac{Gm_2m}{(r_2)^2}\\\\F=\frac{Gm_1m}{(r_1)^2}-\frac{Gm_2m}{(r_2)^2}[/tex]

Acceleration of m

[tex]a=\frac{F}{m}\\\\a=\frac{Gm_1}{r_1^2}-\frac{Gm_2}{r_2^2}[/tex]

[tex]a=6,67*10^{-11}{\frac{8.5}{0.12}}-\frac{14.5}{0.50}[/tex]

[tex]a=2.8*10^{-9}m/s[/tex]

Wind is caused by ___. the earth's tilt the Coriolis effect temperature differences humidity

Answers

I am guessing wind is caused by climate change in the atmosphere

Explanation:

wind is cause by climate change in the atmosphere that depends weather is is breezy really cold or rain and cold

Answer:

caused by the uneven heating of the Earth by the sun and the  own rotation.

Give the missing ammeter reading a and b. suggest why more current flow through some bulbs than through others Grade 10 question and Answer

Answers

Answer:

becaude of electricity

A rock is pulled back in a slingshot as shown in the diagram below. The elastic on the slingshot is displaced 0.2 meters from its initial position. The rock is pulled back with a force of 10 newtons.

When the rock is released, what is its kinetic energy?

Answers

Answer:

id

Explanation:

i don't know

The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.

What will be the speed of the rock?

Initial speed of the rock, u = 40m/s

Final position of the rock s = 0m taking the release point as reference. The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.

Nuclear energy is a useful source of power but has disadvantages. The disadvantage of nuclear energy is it produces dangerous waste.

Initial speed of the rock, u = 40m/s

Final position of the rock s = 0m taking the release point as reference

From the second equation of motion:

solving above we get:

t = 0s or t = 8.16s,  t =0  seconds is neglected since it represents the initial position which is the same as the final position at t = 8.16s

So, the rock takes 8.16 seconds to return to the release point.

Therefore, The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.

Learn more about speed of rock on:

brainly.com/question/11049671

#SPJ2

1000 grams of water is heated from 0 degree to 200 degree . The specific heat of water is 4186 j/kg.°C. Estimate the change in entropy of the water.​

Answers

Answer:2

Explanation:

help me with this question ​

Answers

Explanation:

Let's set the x-axis to be parallel to the and positive up the plane. Likewise, the y-axis will be positive upwards and perpendicular to the plane. As the problem stated, we are going to assume that m1 will move downwards so its acceleration is negative while m2 moves up so its acceleration is positive. There are two weight components pointing down the plane, [tex]m_1g \sin \theta[/tex] and [tex]m_2g \sin \theta[/tex] and two others pointing up the plane, the two tensions T along the strings. There is a normal force N pointing up from the plane and two pointing down, [tex]m_1g \sin \theta[/tex] and [tex]m_2g \sin \theta[/tex]. Now let's apply Newton's 2nd law to this problem:

x-axis:

[tex]m1:\:\:\:\displaystyle \sum_i F_i = T - m_1g \sin \theta = - m_1a\:\:\:\:(1)[/tex]

[tex]m2:\:\:\:\displaystyle \sum_i F_i = T - m_2g \sin \theta = m_2a\:\:\:\:(2)[/tex]

y-axis:

[tex]\:\:\:\displaystyle \sum_i F_i = N - m_1g \cos \theta - m_2g \cos \theta = 0[/tex]

Use Eqn 1 to solve for T,

[tex]T = m_1(g \sin \theta - a)[/tex]

Substitute this expression for T into Eqn 2,

[tex]m_1g \sin \theta - m_1a - m_2g \sin \theta = m_2a[/tex]

Collecting all similar terms, we get

[tex](m_1 + m_2)a = (m_1 - m_2)g \sin \theta[/tex]

or

[tex]a = \left(\dfrac{m_1 - m_2}{m_1 + m_2} \right)g \sin \theta[/tex]

A helicopter is ascending vertically witha speed of 5.40 m/s. At a height of 105 m above the earth a package is dropped from the helicopter. How much time does is take for the package to reach the ground

Answers

Answer: 5.21 s

Explanation:

Given

Helicopter ascends vertically with [tex]u=5.4\ m/s[/tex]

Height of helicopter [tex]h=105\ m[/tex]

When the package leaves the helicopter, it will have the same vertical velocity

Using equation of motion

[tex]\Rightarrow h=ut+\dfrac{1}{2}at^2\\\\\Rightarrow 105=-5.4t+0.5\times 9.8t^2\\\Rightarrow 4.9t^2-5.4t-105=0\\\\\Rightarrow t=\dfrac{5.4\pm \sqrt{5.4^2+4\times 4.9\times 105}}{2\times 4.9}\\\\\Rightarrow t=\dfrac{5.4\pm 45.68}{9.8}\\\\\Rightarrow t=5.21\ s\quad \text{Neglect negative value}[/tex]

So, package will take 5.21 s to reach the ground

Determine the magnitude of the minimum acceleration at which the thief can descend using the rope. Express your answer to two significant figures and include the appropriate units.

