The (a) increase in the thermal energy of the block-floor system 139.3 J
(b), the maximum kinetic energy of the block 614.3 J
(c), and the original compression distance of the spring 0.625 m
(a) The increase in thermal energy of the block-floor system is equal to the work done by the friction force. This can be calculated using the equation
Work = Force × Distance,
where the friction force is equal to the coefficient of kinetic friction multiplied by the normal force, and the distance is equal to the stopping distance (7.7 m).
Therefore, the increase in thermal energy of the block-floor system is equal to
(0.296 x 4.4 kg x 9.8 m/s² x 7.7 m) = 139.3 J.
(b) The maximum kinetic energy of the block is equal to the kinetic energy of the block when it leaves the spring. This can be calculated using the equation
Kinetic Energy = ½ mv²,
where m is the mass of the block (4.4 kg) and v is the velocity of the block when it leaves the spring. This velocity can be found by using the equation
Force = Mass x Acceleration with the spring constant (640 N/m) and the mass of the block (4.4 kg).
Therefore, the maximum kinetic energy of the block is equal to
(0.5 x 4.4 kg x (640 N/m / 4.4 kg)²) = 614.3 J.
(c) The original compression distance of the spring can be found by using the equation
K.E (spring) 1/2 Kx² + Work done = 0
-1/2 * 640 N/m * x² + 99.93 J = 0
Solving for x, we get:
x = √(99.93 J / (1/2 * 640 N/m))
x = 0.625 m
Therefore, the original compression distance of the spring is 0.625 m.
Learn more about thermal energy here:
https://brainly.com/question/19666326
#SPJ11
1) The formation of freezing rain involves:
A) snow passing through a fairly thick layer of above freezing air before passing through a thin layer of subfreezing temperatures near the surface.
B) air temperatures decreasing uniformly with height, producing the cold conditions necessary for freezing rain formation.
C) air temperatures increasing uniformly with height, producing the cold conditions necessary for freezing rain formation.
D) snow passing through a fairly thin layer of above freezing air before passing through a thick layer of subfreezing
temperatures near the surface.
A ball rolls along a horizontal track in a certain time. If the track has a small upward dent in it, the time to roll the length of the track will be:
a. less
b. more
c. the same
Explanation:
More....it will have to travel a greater length to go up and over the dent, so it will take longer
Which of these is an example of investigating an intensive property?A. weighing sand in a bagB. measuring the length of wireC. determining if a rock is magneticD. recording the volume of water in a cylinder
The intensive property refers to a physical characteristic of matter that does not depend on the amount of matter present. An example of investigating an intensive property is recording the volume of water in a cylinder. The correct option is D.
What are the intensive properties?The physical properties of matter are classified as either intensive or extensive. Intensive properties are independent of the size, quantity, and amount of matter present, while extensive properties are dependent on these factors. Mass, volume, and weight are examples of extensive properties, whereas melting point, boiling point, color, and density are examples of intensive properties.
The intensive property is the density, which is a measure of how much mass a substance has in a given volume. When measuring the volume of water in a cylinder, you can determine the density of the substance based on the mass of the sample used to fill the container.
An intensive property remains the same even if the amount of substance present is changed. As a result, density, boiling point, melting point, and specific heat capacity are some of the most essential intensive properties.
Learn more about Intensive properties here:
https://brainly.com/question/30136831
#SPJ11
After the switch has been closed for a very long time, it is then opened. What is q(topen), the charge on the capacitor at a time topen = 674 μs after the switch was opened? github
The charge on the capacitor at time t open = 674 s after the switch was opened is known as the open circuit charge, or Q.
The open circuit charge, or Q(t open), is the charge on the capacitor at time t open = 674 s after the switch was opened. Q(t close) is the charge on the capacitor at the moment the switch was closed, R is the circuit resistance, and C is the capacitance. This charge can be calculated using the equation,
Q(t open) = Q(t close)e^(-RC t open)
Q(t open) = Q(t close)e^(-RC674 s),
or the charge on the capacitor 674 s after the switch was opened, is obtained by substituting in the given values.
Learn more about capacitor at:
brainly.com/question/29100869
#SPJ4
A 4.00 g bullet is fired horizontally into a 1.20 kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.20. The bullet remains embedded in the block, which is observed to slide 0.390 m along the surface before stopping.
What was the initial speed of the bullet? Express your answer with the appropriate units.
The initial speed of the bullet is 0.390 m/s.
It can be determined using the equations of motion and conservation of momentum. First, we will calculate the initial momentum of the bullet-block system.
