9514 1404 393
Answer:
A. yes
Step-by-step explanation:
The diagonals of a rectangle are congruent and bisect each other.
The diagonals of a parallelogram bisect each other. If they are also congruent, then the parallelogram is a rectangle.
Answer:
Yes.
Step-by-step explanation:
Press option yes
Determine which type of error is most likely to arise from the following situations. a 1. the time in which individuals are contacted to take a survey occurs during work hours f 2. the last part of a newspaper article asks readers to mail or email the newspaper their opinion about universal health coverage 3. subjects are asked to recall how often they snacked between meals in the past 30 days 4. a survey to assess teachers' opinions about Common Core uses a member list for the largest teachers' union as the sampling frame a. question wording b. undercoverage c. processing error d. bad sampling method e. response error f. nonresponse g. random sampling error
Answer:
Determination of type of error arising from the situations
Situation Type of Error
1. Nonresponse
2. Bad sampling method
3. Question wording
4. Undercoverage
Step-by-step explanation:
Types of errors:
a. question wording means that the manner a question is worded elicits some particular responses, which may not accurately reflect reality.
b. undercoverage occurs when some elements of the target population is not represented on the survey frame.
c. processing error arises from data processing
d. bad sampling method is caused by the voluntariness of those who choose to respond.
e. response error is caused by a questionnaire that requires framing improvements, misinterpretation of questions by interviewers or respondents, and errors in respondents' statements.
f. nonresponse error arises as a result of incomplete information or partial response.
g. random sampling error arises from the limited sample size when compared with the population size.
verify cos(a+b)/cos(a) cos(b) =1-tan(a) tan(b)
The identity as been verified/proved as:
[tex]1 - \tan\ a\ tan\ b = 1 - \tan\ a\ tan\ b[/tex]
Given that:
[tex]\frac{\cos(a + b)}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]
Apply cosine identity to the numerator
[tex]\frac{\cos\ a\ cos\ b - \sin a\ sin\ b}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]
Split the fraction:
[tex]\frac{\cos\ a\ cos\ b}{\cos\ a\cos b} - \frac{\sin a\ sin\ b}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]
Cancel out common terms
[tex]1 - \frac{\sin a\ sin\ b}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]
In trigonometry, we have:
[tex]\frac{\sin \theta}{\cos \theta} = \tan \theta[/tex]
So, the equation becomes:
[tex]1 - \tan\ a\ tan\ b = 1 - \tan\ a\ tan\ b[/tex]
Hence, the identity has been verified
Read more about trigonometry identities at:
https://brainly.com/question/21055284
The perimeter of a rectangular garden is 120 feet The garden is two times as long as it’s why the system of equation can be used to find the width in the length what is the length
Answer:
Step-by-step explanation:
Garden is two times as long as it is wide.
L = 2W
Perimeter is 120 feet
2L + 2W = 120
L +W = 60
(2W) + W = 60
3W = 60
W = 20 feet
L = 2W = 40 feet
what is the sign of x/y times 7y^3 when x<0 and y>0? A. Positive B. Negative C. Zero
X <0 means x would be negative.
For x/y, a negative divided by a positive would give a negative answer.
A negative multiplied by a positive would result in a negative.
The answer would be B. Negative
Challenge for you:
You deposit $400 each month into an account earning 5% annual interest compounded monthly.
a) How much will you have in the account in 20 years?
b) How much total money will you put into the account?
c) How much total interest will you earn?
9514 1404 393
Answer:
a) $164,413.47
b) $96,000
c) $68,413.47
Step-by-step explanation:
a) The account value is given by the annuity formula:
A = P(12/r)((1 +r/12)^(12·t) -1)
where monthly payment P earns interest at annual rate r compounded monthly for t years.
A = $400(12/0.05)((1 +0.05/12)^(12·20) -1) = $400(240)(1.712640285)
A ≈ $164,412.47
You will have $164,413.47 in the account after 20 years.
__
b) You put $400 in the account each month for 240 months, for a total of ...