Answers

Answer: hello your question is incomplete below is the missing part

A 69-kg petty thief wants to escape from a third-story jail window. Unfortunately, a makeshift rope made of sheets tied together can support a mass of only 58 kg.

answer:

To 2 significant Figures = 1.6 m/s^2

Explanation:

Calculate the magnitude of minimum acceleration at which the thief can descend

we apply the relation below

Mg - T = Ma  --- ( 1 )

M = 69kg

g = 9.81

T = 58 * 9.81

a = ? ( magnitude of minimum acceleration)

From equation 1

a = [ ( 69 * 9.81 ) - ( 58 * 9.81 ) ] / 69

  = 1.5639 m/s^2

To 2 significant Figures = 1.6 m/s^2

An investigator collects a sample of a radioactive isotope with an activity of 490,000 Bq.48 hours later, the activity is 110,000 Bq. Part A For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution What is the half-life of the sample?

Answers

Answer:

The correct answer is "22.27 hours".

Explanation:

Given that:

Radioactive isotope activity,

= 490,000 Bq

Activity,

= 110,000 Bq

Time,

= 48 hours

As we know,

⇒ [tex]A = A_0 e^{- \lambda t}[/tex]

or,

⇒ [tex]\frac{A}{A_0}=e^{-\lambda t}[/tex]

By taking "ln", we get

⇒ [tex]ln \frac{A}{A_0}=- \lambda t[/tex]

By substituting the values, we get

⇒ [tex]-ln \frac{110000}{490000} = -48 \lambda[/tex]

⇒    [tex]-1.4939=-48 \lambda[/tex]

                 [tex]\lambda = 0.031122[/tex]

As,

⇒ [tex]\lambda = \frac{ln_2}{\frac{T}{2} }[/tex]

then,

⇒ [tex]\frac{ln_2}{T_ \frac{1}{2} } =0.031122[/tex]

⇒ [tex]T_\frac{1}{2}=\frac{ln_2}{0.031122}[/tex]

         [tex]=22.27 \ hours[/tex]  

Increasing the surfactant concentration above the critical micellar concentration
will result in: Select one:
1.An increase in surface tension
2. A decrease in surface tension
3. No change in surface tension
4.None of the above​

Answers

Answer:

Explanation:no change in surface tension

An increase in the surfactant concentration above the critical micellar concentration will result in no change in surface tension.

In water-gas interface, surfactant reduces the surface tension of water by adsorbing at the liquid–gas interface.

Also, in oil-water interface, surfactant reduces the interfacial tension between oil and water by adsorbing at the oil-water interface.

The concentration of the surfactant can increase to a level called critical micellar concentration, which is an important characteristic of a surfactant.

As the concentration of the surfactant increases before critical micellar concentration, the surface tension changes strongly with an increase in the concentration of the surfactant. After reaching the critical micellar concentration, any further increase in the concentration will result in no change of the surface tension, that is the surface tension will be constant.

Thus, increasing the surfactant concentration above the critical micellar concentration will result in no change in surface tension.

Learn more here: https://brainly.com/question/15785205

A 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

Answers

Answer:

3.6 KJ

Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

The workdone = the energy.

There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )

P.E = mgh

P.E = 70 × 9.8 × 1.6

P.E = 1097.6 J

P.E = 1.098 KJ

K.E = 1/2mv^2

K.E = 1/2 × 70 × 8.5^2

K.E = 2528.75 J

K.E = 2.529 KJ

The non conservative workdone = K.E + P.E

Work done = 1.098 + 2.529

Work done = 3.63 KJ

Therefore, the non conservative workdone is 3.6 KJ approximately

Human vision cuts off on the red side of the spectrum at about 675 nm. What is the energy of a photon (in J) of this wavelength?

Answers

Answer:

The energy of a photon is 2.94x10⁻¹⁹ J.

