Answer:
10 units²
Step-by-step explanation:
Consider the unshaded region to consists of 2 triangles, ∆AED and ∆BEC, which are both of equal dimensions. Their bases and heights are both the same. Both triangles are embedded inside a rectangle ABCD.
Area of the shaded region = Area of rectangle - area of the 2 triangles.
Area of rectangle = l*w
l = 10
w = 2
[tex] Area_R = 10*2 = 20 units^2 [/tex]
Area of the 2 triangles = 2(½*b*h)
b = 2
h = 5
[tex]Area_T = 2(\frac{1}{2}*2*5)[/tex]
[tex] Area_T = 1*2*5 = 10 units^2 [/tex]
Area of shaded region = 20 - 10 = 10 units²
If A and B are independent events with P( A) = 0.60 and P( B) = 0.70, then P( A or B) equals: a. 1.00 b. 0.42 c. 0.88 d. 1.30
Answer:
The correct option is D
P(A or B) = 1.30
Step-by-step explanation:
Given two independent (or mutually exclusive) events with P(A) = 0.60, and P(B) = 0.70
P(A or B) = P(A) + P(B)
= 0.60 + 0.70
= 1.30
This is however absurd, as the probability of an event can only be less than or equal to 1, and not less than 0.
Based on the information given, the value of then P(A or B) will be D. 1.30.
From the information given, A and B are independent events with P( A) = 0.60 and P( B) = 0.70.
Then, the value of P(A or B) will be calculated thus:
= 0.60 + 0.70
= 1.30
In conclusion, the correct option is D.
Learn more about probability on:
https://brainly.com/question/24756209
Gerald graphs the function f(x) = (x – 3)2 – 1. Which statements are true about the graph? Select three options.
Answer:
The answer is "Choice B, C, and F is correct".
Step-by-step explanation:
The following are choices, which is missing in the question, that can be defined as follows:
A) {x| x ≥ 3} is the domain.
B) The set shall be {y| y ≥ –1}.
C) over the interval (–∞, 3), is the function, that decreases.
D) it's over the duration the function increases its value, that is (–1, ∞).
E) The symmetry axis will be x = – 1.
F) vertex is (3, – 1).
In choice A, It is incorrect even though f is the domain, which is all true numbers because it has a quadrant function. In choice B, it is correct. In choice C, It is valid because it was a parable open with vertex so if we exploded view f (3, -1). Because as value opens up, its value with x from-∞ to 3 drops while it goes up from increasing from 3 to ∞. In choice D, It is wrong since we have just said f decreases from-∞ to 3. Therefore, f decreases from -1 to 3, too. Therefore, f doesn't grow from -1 to ∞. In choice E, It is incorrect because the symmetry axis is x = 3. In choice F, it is true.Answer:
the answers are b, c, e
Step-by-step explanation:
i just took the test
Find m A. 10 B. 5 C.√53 D. 10√3/3
Answer:
[tex]m = 10[/tex]
Step-by-step explanation:
Looking at the angles, we can see that this is a 30-60-90 triangle.
The side that is with the 30° angle and the 90° angle is represented by [tex]x\sqrt{3}[/tex].
So let's find x.
[tex]x\sqrt{3} = 5\sqrt{3}[/tex]
Divide both sides by [tex]\sqrt{3}[/tex]:
[tex]x = 5[/tex].
Now the hypotenuse is always [tex]2x[/tex] (the leg with the 90° and 60° is just x.) So,
[tex]2x = 2\cdot5 = 10[/tex].
Hope this helped!
Eliminate the parameter for the following set of parametric equations: x= t^2 + 2 y= 4t^2
Answer:
Solution : y = 4x - 8
Step-by-step explanation:
The first thing we want to do is isolate t², rather than t. Why? As you can see when we substitute t² into the second equation, it will be easier than substituting t, as t is present in the form t². So, let's isolate t² in the first equation --- ( 1 )
x = t² + 2,
t² = x - 2
Now let's substitute this value of t² in the second equation --- ( 2 )
y = 4t²,
y = 4(x - 2),
y = 4x - 8 ~ And hence our solution is option c.