$400 × 240 = $96,000 . . . . total of your deposits
__
c) The account balance in excess of your deposits is the amount of interest you earned:
$164,413.47 -96,000 = $68,413.47 . . . . interest earned
The price of a car has been reduced from $16,500 to $11,055. What is the percentage decrease of the price of the car?
Answer:
33%
Step-by-step explanation:
$16,500-$11,055= $5,445
$5,445÷$16,500= 0.33 which in percentage format is 33%
HOPE THIS HELPS! MARK BRAINLIEST PLEASE!!!!!
If a runner jogs 3 miles west and then jogs 8 miles
north, how far is the runner from her starting point
if she plans to run straight back? Remember to
simplify your answer.
If they run 3 miles west then 8 miles north, it forms a right triangle. So just use the Pythagorean Theorum.
A^2+B^=C^2
3^2+8^3=C^2
9+64=C^2
Square root 73=C or 8.54=C (Miles)
The runner is 8.54 miles from her starting point if she plans to run straight back.
From the question, a runner jogs 3 miles west and then jogs 8 miles north.
An illustrative diagram for the journey is shown in the attachment below.
In the diagram, S is the starting point. That is, the runner jogs 3 miles west to a place R and then 8 miles north to a place E.
The cardinal points (North, East, West and South) are indicated beside the diagram.
Now, to calculate how far she is from her starting point if she plans to run straight back, we will determine the length of /ES/ in the diagram.
The diagram is a right-angled triangle and /ES/ can be determined using the Pythagorean theorem.
The Pythagorean theorem states that, in a right-angled triangle, the square of the longest side ( that is hypotenuse) equals sum of the squares of the other two sides.
In the diagram, hypotenuse = /ES/
∴ /ES/² = /SR/² + /RE/²
/SR/ = 3 miles
/RE/ =8 miles
/ES/² = 3² + 8²
/ES/² = 9 + 64
/ES/² = 73
/ES/ = [tex]\sqrt{73}[/tex]
/ES/ = 8.54 miles
Hence, the runner is 8.54 miles from her starting point if she plans to run straight back.
Learn more here: https://brainly.com/question/20327506
Shaswant lent a sum of 44,000 to his friend Rahul at 10 percent p a. After 2 years and 6months his friend paid him To 40,000 with a cow. What was the price of cow.?
Answer:
4000 because a cow is 4000 and he gave 40000
cause he used it for sinething
2. The volume of a cube is 8 cm", find the length of one of its sides
Answer:
Step-by-step explanation:
The question has an error. Volume is expressed in cubic units. You probably mean cm³ .
Volume = 8 cm³
Length of each edge = ∛8 = 2 cm
Answer:
2cm
Step-by-step explanation:
Volume of cube=a^3 cubic units
8=a^3
a=cuberoot of 8
which is 2
You have 2 5 sided dice, what's the probability the addition of rolling both
Answer:
7
Step-by-step explanation:
The measure of one of the small angles of a right triangle is 45 less than twice the measure of the other small angle. Find the measure of both angles.
Answer:
Step-by-step explanation:
A right triangle has one right angle and two acute angles.
A and B are the acute angles.
A+B = 90°
One acute angle is 45 less than twice the other acute angle.
A = 2B-45°
(2B-45°) + B = 90°
3B = 135°
B = 45°
A = 45°
What are the solutions of the equation (x + 2)2 + 12(x + 2) – 14 = 0? Use u substitution and the quadratic formula to
solve.
..... Here
This is the answer
A coffee pot holds 3 3/4 quarts of coffee. How much is this in cups.
Answer: 15 cups
Step-by-step explanation:
please find the answer
Answer:
I hope this is correct but 8.5 or 8 1/2 Units
Answer:
i think it is 8 1/2.
Step-by-step explanation:
my reasoning is that because v=lwh. the length is 4 and hw is 2 1/8. so i multiplied those together.