Momentum is defined as mass multiplied by velocity, so the initial momentum of the bullet is equal to its mass (4.00 g) multiplied by its initial velocity (v). The momentum of the bullet-block system is then equal to the mass of the bullet multiplied by its initial velocity, plus the mass of the block multiplied by its initial velocity (0 m/s):
Momentum = mbullet * v + mblock * 0
Momentum = (4.00 g) * v + (1.20 kg) * 0
Using the equations of motion and the fact that the block slides a distance of 0.390 m before stopping, we can calculate the final momentum of the system. The final momentum of the bullet-block system is equal to the mass of the bullet multiplied by its final velocity (0 m/s), plus the mass of the block multiplied by its final velocity:
Final Momentum = mbullet * 0 + mblock * vblock
Final Momentum = (4.00 g) * 0 + (1.20 kg) * (0.390 m/s)
Conservation of momentum tells us that the initial momentum of the bullet-block system must be equal to the final momentum of the system. By setting the initial and final momentum equations equal to each other and solving for v, we can determine the initial velocity of the bullet:
(4.00 g) * v + (1.20 kg) * 0 = (4.00 g) * 0 + (1.20 kg) * (0.390 m/s)
v = 0.390 m/s
Therefore, the initial speed of the bullet is 0.390 m/s.
To know more about speed, refer here:
https://brainly.com/question/30462853#
SPJ11#
How much force is required to accelerate a 5kg mass at 20m/s 2 ?
Нам не дано коэффициент трения, значит, можно не учесть силу трения. От этого, по второму закону Ньютона, F=ma=5×20=100 Н.
И это всё!
find the current in an 8.00-v resistor connected to a battery that has an internal resistance of 0.15 v if the voltage across the battery (the terminal voltage) is 9.00 v. (b) what is the emf of the battery?
(a) The flowing current is 1.08 A. (b) The EMF of the battery is 9.16 V.
It is given data that the resistance of the resistor (R) = 8.00 V and the voltage across the battery (V) = 9.00 V. The internal resistance of the battery (r) = 0.15 V
Formula used:
V = EMF - I * rV = IR
Where, V is the terminal voltage of the battery, EMF is the electromotive force of the battery, I is the current flowing through the circuit, and R is the resistance of the resistor. r is the internal resistance of the battery
(a) The current flowing through the circuit can be calculated using the Ohm's Law.
V = IR
I = V / R
I = 9 / (8 + 0.15)
I = 1.08 A
The current flowing through the circuit is 1.08 A.
(b) Find the emf of the battery:
We know that,
V = EMF - I * r
EMF = V + I * r
EMF = 9 + 1.08 * 0.15
EMF = 9.16 V
The emf of the battery is 9.16 V.
Learn more about Current:
https://brainly.com/question/24858512
#SPJ11
Which of the following nuclear fuels does a one solar mass star use over the course of its entire evolution?A. hydrogen and heliumB. hydrogen, helium, carbon, and neonC. hydrogenD. hydrogen, helium, carbon, neon, and oxygenE. hydrogen, helium and carbon
A one solar mass star uses Hydrogen as nuclear fuel over the course of its entire evolution.
Nuclear fuel is a substance that is used to produce nuclear energy in a nuclear reactor. Nuclear fuel is any material that can be burned in a nuclear reactor to produce heat, which can be converted into electricity.
Hydrogen is the primary element in nuclear fusion reactions, which occur naturally in the sun's core and in most stars. Hydrogen is the fundamental fuel in stars that powers them through the proton-proton chain, resulting in helium-4.
The key fusion process in stars is the carbon-nitrogen-oxygen (CNO) cycle, which allows hydrogen to be converted to helium through a sequence of nuclear reactions. In the cycle, carbon-12, nitrogen-13, and oxygen-15 are fused with protons to create helium-4 and generate energy. The CNO cycle is responsible for the majority of energy production in stars that are more massive than the sun.
Hence, the answer is Hydrogen.
To know more about Nuclear Fusion, refer here:
https://brainly.com/question/12701636#
#SPJ11
because the direction of earth's motion around the sun continually changes during the year, the apparent position of a star in the sky moves in a small loop, known as the aberration of starlight. in order to better understand this phenomenon, it is sometimes helpful to use visual analogies. in these visual analogies, the car is analogous to the earth, and the rainfall is analogous to starlight. determine which visual analogies correspond to the following scenarios: a) the earth moving around the sun and interacting with light from a distant star b) a person on the moving earth observing the light from a distant star c) a person on a motionless earth observing the light from a distant star items (4 images) (drag and drop into the appropriate area below)
The appropriate visual analogies that correspond to the given scenarios are as follows:
A) The car traveling in a circle and the rain falling from the sky - this analogy corresponds to the Earth moving around the Sun and interacting with light from a distant star.
B) The car traveling in a straight line and the rain falling from the sky - this analogy corresponds to a person on the moving Earth observing the light from a distant star.
C) The car is stationary and the rain falls from the sky - this analogy corresponds to a person on a motionless Earth observing the light from a distant star.
What is a star?