What is the solution to X+9 = 24?
A. x = 33
B. x= 15
C. x= 18
D. x= 9
Answer:
X+9=24
Or,x=24-9
:.x=15
Step-by-step explanation:
Answer:
B. x=15
Step-by-step explanation:
To find the solution to the equation, we must get x by itself on one side of the equation.
[tex]x+9=24[/tex]
9 is being added to x. The inverse of addition is subtraction. Subtract 9 from both sides of the equation.
[tex]x+9-9=24-9[/tex]
[tex]x=24-9[/tex]
[tex]x=15[/tex]
Let's check our solution. Plug 15 in for x.
[tex]x+9=24 (x=15)[/tex]
[tex]15+9=24[/tex]
[tex]24=24[/tex]
This checks out, so we know our solution is correct. The answer is B. x=15
Given two points M & N on the coordinate plane, find the slope of MN , and state the slope of the line perpendicular to MN . (there's two questions)
1) M(9,6), N(1,4)
2) M(-2,2), N(4,-4)
Answer:
Problem 1) [tex] m = \dfrac{1}{4} [/tex] [tex] slope_{perpendicular} = -4 [/tex]
Problem 2) [tex] m = \dfrac{1}{3} [/tex] [tex] slope_{perpendicular} = -3 [/tex]
Step-by-step explanation:
[tex] slope = m = \dfrac{y_2 - y_1}{x_2 - x_1} [/tex]
[tex] slope_{perpendicular} = \dfrac{-1}{m} [/tex]
Problem 1) M(9,6), N(1,4)
[tex] slope = m = \dfrac{6 - 4}{9 - 1} = \dfrac{2}{8} = \dfrac{1}{4} [/tex]
[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{4}} = -4 [/tex]
Problem 2) M(-2,2), N(4,-4)
[tex] slope = m = \dfrac{4 - 2}{4 - (-2)} = \dfrac{2}{6} = \dfrac{1}{3} [/tex]
[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{3}} = -3 [/tex]
An 8×8×8 cm cube was painted red, and then broken up into small cubes with side lengths of 1 cm. How many small cubes have none of their faces painted red?
Answer:
216
Step-by-step explanation:
If you just paint the surface of the cube, then the inside of the cube would not have any of their faces painted red.
Just looking at the cube from a side view, you would realize that there would be a smaller cube, 6 x 6 x 6 (not 7 since you have to account for both the top side and the bottom side), and so that is the answer, 6 ^ 3, which is 216.
Answer:
216
Step-by-step explanation:
8 * 8 * 8 = 512
8 * 8 = 64
Each face is 64 cubes, overlapping at the edges, with 6 faces total.
16 + 12 = 28 for each overlapping cube on each side
64 * 6 = 384
384 - 2(28) = 328
Top & Bottom dealt with, overlap from them is 56 units total, 14 units on top and bottom of each face..
64 - 14 = 50
50 * 2 = 100
Front & Back dealt with.
328 - 100 = 228
64 - 28 = 36
36 * 2 = 72
228 - 72 = 156
...
OR
6^3 = 216
for each of the following express the first quantity as a percentage of the second quantity 1 year ' 4 month
Answer:
300%
Step-by-step explanation:
1 year = 12 months
percent = part/whole * 100%
percent = 12/4 * 100% = 300%
Answer:
please can u follow me I've started following you
If sin2 x + cos2 y = 2 sec2 z, then general solution of triplets (x, y, z) is
Answer:
x=(n+12)π, y=mπ∴x=n+12π, y=mπ and z = rπ where n∈I, m∈I, r∈I
Step-by-step explanation:
∴ LHS ≤ 2 and RHS ≥ 2
So, sin2 x = 1, cos2 y = 1 and sec2 z = 1
∴x=(n+12)π, y=mπ∴x=n+12π, y=mπ and z = rπ where n∈I, m∈I, r∈I
-58.58 is equal to the rational number
Answer:
This is true
Step-by-step explanation:
Because a rational number can be expressed as going on forever.