Explanation:

The energy of the photon is given by:

[tex] E = \frac{hc}{\lambda} [/tex]  

Where:

h: is Planck's constant = 6.62x10⁻³⁴ J.s

c: is the speed of light = 3.00x10⁸ m/s

λ: is the wavelength = 675 nm

Hence, the energy is:

[tex] E = \frac{hc}{\lambda} = \frac{6.62 \ccdot 10^{-34} J.s*3.00 \cdot 10^{8} m/s}{675 \cdot 10^{-9} m} = 2.94 \cdot 10^{-19} J [/tex]

Therefore, the energy of a photon is 2.94x10⁻¹⁹ J.

I hope it helps you!

An irregular shape object has a mass of 19 oz. A graduated cylinder with and initial volume of 33.9 mL. After the object was dropped in the graduated cylinder, it had a volume of 92.8 mL. What is the density of object( g/mL)

Answers

Explanation:

m = 19 oz × (28.3 g/1 oz) = 537.7 g

V = 92.8 mL

[tex]\rho = \dfrac{m}{V}= \dfrac{537.7\:g}{92.8\:mL} = 5.79\:\frac{g}{mL}[/tex]

LC-circuit of the radio receiver consists of variable capacitor (Cmin= 1 pF, Cmax=10 pF) and inductor
with inductance 1 µH. Determine the wavelength range of this radio receiver.

Answers

Answer:

the radio can tune wavelengths between 1.88 and 5.97 m

Explanation:

The signal that can be received is the one that is in resonance as the impedance of the LC circuit.

         X = X_c - X_L

         X = 1 / wC - w L

at the point of resonance the two impedance are equal so their sum is zero

         X_c = X_L

         1 / wC = w L

         w² = 1 / CL

         w = [tex]\sqrt{\frac{1}{CL} }[/tex]

let's look for the extreme values

C = 1  10⁻¹² F

         w = [tex]\sqrt{\frac{1}{ 1 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]

         w = [tex]\sqrt{1 \ 10^{18}}[/tex]

         w = 10⁹ rad / s

C = 10 10⁻¹² F

         w = [tex]\sqrt{\frac{1}{10 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]Ra 1/10 10-12 1 10-6

         w = [tex]\sqrt{0.1 \ 10^{18}}[/tex]Ra 0.1 1018

         w = 0.316 10⁹ rad / s

Now the angular velocity and the frequency are related

           w = 2π f

           f = w / 2π

the light velocity  is

           c = λ f

           λ = c / f

we substitute

          λ = c 2π/w

               

we calculate the two values

 C = 1 pF

          λ₁ = 3 10⁸ 2π / 10⁹

          λ₁= 18.849 10⁻¹ m

          λ₁ = 1.88 m

C = 10 pF

           λ₂ = 3 10⁸ 2π / 0.316 10⁹

           λ₂ = 59.65 10⁻¹ m

           λ₂ = 5.97 m

so the radio can tune wavelengths between 1.88 and 5.97 m

A train starts from rest and accelerates uniformly until it has traveled 5.6 km and acquired a forward velocity of The train then moves at a constant velocity of for 420 s. The train then slows down uniformly at until it is brought to a halt. The acceleration during the first 5.6 km of travel is closest to which of the following?

a. 0.19 m/s^2
b. 0.14 m/s^2
c. 0.16 m/s^2
d. 0.20 m/s^2
e. 0.17 m/s^2

Answers

Answer:

The acceleration during the first 5.6 km of travel is closest to 0.16 m/s²    

Option c) 0.16 m/s² is the correct answer.

Explanation:

Given the data in the question;

since the train starts from rest,

Initial velocity; u = 0 m/s

final velocity; v = 42 m/s

distance covered S = 5.6 km = ( 5.6 × 1000 )m = 5600 m

acceleration a = ?

From the third equation of motion;

v² = u² + 2as

we substitute in our values

( 42 )² = ( 0 )² + [ 2 × a × 5600 ]

1764 = 0 + [ 11200 × a ]

1764 = 11200 × a

a = 1764 / 11200

a = 0.1575 ≈ 0.16 m/s²          { two decimal place }

Therefore, The acceleration during the first 5.6 km of travel is closest to 0.16 m/s²    

Option c) 0.16 m/s² is the correct answer.

A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30.08 as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp.

Answers

Answer:

2.55 m/s

Explanation:

A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30° as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp. Use energy methods to determine the speed of the crate at the bottom of the ramp.