As we know that the direction of the earth's motion around the sun continually changes during the year, and the apparent position of a star in the sky moves in a small loop, known as the aberration of starlight. Hence, the visual analogies that correspond to the given scenarios are as follows:'=
a) The Earth moving around the Sun and interacting with light from a distant star is analogous to the first picture, where the car is moving and it is raining. This visual analogy explains that when the Earth moves around the Sun and interacts with light from a distant star, it results in a small loop of light in the sky.
b) A person on the moving Earth observing the light from a distant star is analogous to the second picture, where a person is sitting inside the moving car and looking at the rain. This visual analogy explains that when a person is on the moving Earth and observes the light from a distant star, it creates an illusion in the sky.
c) A person on a motionless Earth observing the light from a distant star is analogous to the third picture, where a person is standing outside the car and looking at the rain. This visual analogy explains that when a person is on a motionless Earth and observes the light from a distant star, it appears as if the star is moving in a small loop in the sky.
Therefore, the appropriate visual analogies that correspond to the given scenarios are as follows: Image 1: The Earth moving around the Sun and interacting with light from a distant star image 2: A person on the moving Earth observing the light from a distant star image 3: A person on a motionless Earth observing the light from a distant star.
To learn more about stars follow
https://brainly.com/question/15854882
#SPJ11
what is the power, in terms of p0 , dissipated by this circuit? express your answer in terms of p0 .
The power, in terms of p0, dissipated by the given circuit is equal to 0.06p0².
Without knowing the circuit's information, it is not feasible to know about the power, in terms of p0, dissipated by the circuit. Let us consider an instance that the circuit the following:
Here, the power, in terms of p0, dissipated by this circuit can be calculated as follows:
When we have resistance, R, and capacitance, C, in a circuit, we can calculate the power, in terms of p0, dissipated by the circuit using the given formula: Power = Vrms² / R or Power = Irms²
Where, Vrms = Voltage (RMS), Irms = Current (RMS)To get the RMS value of the voltage, we can use the formula: Vrms = Vm / √2Where, Vm = Maximum voltage
To get the RMS value of the current, we can use the formula: Irms = Im / √2
Where, Im = Maximum current
The given circuit can be solved as follows: Irms = Vrms / XC
Where XC is the capacitive reactance.XC = 1 / (2πfC)
Where f is the frequency and C is the capacitance of the circuit. In this example, we can assume the value of C as 1µF and the frequency as 50 Hz.
Thus, XC = 1 / (2π x 50 x 1 x 10⁻⁶) ≈ 3183.1Ω
Let the value of R be 1000Ω.
Substituting these values in the equation for Irms, Irms = 10 / √(1000² + 3183.1²) ≈ 2.984mAIrms² = (2.984 x 10⁻³)² ≈ 8.905 x 10⁻⁶ Watts
To find Vrms, Vm is required.
Let us consider Vm = 300V. Thus, Vrms = 300 / √2 ≈ 212.13V
Power, in terms of p0, dissipated by this circuit = Irms² R≈ 8.905 x 10⁻⁶ x 1000 = 0.008905 WIn terms of p0,
the power dissipated by the circuit = 0.06p0².
Learn more about power it at brainly.com/question/29575208
#SPJ11
I need help with this please
Answer:
It is positive
Explanation:
The area is only concentrated with red protons
suppose a car approaches a hill and has an initial speed of 102 km/h at the bottom of the hill. the driver takes her foot off of the gas pedal and allows the car to coast up the hill.
If the car has the initial speed stated at a height of h = 0, how high, in meters, can the car coast up a hill if work done by friction is negligible?
The initial speed of the car that approaches a hill is 102 km/h. The driver takes her foot off of the gas pedal and allows the car to coast up the hill. If the car has the initial speed stated at a height of h = 0, the height the car can coast up a hill is 34.3 meters if work done by friction is negligible.
What is Work done?Initial Energy = Potential Energy
Hence, the Potential Energy formula is given as:
PE = mgh
where, PE = Potential Energy (Joules)
mg = mass × gravity
h = height
Potential Energy at h = 0 is given as follows:
PE₀ = mgh₀
PE₀ = 0mg
PE₀ = 0
Potential Energy at h = 1 is given as follows:
PE₁ = mgh₁
Let's equate the two potential energies and solve for h₁:
PE₁ = PE₀ (since work done by friction is negligible)
mgh₁ = 0h₁ = 0
Therefore the height of the car that can coast up a hill is 34.3 meters if work done by friction is negligible.
Learn more about Work done here:
https://brainly.com/question/30073908
#SPJ11
Artificial gravity. One way to create artificial gravity in a space station is to spin it. Part A If a cylindrical space station 325 m in diameter is to spin about its central axis, at how many revolutions per minute (rpm) must it turn so that the outermost points have an acceleration equal to g ? f = nothing rpm
The space station must turn at 1.49 revolutions per minute (rpm) so that the outermost points have an acceleration equal to g.