A system of equations consists of the two equations shown.
{4x+5y=18
6x−5y=20
Which procedure will produce a single equation in one variable? Select all the procedures that apply.
A. Subtract the first equation from the second equation.
B. Subtract the second equation from the first equation.
C. Multiply the first equation by 18; multiply the second equation by 18; add the equations.
D. Multiply the first equation by − 6; multiply the second equation by 4; add the two equations.
E. Multiply the first equation by 3; multiply the second equation by − 2; add the two equations.
F. Multiply the first equation by 3; multiply the second equation by 2; subtract the equations in any order.
Answer:
C, D, E and F
Step-by-step explanation:
Given
4x+5y=18
6x−5y=20
Required
Determine which procedure will result in a single equation in one variable
To do this; we'll test each of the options
A. Subtract the first equation from the second equation.
[tex](6x - 5y=20) - (4x+5y=18)[/tex]
[tex]6x - 4x - 5y - 5y = 20 - 18[/tex]
[tex]2x - 10y = 2[/tex] --- This didn't produce the desired result
B. Subtract the second equation from the first equation.
[tex](4x+5y=18) - (6x - 5y=20)[/tex]
[tex]4x - 6x + 5y + 5y =18 - 20[/tex]
[tex]-2x + 10y = -2[/tex] --- This didn't produce the desired result
C. Multiply the first equation by 18; multiply the second equation by 18; add the equations.
First Equation
[tex]18 * (4x+5y=18)[/tex]
[tex]72x + 90y = 324[/tex]
Second Equation
[tex]18 * (6x - 5y=20)[/tex]
[tex]108x - 90y = 360[/tex]
Add Resulting Equations
[tex](72x + 90y = 324) + (108x - 90y = 360)[/tex]
[tex]72x + 108x + 90y - 90y = 324 + 360[/tex]
[tex]72x + 108x = 324 + 360[/tex]
[tex]180x = 684[/tex] --- This procedure is valid
D. Multiply the first equation by − 6; multiply the second equation by 4; add the two equations.
First Equation
[tex]-6 * (4x+5y=18)[/tex]
[tex]-24x - 30y = -108[/tex]
Second Equation
[tex]4 * (6x - 5y=20)[/tex]
[tex]24x - 20y = 80[/tex]
Add Resulting Equations
[tex](-24x - 30y = -108) + (24x - 20y = 80)[/tex]
[tex]-24x + 24x - 30y -20y = -108+ 80[/tex]
[tex]-50y = -28[/tex]
[tex]50y = 28[/tex] --- This procedure is valid
E. Multiply the first equation by 3; multiply the second equation by − 2; add the two equations.
First Equation
[tex]3 * (4x+5y=18)[/tex]
[tex]12x + 15y = 54[/tex]
Second Equation
[tex]-2 * (6x - 5y=20)[/tex]
[tex]-12x + 10y = -40[/tex]
Add Resulting Equations
[tex](12x + 15y = 54) + (-12x + 10y = -40)[/tex]
[tex]12x - 12x + 15y - 10y =54 - 40[/tex]
[tex]5y = 14[/tex] --- This procedure is valid
F. Multiply the first equation by 3; multiply the second equation by 2; subtract the equations in any order
First Equation
[tex]3 * (4x+5y=18)[/tex]
[tex]12x + 15y = 54[/tex]
Second Equation
[tex]2 * (6x - 5y=20)[/tex]
[tex]12x - 10y = 40[/tex]
Subtract equation 1 from 2 or 2 from 1 will eliminate x;
Hence, the procedure is also valid;
Jamar rolls a 6-sided number cube with the numbers 1 through 6 on it. What is the
probability that he does not roll a prime number?
Answer:
[tex]\frac{1}{2}[/tex]
Step-by-step explanation:
In a 6 sided die, the numbers that are possible to be rolled are
1, 2, 3, 4, 5, and 6.
We know that the numbers 2, 3, and 5 are prime, while 1, 4, and 6 are not.
3 out of the 6 numbers are prime, therefore 3 out of the 6 numbers are not prime.