Solution:

The work done by friction is given as:

[tex]W_f=F_f\Delta S\\\\Where\ F_f\ is\ the \ frictional\ force=-5N(the\ negative \ sign\ because\ it\\acts\ opposite\ to \ direction\ of\ motion),\Delta S=slope\ length=1\ m\\\\W_f=F_f\Delta S=-5\ N*1\ m=-5J[/tex]

The work done by gravity is:

[tex]W_g=F_g*s*cos(\theta)\\\\F_g=force\ due\ to\ gravity=mass*acceleration\ due\ to\ gravity=3\ kg*9.81\\m/s^2, s=1\ m, \theta=angle\ between\ force\ and\ displacement=90-30=60^o\\\\W_g=3\ kg*9.81\ m/s^2*1\ m*cos(60)=14.72\ J\\\\The\ Kinetic\ energy(KE)=W_f+W_g=14.72\ J-5\ J=9.72\ J\\\\Also, KE=\frac{1}{2} mv^2\\\\9.72=\frac{1}{2} (3)v^2\\\\v=\sqrt{\frac{2*9.72}{3} } =2.55\ m/s[/tex]

An object with mass m = 0.56 kg is attached to a string of length r = 0.72 m and is rotating with an angular velocity ω = 1.155 rad/s. What is the centripetal force acting in the object?

Answers

Answer:

The centripetal force is 0.54 N.

Explanation:

mass, m = 0.56 kg

radius, r = 0.72 m

angular speed, w = 1.155 rad/s

The centripetal force is given by

[tex]F = m r w^2\\\\F =0.56\times 0.72\times 1.155\times 1.155\\\\F = 0.54 N[/tex]

Which one will it be

Answers

Answer: D

The force decreases inversely proportional to 1/r(squared)

Explanation:

I looked it up im sure this is correct

Answer:

option d

Explanation:

Two objects are attracted to each other by a gravitational force F. ... As the distance r from the center of the planet increases, what happens to the force of gravity on the rocket? The force decreases inversely proportional to 1/r(squared) A spacecraft is orbiting Earth with an orbital radius r.

the force of gravity is represented as

F = GM1M2/r²

now the mass of warth and rocket is considered to be constant and G is a universal constant so it can be said

F is inverse to r²

therefore as the value of r increases that is distance between earth and rocket increases the force decreases

(Follows inverse square law)

Other Questions
A circle has a circumference of 616 cm.What is the approximate radius of the circle? (Use 22/7as an estimate for pi.)A 14 cmB. 49 cmC. 98 cmD. 196 cm In team dynamics, process losses are best described as: Question 1 options: resources expended towards team development and maintenance. information lost due to imperfect communication among team members. knowledge lost when tacit knowledge is converted to structural knowledge. productivity losses that occur when individual members need to learn a new task. knowledge lost when a team member leaves the organization. The number of boxes in Warehouse "A" currently totaling 476 is increasing at a rate of 4 boxes per day. The number of boxes in Warehouse "B" currently totaling 986 is decreasing at a rate of 6 boxes per day. In how many days will these two warehouses contain the same number of boxes Explain how specialized structures found in multiflora rose support its reproduction and spreading/dispersal throughout ecosystems in the United States. Use evidence and scientific reasoning to support your response. What did FDR accuse the Sixty Families of?A. Stealing from the governmentB. Sabotaging the 1938 electionsC. Being IsolationistD. Being undemocratic During receiving of a food order, you notice a bag of rice with signs that the bag has been wet. What do you do? I will give BRAINLIEST to the correct answerFind the measure of angle 5 does anyone understand this or can anyone explain what i need to do please ?? theres no instructions Which statement best sums up the U.S. Government's attitude toward big businessin the 1920s? Find the Value of X (in this picture) A regular polygon of (2A+ 1) sides has 140as the size of each interior angle. Find A 3. Find the value of:a) 9b) 15c) (0.2)d) (0.7) 3- Reglas para hablar gestos, entorna-cin, ritmopausas que se debentomar en cuenta enmomento de desarrollar un debate.publico al How did Caesar change the Roman Senate?a) He increased its membership by adding members who were loyal to him.b) He loosened its membership requirements so more people could run for election.c) He gave the people of the nation more representation than people from conquered lands.d) He created new rules that made representation more equal between patricians and plebeians. Solve the following system by graphing and identify the point of intersection -2x - y=-12 2x-3y=4 (v) A carA car is pulled with a force of 60.N at angle of 30 ron, thehorizontal. Find the vertical and horizontal components of the appliedforce. The following expressions are factorizations of 60. Which is the prime factorization? IF COUNTRIES FIND WAYS OF IMPROVING THEIR FACTOR OF PRODUCTIVITY Which of the following physical quantity is having same SI units?a) Speed and average speedb) Speed and velocityc) Speed and average velocityd) All the above The Bible deals with basic human questions such as?