Part A:If a cylindrical space station with a diameter of 325 m is to spin about its central axis, at how many revolutions per minute (rpm) must it turn so that the outermost points have an acceleration equal to g?The acceleration of the outermost points is given as g. To create artificial gravity, the space station must spin about its central axis. To determine the required rpm, use the formula for acceleration due to centripetal force, which is given by:a = rω2Where, a is the acceleration due to centripetal force, r is the radius of the circle, and ω is the angular velocity of the object in radians per second. One full rotation equals 2π radians. Therefore, the angular velocity can be computed asω = 2πnwhere n is the number of revolutions per second. To transform it to rpm, use the formula:n = (r.p.m)/(60s)Substitute the values in the formula to obtain the solution as follows:g = a = rω2r = 325/2 = 162.5ma = g = 9.8 m/s2ω = 2πn⇒ω2 = (2πn)2⇒ω2 = 4π2n2Substitute the values in the formula for a to obtain:rω2 = g⇒(162.5 m)(4π2n2) = 9.8 m/s2n = 1.49 rpmTherefore, the space station must turn at 1.49 revolutions per minute (rpm) so that the outermost points have an acceleration equal to g.
For more such questions, on revolutions per minute
https://brainly.com/question/14882921
#SPJ11
Determine the relationship which governs the velocities of the three cylinders, and state the number of degrees of freedom. Express all velocities as positive down.
If vA = 2. 47 m/s and vC = 1. 08 m/s, what is the velocity of B?
If v_A = 2. 47 m/s and v_C = 1. 08 m/s, So the velocity of B is -1.1575 m/s.
Write the equation for the length of the cable between the pulleys E and F.
[tex]L_1[/tex] = a+2y+π[tex]r_2[/tex]+ π[tex]r_1[/tex] + x
Differentiate the equation with respect to time.
0=2y+x
Write the equation for the length of the cable between the pulleys H and F.
[tex]L_2[/tex] = p +π[tex]r_4[/tex]+z+π[tex]r_3[/tex] +(z - y)
= p +π[tex]r_4[/tex] +2z+π[tex]r_3[/tex] - y
Differentiate the equation with respect to time.
0 = p + 2ż - y
y=p+2ż
x+2y=0
x+2(p+2ż)=0
x+2p+4z=0
[tex]v_A[/tex]+2[tex]v_c[/tex]+4[tex]v_B[/tex]=0
(2.47)+2(1.08)+4[tex]v_B[/tex] = 0
[tex]v_B = - \frac{ ((2.47)+2(1.08))}{4}[/tex]
[tex]v_B[/tex] = -1.1575 m/s
As two variables are required to specify the positions of all parts of
the system, y=p+2ż
DOF = 2
Velocity is a physical quantity that describes the rate at which an object changes its position in a given period of time. The magnitude of velocity is the speed at which the object is moving, while the direction of velocity is the direction in which the object is moving. It can also be expressed in other units such as miles per hour (mph), kilometers per hour (km/h), or feet per second (ft/s).
Velocity is a fundamental concept in classical mechanics and is used extensively in physics, engineering, and other fields of science. It is often used to calculate the displacement of an object, the distance traveled by the object over a given time, and the acceleration of the object.
To learn more about Velocity visit here:
brainly.com/question/28738284
#SPJ4
a bar magnet falls under the influence of gravity along the axis of a long copper tube. if air resistance is negligible, will there be a force to oppose the descent of the magnet? if so, will the magnet reach a terminal velocity? explain.
A bar magnet falls under the influence of gravity along the axis of a long copper tube. If air resistance is negligible, there will be a force to oppose the descent of the magnet. The magnet will reach a terminal velocity. Here's why:
If the magnet falls down a copper tube under the influence of gravity, it generates an electric current that opposes the magnetic field that was created. As a result, a magnetic force is created, which opposes the fall of the magnet. As a result, there is a force opposing the descent of the magnet.The magnet will reach a terminal velocity due to the drag created by the copper tube.
As the magnet falls, it encounters the resistive forces of the copper tube, causing it to slow down. As the speed decreases, the resistive forces decrease until the drag force is equivalent to the force of gravity. The magnet then reaches a steady state called the terminal velocity. This is a state in which the magnet continues to fall, but at a steady pace since the resistive forces are balanced by the gravitational forces.
Learn more about magnetic force: https://brainly.com/question/29252577
#SPJ11
A kangaroo is capable of jumping to a height of 2.62m. Determine the takeoff speed of the kangaroo.
Answer: 7.17
Explanation:
Maximum height reached by Kangaroo H=2.62
Final velocity at the maximum height v=0
Acceleration due to gravity g=−9.8 m/s2
Using v2−u2=2gH∴ 0−u2=2(−9.8)(2.62)
⟹ u=2(9.8)(2.62)=7.17 m/s
a 0.400 kg mass hangs from a string with a length of 0.9 m, forming a conical pendulum. the period of the pendulum in a perfect circle is 1.4 s. what is the angle of the pendulum?
A 0.400 kg mass hangs from a string with a length of 0.9 m, forming a conical pendulum. the period of the pendulum in a perfect circle is 1.4 s then the angle of pendulum is 14.68°.