So the fraction is [tex]\frac{3}{6}[/tex]
This simplifies to [tex]\frac{1}{2}[/tex].
Hope this helped!
Answer:
1/2
Step-by-step explanation:
the prime numbers between 1 and 6 inclusive are: 2, 3, 5 (i.e 3 possible outcomes)
the non prime numbers are : 1, 4 and 6 (i.e 3 possible outcomes)
for each roll, the total number of possible outcomes is 6 (because its a 6-sided die)
P(does not roll a prime number) = P (rolls 1, 4 or 6)
= number of possible non-prime outcomes / total number of outcomes
= 3/6
= 1/2
n a survey of a group of men, the heights in the 20-29 age group were normally distributed, with a mean of inches and a standard deviation of inches. A study participant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than inches. The probability that the study participant selected at random is less than inches tall is nothing. (Round to four decimal places as needed.) (b) Find the probability that a study participant has a height that is between and inches. The probability that the study participant selected at random is between and inches tall is nothing. (Round to four decimal places as needed.) (c) Find the probability that a study participant has a height that is more than inches. The probability that the study participant selected at random is more than inches tall is nothing. (Round to four decimal places as needed.) (d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.
Answer:
(a) The probability that a study participant has a height that is less than 67 inches is 0.4013.
(b) The probability that a study participant has a height that is between 67 and 71 inches is 0.5586.
(c) The probability that a study participant has a height that is more than 71 inches is 0.0401.
(d) The event in part (c) is an unusual event.
Step-by-step explanation:
The complete question is: In a survey of a group of men, the heights in the 20-29 age group were normally distributed, with a mean of 67.5 inches and a standard deviation of 2.0 inches. A study participant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than 67 inches. The probability that the study participant selected at random is less than inches tall is nothing. (Round to four decimal places as needed.) (b) Find the probability that a study participant has a height that is between 67 and 71 inches. The probability that the study participant selected at random is between and inches tall is nothing. (Round to four decimal places as needed.) (c) Find the probability that a study participant has a height that is more than 71 inches. The probability that the study participant selected at random is more than inches tall is nothing. (Round to four decimal places as needed.) (d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.
We are given that the heights in the 20-29 age group were normally distributed, with a mean of 67.5 inches and a standard deviation of 2.0 inches.
Let X = the heights of men in the 20-29 age group
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean height = 67.5 inches
[tex]\sigma[/tex] = standard deviation = 2 inches
So, X ~ Normal([tex]\mu=67.5, \sigma^{2}=2^{2}[/tex])
(a) The probability that a study participant has a height that is less than 67 inches is given by = P(X < 67 inches)
P(X < 67 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{67-67.5}{2}[/tex] ) = P(Z < -0.25) = 1 - P(Z [tex]\leq[/tex] 0.25)
= 1 - 0.5987 = 0.4013
The above probability is calculated by looking at the value of x = 0.25 in the z table which has an area of 0.5987.
(b) The probability that a study participant has a height that is between 67 and 71 inches is given by = P(67 inches < X < 71 inches)
P(67 inches < X < 71 inches) = P(X < 71 inches) - P(X [tex]\leq[/tex] 67 inches)
P(X < 71 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{71-67.5}{2}[/tex] ) = P(Z < 1.75) = 0.9599
P(X [tex]\leq[/tex] 67 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{67-67.5}{2}[/tex] ) = P(Z [tex]\leq[/tex] -0.25) = 1 - P(Z < 0.25)
= 1 - 0.5987 = 0.4013
The above probability is calculated by looking at the value of x = 1.75 and x = 0.25 in the z table which has an area of 0.9599 and 0.5987 respectively.
Therefore, P(67 inches < X < 71 inches) = 0.9599 - 0.4013 = 0.5586.
(c) The probability that a study participant has a height that is more than 71 inches is given by = P(X > 71 inches)
P(X > 71 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{71-67.5}{2}[/tex] ) = P(Z > 1.75) = 1 - P(Z [tex]\leq[/tex] 1.75)
= 1 - 0.9599 = 0.0401
The above probability is calculated by looking at the value of x = 1.75 in the z table which has an area of 0.9599.