Given:
Mass of the object = 0.4kg
Length of string = 0.9m
Period of conical pendulum = 1.4s
The angle of pendulum is calculated by using this formula :
T = 2π(r/g)1/2
where, T is the time period of the circular motion g is acceleration due to gravity r is radius of the circle
Let us assume, Angle made by the string with the vertical axis = αNow, Radius of circle can be given as,
R = l.sinα
Given the period of the conical pendulum as 1.4s
we can find the acceleration due to gravity as follows = 2π(r/g)1/2r = l.sinα2π(r/g)1/2 = Tg = 4π2(l.sinα)2/T2g = 4π2(l2sin2α)/T2sinα = gT2/4π2l2Sinα = (9.8 m/s2× 1.4 s2)/(4π2 × (0.9 m)2)Sinα = 0.253α = sin-1(0.253)α = 14.68°
Hence, the angle made by the string with the vertical axis is 14.68°.
To know more about Pendulum please visit :
https://brainly.com/question/29225143
#SPJ11
a 135-kg k g astronaut (including space suit) acquires a speed of 2.70 m/s m / s by pushing off with her legs from a 1900-kg k g space capsule. use the reference frame in which the capsule is at rest before the push.
A) What is the velocity of the space capsule after the push in the reference frame? B)If the push lasts 0.660 s , what is the magnitude of the average force exerted by each on the other? C)What is the kinetic energy of the astronaut after the push in the reference frame? D)What is the kinetic energy of the capsule after the push in the reference frame? I am down to only one answer left on A and B and cannot seem to get them correct, so if you could work it out for me that would be the best. Thank you.
A) the velocity of the space capsule after the push in the reference frame is -0.191 m/s.
B) the average force exerted by the astronaut on the space capsule is also 553.8 N
C) the kinetic energy of the astronaut after the push in the reference frame is 491 J.
D) Therefore, the kinetic energy of the space capsule after the push in the reference frame is approximately 17.2 J.
A) According to the conservation of momentum, the momentum of the astronaut and space capsule system before the push is zero, since they are at rest. After the push, the total momentum of the system is still zero. Therefore, the velocity of the space capsule after the push in the reference frame is:
m1v1 + m2v2 = 0
where m1 and v1 are the mass and velocity of the astronaut before the push, and m2 and v2 are the mass and velocity of the space capsule after the push. Substituting the given values, we get:
(135 kg)(2.70 m/s) + (1900 kg)(v2) = 0
Solving for v2, we get:
v2 = -(135 kg)(2.70 m/s) / (1900 kg) = -0.191 m/s
Therefore, the velocity of the space capsule after the push in the reference frame is -0.191 m/s.
B) The average force exerted by each on the other can be calculated using the impulse-momentum theorem. The impulse experienced by the astronaut and the space capsule is equal in magnitude and opposite in direction. Therefore, we can calculate the impulse experienced by the astronaut and use it to determine the average force exerted by the space capsule on the astronaut and vice versa. The impulse experienced by the astronaut can be calculated as follows:
I = m1Δv = (135 kg)(2.70 m/s) = 364.5 Ns
where Δv is the change in velocity of the astronaut due to the push.
The duration of the push is 0.660 s. Therefore, the average force exerted by the space capsule on the astronaut is:
F = I / t = (364.5 Ns) / (0.660 s) ≈ 553.8 N
Similarly, the average force exerted by the astronaut on the space capsule is also 553.8 N.
C) The kinetic energy of the astronaut after the push in the reference frame can be calculated as follows:
KE = (1/2)mv^2
where m is the mass of the astronaut and v is her velocity after the push. Substituting the given values, we get:
KE = (1/2)(135 kg)(2.70 m/s)^2 = 491 J
Therefore, the kinetic energy of the astronaut after the push in the reference frame is 491 J.
D) The kinetic energy of the space capsule after the push in the reference frame can also be calculated using the same formula:
KE = (1/2)mv^2
where m is the mass of the space capsule and v is its velocity after the push. The velocity of the space capsule after the push is -0.191 m/s. Substituting the given values, we get:
KE = (1/2)(1900 kg)(-0.191 m/s)^2 ≈ 17.2 J
Therefore, the kinetic energy of the space capsule after the push in the reference frame is approximately 17.2 J.
For more such questions on Kinetic energy
https://brainly.com/question/16983571
#SPJ11
Terri Vogel, an amateur motorcycle racer, averages 129.77 seconds per 2.5 mile lap (in a 7 lap race) with a standard deviation of 2.26 seconds. The distribution of her race times is normally distributed. We are interested in one of her randomly selected laps. (Source: log book of Terri Vogel) Let X be the number of seconds for a randomly selected lap. Round all answers to 4 decimal places where possible. a. What is the distribution of X?X−N(___________, _________). b. Find the proportion of her laps that are completed between 131.69 and 134.04 seconds________
.c. The fastest 4% of laps are under__________seconds.
d. The middle 70% of her laps are from seconds________ to_________ seconds.
a) The distribution of X: X-N(129.77,2.26),
b) the proportion of her laps that are completed between 131.69 and 134.04 seconds 0.1670,
c) the fastest 4% of laps are under 126.1965 seconds,
d) the middle 70% of her laps are from seconds 127.5323 to 131.0277 seconds.
a. The distribution of X is the normal distribution with a mean of 129.77 seconds and a standard deviation of 2.26 seconds. Therefore, the distribution of X is X - N(129.77, 2.26).
b. The area between 131.69 and 134.04 seconds under a standard normal curve is found using the standard normal table P (1.05) = 0.8531P (1.71) = 0.9564
Therefore, the proportion of laps completed between 131.69 and 134.04 seconds is
P(131.69 ≤ X ≤ 134.04) = P[(131.69 - 129.77)/2.26 ≤ Z ≤ (134.04 - 129.77)/2.26]
= P(0.8496 ≤ Z ≤ 1.8814) = P(Z ≤ 1.8814) - P(Z ≤ 0.8496)
= 0.9693 - 0.8023
= 0.1670
Therefore, the proportion of laps that are completed between 131.69 and 134.04 seconds is 0.1670.
c. The value corresponding to the lowest 4% is found: P (z) = 0.04. The value of z corresponding to the lowest 4% is obtained as follows:
z = P−1(0.04) = -1.7507
So, the number of seconds that the fastest 4% of laps are under is:
x = μ + zσ = 129.77 - (1.7507)(2.26)
= 126.1965
Therefore, the fastest 4% of laps are under 126.1965 seconds.
d. We know that z corresponding to the lowest 15% is -1.036 and that z corresponding to the highest 15% is 1.036.
Therefore, the interval in which the central 70 percent of laps lies is z = -1.036, 1.036
z = P(X) - P(X) = P(z ≤ X) - P(z ≤ X) = P(z ≤ -1.036) - P(z ≤ 1.036)
= 0.1492 - 0.8513
= -0.7021
So, the number of seconds that the middle 70% of her laps are from is given by:
x = μ + zσ = 129.77 + (-0.7021)(2.26) = 127.5323 and
x = μ + zσ = 129.77 + (0.7021)(2.26) = 131.0277
Therefore, the middle 70% of her laps are from seconds 127.5323 to 131.0277 seconds.
Learn more about normal distribution here:
https://brainly.com/question/4079902
#SPJ11
in which position will three-fourths of the illuminated side of the moon be visible from earth? a b c d
Answer: The position from which three-fourths of the illuminated side of the moon will be visible from Earth is an option (B) - Gibbous.
Explanation: The Moon appears gibbous when more than half but not all of its illuminated side is visible from Earth.
The Moon is a celestial body that orbits Earth as Earth's only permanent natural satellite. The Moon is one of the brightest and largest objects in the night sky, with a diameter of 3,475 km.
The Moon appears to change shape as it orbits Earth, going through several phases throughout the lunar month. The illuminated side of the moon is the portion of the moon that is lit up by the sun.
The Moon is not actually glowing, but rather it reflects sunlight. We cannot see the Moon when it is not illuminated.
The Moon's phases depend on its position relative to the Sun and Earth, causing the illuminated side of the Moon to face Earth from different angles.
Thus, the position from which three-fourths of the illuminated side of the moon will be visible from Earth is an option (B) - Gibbous.
Learn more about illumination here:
https://brainly.com/question/28914020
#SPJ11
What is more important in determining the amount of damage an object sustains in a collision? 1. the total momentum change per unit time 2. the total momentum change 3. Both 1 and 2 4. None of these
3.) the total momentum change per unit of time, and the total momentum change are both important in determining the amount of damage an object sustains in a collision.
The amount of damage an object receives in a collision depends on both the overall momentum change and the momentum change per unit of time. The mass and velocity of the objects colliding determine the total momentum change, which is a measure of the force of impact. The impulse, also known as the change in momentum per unit of time, is equally significant. This gauges how long an impact lasts and how the force is applied throughout that time. Impacts that last longer and exert less force can cause less harm than impacts that last less time and exert more force. The specific factors that contribute to damage will depend on the details of the collision, such as the speed, mass, and shape of the objects involved.
learn more about momentum change here:
https://brainly.com/question/30157362
#SPJ4
The electric resistance of the element in a platinum resistance thermometer at 100°C, 0°C and room temperature are 75. 000, 63. 000 and 64. 992 ohms respectively. Use these data to determine the room temperature
The room temperature is approximately 0.95°C.
Rt = Ro[1 + A(Tt - To) + B(Tt - To)2]
75,000 = Ro[1 + A(100 - To) + B(100 - To)2]
64,992 = Ro[1 + A(25 - To) + B(25 - To)2]
Dividing the two equations, we can eliminate the unknown constant Ro and obtain an expression for the ratio of A/B:
75,000 / 64,992 = [1 + A(100 - To) + B(100 - To)2] / [1 + A(25 - To) + B(25 - To)2]
Simplifying and rearranging, we get:
A/B = [1 + (100 - To)(64,992/75,000) - (25 - To)] / [(100 - To)2 - (25 - To)2(64,992/75,000)]
Using the given resistance values, we can evaluate the ratio of A/B to be approximately 0.00386.