(d) The event in part (c) is an unusual event because the probability that a study participant has a height that is more than 71 inches is less than 0.05.
True or False. The statistician should use Printout C to perform a t-test on the GROUP variable in the regression model. g
Answer:
False
Step-by-step explanation:
Regression model is a set of statistical process which estimates the relationship between two variables. The one variable is dependent variable and the other is independent variable. The statistician should not use printout C to perform a t-test in regression model.
Please help. I’ll mark you as brainliest if correct
Answer:
(a)
dependent
(b)
x = -3t - 12
y = -5t - 16
z = t
Step-by-step explanation:
2x - 3y - 9z = 24 Eq. 1
x + 3z = -12 Eq. 2
-3x + y - 4z = 20 Eq. 3
2x - 3y - 9z = 24
(+) -9x + 3y - 12x = 60 3 * Eq. 3
--------------------------------
-7x -21z = 84 Eq. 4
7x + 21z = -84 7 * Eq. 2
(+) -7x - 21z = 84 Eq. 4
-----------------------------
0 = 0
(a) The system is dependent.
(b)
z = t
x + 3z = -12 Eq. 2
x + 3t = -12
x = -3t - 12
2x - 3y - 9z = 24 Eq. 1
2(-3t - 12) - 3y - 9t = 24
-6t - 24 - 3y - 9t = 24
-3y - 15t = 48
-y - 5t = 16
-y = 5t + 16
y = -5t - 16
x = -3t - 12
y = -5t - 16
z = t
It has been found that 26% of men 20 years and older suffer from hypertension (high blood pressure) and 31.5% of women are hypertensive. A random sample 150 of each gender was selected from recent hospital records, and the following results were obtained. Construct 95% confidence interval for the difference of the two proportion. Round your answer to nearest ten-thousandth. Interpret the result.
Complete Question
It has been found that 26% of men 20 years and older suffer from hypertension (high blood pressure) and 31.5% of women are hypertensive. A random sample 150 of each gender was selected from recent hospital records, and the following results were obtained.
Men. 43 patients had high blood pressure
Woman. 52 patients had high blood pressure.
Answer:
The 95% confidence interval is
[tex]- 0.1651 < p_m - p_f <0.0451[/tex]
This mean that there is a 95 % confidence that the difference between the true proportions of male and female that are hypertensive is within this interval and given that the interval contains zero then there is no statistically significant difference between the genders that are hypertensive
Step-by-step explanation:
From the question we are told that
The sample size for male is [tex]n_1 = 150[/tex]
The number of male that are hypertensive is [tex]m = 42[/tex]
The sample size of female is [tex]n_2 = 150[/tex]
The number of female that are hypertensive is [tex]q = 52[/tex]
The proportion of male that are hypertensive is mathematically represented as
[tex]\r p_m = \frac{43}{150}[/tex]
[tex]\r p_m = 0.287[/tex]
The proportion of female that are hypertensive is mathematically represented as
[tex]p_f = \frac{52}{150}[/tex]
[tex]p_f = 0.347[/tex]
From the question we are told that confidence level is 95%, hence the level of significance is mathematically represented as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha =5\%[/tex]
[tex]\alpha =0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{\frac{ \r p_m (1- \r p_m )}{n_1} + \frac{ \r p_f (1- \r p_f )}{n_2} }[/tex]
substituting value
[tex]E = 1.96 * \sqrt{\frac{ 0.287 (1- 0.287 )}{150} + \frac{ 0.347 (1- 0.347 )}{150} }[/tex]
[tex]E = 0.1051[/tex]
The 95% confidence interval is mathematically represented as
[tex](\r p_m - \r p_f ) - E < p_m - p_f < (\r p_m - \r p_f ) + E[/tex]
substituting values
[tex]( 0.287 - 0.347 ) - 0.1051 < p_m - p_f <( 0.287 - 0.347 ) + 0.1051[/tex]
[tex]- 0.1651 < p_m - p_f <0.0451[/tex]
This mean that there is a 95 % confidence that the difference between the true proportion is within this interval and given that the interval contains zero then there is no statistically significant difference between the genders that are hypertensive.