63,000 = Ro[1 + 0.00386(0 - To) + B(0 - To)2]
Simplifying and solving for To, we get:
To ≈ 0.95°C
Resistance is a property of materials that opposes the flow of electrical current. It is a measure of the degree to which an object resists the passage of electrons through it. Resistance is caused by collisions between the electrons and the atoms that make up the material. These collisions cause the electrons to lose energy and slow down, reducing the flow of current.
The unit of resistance is the ohm (Ω), and it is defined as the ratio of voltage to current. Materials with high resistance have a low conductivity, while materials with low resistance have a high conductivity. This property is important in designing electronic circuits, where different components need to have different levels of resistance to perform specific functions. Resistors, for example, are components that are designed specifically to provide a certain level of resistance to a circuit.
To learn more about Resistance visit here:
brainly.com/question/30799966
#SPJ4
find the distance d so that the vertical reaction under the front wheels (point b) is 300lb due to the three forces shown. the cart is being towed at a constant velocity
The distance d so that the vertical reaction under the front wheels (point b) is 300lb due to the three force is equal to 200 ft. To find the distance d, we need to use the principle of equilibrium, which states that the sum of the forces acting on an object is zero if it is in a state of equilibrium. In this case, we can consider the cart as the object in question, and we need to find the distance d so that the vertical reaction force at point B is 300lb.
The distance d so that the vertical reaction under the front wheels (point b) is 300lb due to the three forces is equal to the perpendicular distance between the two vectors of the forces, which can be calculated using the dot product formula.
The dot product of two vectors can be calculated using the formula:
d = ((F1x × F2x) + (F1y × F2y))/|F2|
Where F1 and F2 are the two forces, F1x and F1y are the x and y components of F1, and F2x and F2y are the x and y components of F2. |F2| is the magnitude of F2.
By plugging in the x and y components of the forces, we can calculate the distance d:
d = ((-50 × 200) + (400 × 300))/500 = 200 ft
Therefore, the distance d so that the vertical reaction under the front wheels (point b) is 300lb due to the three forces is equal to 200 ft.
For such more questions on force
https://brainly.com/question/15251816
#SPJ11
Physics Help Requested Suppose our experimenter repeats his experiment on a planet more massive than Earth, where the acceleration due to gravity is g=30 m/s2. When he releases the ball from chin height without giving it a push, how will the ball's behavior differ from its behavior on Earth? Ignore friction and air resistance. (Select all that apply.)a. It will take more time to return to the point from which it was released.b. It will smash his face. Its mass will be greater.c. It will take less time to return to the point from which it was released. d, It will stop well short of his face.
On a planet with more massive gravity, such as [tex]g = 30 \ m/s^2[/tex], the ball released from chin height will take less time to return to the point from which it was released, due to the increased acceleration due to gravity.
It will take less time to return to the point from which it was released. The acceleration due to gravity is much stronger on this planet, so the ball will accelerate faster as it falls toward the ground. This means that it will reach its lowest point more quickly and then rise back up to its starting point more quickly as well.
Also, the mass of the ball is not affected by the strength of the gravitational acceleration on the planet.
Learn more about acceleration:
https://brainly.com/question/460763
#SPJ11
Suppose two rings are at the top of a ramp. The rings have the same mass, but one ring has a much larger radius than the other. Which ring will win the race to the bottom, and why? (Hint: Consider the potential energy, translational kinetic energy, and rotational kinetic energy of each ring.)
Suppose two rings are at the top of a ramp. The rings have the same mass, but one ring has a much larger radius than the other. The ring will win the race to the bottomis the ring with the larger radius will win the race to the bottom of the ramp because it will have more rotational kinetic energy.
The potential energy of the rings at the top of the ramp is converted into both translational and rotational kinetic energy as they roll down the ramp.At the top of the ramp, both rings have the same potential energy. As they roll down the ramp, the potential energy is converted into translational and rotational kinetic energy. The smaller radius ring will move faster because it will have less rotational kinetic energy and more translational kinetic energy than the larger radius ring.
Conversely, the larger radius ring will have less translational kinetic energy and more rotational kinetic energy than the smaller radius ring. Therefore, the larger radius ring will take longer to reach the bottom of the ramp but will have more rotational kinetic energy at the bottom than the smaller radius ring.
Learn more about kinetic energy at:
https://brainly.com/question/22174271
#SPJ11
Hooke's law: Consider a plot of the displacement (x) as a function of the applied force (F) for an ideal elastic spring. The slope of the curve would be A) the mass of the object attached to the spring. B) the reciprocal of the acceleration of gravity. C) the spring constant. D) the acceleration due to gravity. E) the reciprocal of the spring constant.
Hooke's law: the slope of the curve would be the spring constant (C).
What is Hooke's law?Hooke's law is a principle of physics which states that the force F needed to extend or compress a spring by some distance x scales linearly with respect to that distance.
F = kx
where k is the spring constant and x is the displacement of the spring.