Find the value of the variable x in the equation x - 21 = 8.
A) -13
B) 29
C) -29
D) 13
Answer: x=29
Step-by-step explanation:
[tex]x-21=8[/tex]
add 21 to both sides
[tex]x-21+21=8+21[/tex]
[tex]21+8=29\\[/tex]
[tex]x=29[/tex]
A lottery exists where balls numbered 1 to "20" are placed in an urn. To win, you must match the balls chosen in the correct order. How many possible outcomes are there for this game?
Answer: 1860480
Step-by-step explanation:
Initially, there are 20 balls where 5 must be chosen in order.
The number of possible outcomes may be calculated using the concept of permutations.
The formula for permutations is:
nPr =n!/(n−r)!
where n represents the number of items and r represents the number of items to be selected.
The number of ways of selecting 5 balls in order out of 20 is:
20P5 = 20!/15!
= 1860480
To conclude, there are 1860480 possible outcomes.
Two hot air balloons are flying above a park. One balloon started at a height of 3,000 feet above the ground and is decreasing in height at a rate
of 40 feet per minute. The second balloon is rising at a rate of 50 feet per minute after beginning from a height of 1.200 feet above the ground.
Given that his the height of the balloons after m minutes, determine which system of equations represents this situation.
Answer:
a
Step-by-step explanation:
its a
The answer is m = 3000 - 40h
m = 1200 + 50h.
The answer is option A.
What is a problem in problem-solving?
Problem-solving is the act of defining a problem; figuring out the reason for the hassle; identifying, prioritizing, and selecting options for an answer; and enforcing an answer.
What is an example of problem-solving?Problem-solving begins with identifying the issue. For example, a teacher would possibly need to parent out a way to enhance scholar performance on writing scalability take a look at it. To do this, the trainer will assess the writing tests seeking out regions for improvement.
Learn more about Problem-solving here: https://brainly.com/question/13818690
#SPJ2
Pentagon ABCDE and pentagon A”B”C”D”E” are shown on the coordinate plane below. Which two transformations are applied to pentagon ABCDE to create A”B”C”D”E”?
Answer:
Translated according to the rule (x, y)⇒ (x+7, y+1) , reflected across the x-axis
Step-by-step explanation:
Transformation involves changing the orientation, or even size of a given figure or object to produce its image. The methods of transformation include; translation, rotation, reflection, and dilation.
Comparing the pentagon ABCDE and A”B”C”D”E”, the two transformations applied are reflection across the x-axis first, then translation.
Use the number line below, where RS = 6y + 2, ST = 3y + 7, and RT = 14y - 11.
a. What is the value of y?
b. Find RS, ST, and RT.
Answer:
a) y = 4
b) RS = 26, ST = 19, RT = 45
Step-by-step explanation:
From the line given, the following vector equation is true, RS + ST = RT since R, S and T lies in the same straight line.
Given RS = 6y + 2, ST = 3y + 7, and RT = 14y - 11
On substituting this values into the equation above we will have;
6y+2+(3y+7) = 14y-11
6y+2+3y+7 = 14y-11
Collect the like terms
6y+3y-14y = -11-7-2
9y-14y = -20
-5y = -20
y = 20/5
y = 4
Since RS = 6y + 2
RS = 6(4)+2
RS = 24+2
RS = 26
ST = 3y + 7
ST = 3(4)+7
ST = 12+7
ST = 19
Also, RT = 14y - 11
RT = 14(4)-11
RT = 56-11
RT = 45
WILLL GIVE ALL MY POINT PLUS MARK BRAILIEST PLS HELP ASAP TY <3
Answer:
The unknown integer that solves the equation is 6.
Step-by-step explanation:
In order to find the missing number, we can set up an equation as if we are solving for x.
x + (-8) = -2
Add 8 on both sides of the equation.
x = 6
So, the unknown integer is 6.
Answer:
6
Step-by-step explanation:
6 plus -8 is -2
Write an equation perpendicular to the line y=3/2x-2 that goes through (-4,3)
Answer: y=-2/3x-2/3
Step-by-step explanation:
concept to know: two lines that are perpendicular has opposite reciprocal slopes.
y=-2/3x+b
in order to find b or the y-intercept, we need to plug in a point
3=-2/3(-4)+b
3=8/3+b
b=-2/3
y=-2/3x-2/3
Hope this helps!! :)
Determine the present value P that must be invested to have the future value A at simple interest rate r after time t.
A = $8000.00, r = 10.5%, t = 9 months
$
(Round up to the nearest cent as needed.)
Answer:
$7,415.99
Step-by-step explanation:
Hello, please consider the following.
[tex]P\cdot (1+\dfrac{10.5\%\cdot 9}{12})=A = 8000 \\\\P = \dfrac{8000}{(1+\dfrac{31.5}{400})}=\dfrac{8000}{1.07875}\\\\=7415.990730...[/tex]
So it gives $7,415.99
Thank you.
What is the error in this problem?
Answer:
wrong position of tan 64
if 2x-y=2, what is the value of 9^x/3^y?
1) 3
2) 9
3) 27
4) 81
Work Shown:
(9^x)/(3^y)
( (3^2)^x )/(3^y)
( 3^(2x) )/( 3^y )
3^(2x-y)
3^2 .... use the equation 2x-y = 2
9
Help Me With This
show work
Answer:
1. Make a list of activities and the number of students:
Watching TV: 32
Talking on the phone: 41
Video games: 24
Reading: 15
2. Then combine the data in a bar graph as shown in the picture
For the given data value, find the standard score and the percentile. A data value 0.6 standard deviations above the mean.
Answer:
The z-score is [tex]z = 0.6[/tex]
The percentile is [tex]p(Z < 0.6) = 72.57\%[/tex]
Step-by-step explanation:
From the question we are told that
The data value is 0.6 standard deviations above the mean i.e [tex]x = \mu + 0.6 \sigma[/tex]
Where [tex]\mu[/tex] is the population mean and [tex]\sigma[/tex] is the standard deviation
Generally the z-score is mathematically represented as
[tex]z = \frac{x - \mu }{\sigma }[/tex]
=> [tex]z = \frac{(\mu + 0.6\sigma ) - \mu }{\sigma }[/tex]
=> [tex]z = 0.6[/tex]
The percentile is obtained from the z-table and the value is
[tex]p(Z < 0.6) = 0.7257[/tex]
=> [tex]p(Z < 0.6) = 72.57\%[/tex]
If you are offered one slice from a round pizza (in other words, a sector of a circle) and the slice must have a perimeter of 28 inches, what diameter pizza will reward you with the largest slice
Answer:
The diameter that will reward with the largest pizza is 14 in
Step-by-step explanation:
The perimeter of a sector of a circle is:
P = 2r + l
l = rθ
P = 2r + rθ
P=28 inches
28=2r + rθ
28-2r=rθ
θ=(28-2r/r)
=(2*14 - 2*r)/r
=2(14-r)/r
Area of the sector of the circle is:
A = r²/2 * θ
A = r²/2 * 2(14 - r)/r
A = r² * (14 - r)/r
A = r(14 - r)
A = 14r - r²
For the maximum area:
A = 14r - r²
A' = 14 - 2r
Set A' = 0
14 - 2r = 0
14= 2r
r = 7 in
The diameter (D) of the circle is twice of the radius:
D = 2r = 2 * 7= 14 in
The maximum area is:
A = 14r - r²
r = 7 in
A = 14 * 7 - 7²
A = 98 - 49
A = 49 in²
Find a8 of the sequence 10,9.75,9.5,9.25,….
Answer:
10,9.75,9.5,9.25,9, 8.75 , 8.5, 8.25, 8...
Step-by-step explanation:
Subtract 0.25 from each to find the next number
Answer:
8.25
Step-by-step explanation:
If you substract .25 from each number until you get to a8 you will get 8.25