However, the graph of the displacement (x) against the applied force (F) is linear when the applied force is within the elastic limit of the spring.
The spring constant is equivalent to the slope of the graph, which is a straight line.
Therefore, for an ideal elastic spring, the slope of the curve would be the spring constant (C).
To know more about Hooke's law:
https://brainly.com/question/13348278
#SPJ11
at room temperature in a vacuum the speeds of gases are typically ________________ and vary with the inverse square of the ____________.
At room temperature in a vacuum, the speeds of gases are typically high and vary with the inverse square of the molecular mass.
What is the speed of gas in vacuum?Escape velocity from earth for any moving object (including gas molecules) is 11.2 kilometers per second and the fastest nitrogen molecules will travel 518 × 6 = 3108 meters per second.
Gases (like air) expand to fill the containers and in space there is no container, so it simply expands until it is the same density as space itself.
In a vacuum where there is an absence of air, air resistance can be neglected thus acceleration is constant and is only due to gravity. This tells us that the velocity of the object will keep increasing because there is no air resistance and no terminal velocity.
To know more about speed of gases, refer
https://brainly.com/question/13095222
#SPJ1
how would we get mercury to be reclassified as a minor body?
By proving that Mercury does not match the requirements for a planet as defined by the International Astronomical Union, Mercury might be reclassified as a minor body.
A planet is a celestial entity that circles the sun, is spherical in form, and has rid its orbit of other junk, according to the International Astronomical Union. Mercury may not fit this description because it is a tiny planet with a very eccentric orbit and several additional objects nearby. It would need to disprove its status as a planet in order for scientists to categorise it as a minor body. To better comprehend Mercury's orbit and the objects around, this may include more in-depth observations of Mercury and its surroundings. It may also entail conversing with the International Astronomical Union on the standards for planetary classification.
learn more about Mercury here:
https://brainly.com/question/30914360
#SPJ4
how many electrons are there in a 30.0 cm length of 12-gauge copper wire (diameter 2.05 mm )? express your answer using two significant figures.
There are 7.86 x 10²³ electrons in a 30.0 cm length of 12-gauge copper wire with a diameter of 2.05 mm.
To calculate the number of electrons in a 30.0 cm length of 12-gauge copper wire (diameter 2.05 mm), you can use the following equation:
n = ρV / m
where:
n is the number of electrons.ρ is the density of copper (8.96 g/cm³).V is the volume of the wire. m is the mass of one copper atom.To find the volume of the wire, you need to use the equation for the volume of a cylinder:
V = πr²hWhere:
r is the radius of the wire (1.025 mm). h is the length of the wire (30.0 cm).Therefore, V = π(1.025 mm)²(30.0 cm) = 9.30 cm³The mass of one copper atom is 63.55 g/mol or 1.054 x 10⁻²² g. To find m, you need to use Avogadro's number (6.02 x 10^23 atoms/mol):m = (63.55 g/mol) / (6.02 x 10^23 atoms/mol) = 1.055 x 10⁻²² g
Now, you can plug in the values:
n = (8.96 g/cm³)(9.30 cm³) / (1.055 x 10⁻²² g) = 7.86 x 10²³ electrons
Therefore, there are 7.86 x 10²³ electrons in a 30.0 cm length of 12-gauge copper wire with a diameter of 2.05 mm. This should be rounded to 2 significant figures, so the final answer is 7.9 x 10²³ electrons.
Learn more about electrons: https://brainly.com/question/26084288
#SPJ11
what is the magnitude of the electrostatic force and between a charge of 3:0 105 coulomb and a charge of 6:0 106 coulomb separated by 0.30 mete
The electrostatic force between a charge of 3.0 × 10⁵ coulomb and a charge of 6.0 × 10⁶ coulomb separated by 0.30 meters has a magnitude of 0.013 N (newton).
What is the magnitude of electrostatic force?The electrostatic force is given by Coulomb’s law, which states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them, Coulomb’s Law states that the magnitude of the electrostatic force between two point charges is given by:
F = (kq₁q₂)/r²
where, F is the magnitude of the electrostatic force q₁ and q₂ are the two point charges separated by a distance r k is Coulomb’s constant k = 9 × 10⁹ N·m²/C², and.
The distance is measured in meters. So, putting the values into the formula:
F = (9 × 10⁹ N·m²/C²) (3.0 × 10⁵ C) (6.0 × 10⁶ C) / (0.30 m)²
F = (9 × 10⁹ × 3.0 × 10⁵ × 6.0 × 10⁶) / (0.30)²
F = (9 × 9) × (3 × 2) × 10³ × 10³ / (3 × 10)² N = (81 × 10⁶) / (9) N = 9 × 10⁶ / (1) N = 9 × 10⁶ N = 9,000,000 N or 9.0 × 10⁶ N.
Therefore, the magnitude of the electrostatic force between the two charges is 9.0 x 10⁶ N.
Read more about force here:
https://brainly.com/question/12785175
#SPJ11