Which table represents a linear function
Answer:
3rd option (top right)
Step-by-step explanation:
3rd option represents a linear equation
y = -2x-1
Answered by GAUTHMATH
In a food preference experiment, 80 lizards were given the opportunity to choose to eat one of three different species of insects. The results showed that 33 of the lizards chose species A, 12 chose species B, and 35 chose species C. They conducted a Chi-squared analysis to test for equal preference. What are the Null and Alternate hypothesis for this test
Answer:
H0 : The variables are independent
H1 : The variables are not independent
Step-by-step explanation:
In a Chisquare test ; The null hypothesis is used to lay claim that the variables are independent, that is no relationship exists between the categorical variables in the population while the alternative hypothesis negates the null thus claiming that the variables aren't independent.
The null hypothesis, H0 : The variables are independent, A = B = C
The alternative hypothesis ; H1 : The variables are not independent, A ≠ B ≠ C
A hexagonal pyramid is located ontop of a hexagonal prism. How many faces are there?
A. 15
B. 24
C. 6
D. 13
Answer:
15
Step-by-step explanation:
The figure has total 15 faces, the correct option is A.
What is a Hexagon?A hexagon is a polygon with six sides.
A hexagonal pyramid has 8 faces
From (2 hexagonal base + 6 lateral surfaces)
A hexagonal prism has 7 faces
From ( A hexagonal base + 6 lateral faces)
Total faces the figure has is 8 +7 = 15
To know more about Hexagon
https://brainly.com/question/3295271
#SPJ5
What is 50g as a percentage of one kg?
Answer:
5 %
Step-by-step explanation:
1000 g = 1 kg
50 kg = 0.05 kg
0.05 = 5%
Therefore, 50 g as a percentage of 1kg is 5%.
Reduce 20/60 to its lowest common denominator
Answer:
it is 1/4
Step-by-step explanation:
20/60=10/30=1/3
Answer:
20/60=1/3
Step-by-step explanation:
20/60
HCF=20,
20*1=20, 20*3=60
1/3
or,
Remove the zeros,
2/6
Divide by 2 on both,
1/3
or divide by any common factor on both and keep dividing until u cant no more
20/60=1/3
In an annual report to investors, an investment firm claims that the share price of one of their bond funds had very little variability. The report shows the average price as $15.00 with a variance of 0.19. One of the investors wants to investigate this claim. He takes a random sample of the share prices for 22 days throughout the last year and finds that the standard deviation of the share price is 0.2517. Can the investor conclude that the variance of the share price of the bond fund is different than claimed at α = 0.05. Assume the population is normally distributed.
Required:
State the null and alternative hypotheses. Round to four decimal places when necessary
In this question, the variance of the population is tested. From the data given in the exercise, we build the hypothesis, then we find the value of test statistic and it's respective p-value, to conclude the test. From this, it is found that the conclusion is:
The p-value of the test is 0.0038 < 0.05, which means that the investor can conclude that the variance of the share price of the bond fund is different than claimed at α = 0.05.
----------------
Claimed variance of 0.19:
This means that at the null hypothesis, it is tested if the variance is of 0.19, that is:
[tex]H_0: \sigma^2 = 0.19[/tex]
----------------
Test if the variance of the share price of the bond fund is different than claimed at α = 0.05.
At the alternative hypothesis, it is tested if the variance is different of the claimed value of 0.19, that is:
[tex]H_1: \sigma^2 \neq 0.19[/tex]
The test statistic for the population standard deviation/variance is:[tex]\chi^2 = \frac{n-1}{\sigma_0^2}s^2[/tex]
In which n is the sample size, is the value tested for the variance and s is the sample standard deviation.
----------------
0.19 is tested at the null hypothesis, as the variance:
This means that [tex]\sigma_0^2 = 0.19[/tex]
----------------
He takes a random sample of the share prices for 22 days throughout the last year and finds that the standard deviation of the share price is 0.2517.
This means that [tex]n = 22, s^2 = (0.2517)^2 = 0.0634[/tex]
----------------
Value of the test statistic:
[tex]\chi^2 = \frac{n-1}{\sigma_0^2}s^2[/tex]
[tex]\chi^2 = \frac{21*0.0634}{0.19}[/tex]
[tex]\chi^2 = 7[/tex]
----------------
P-value of the test and decision:
The p-value of the test is found using a chi-square for the variance calculator, considering a test statistic of [tex]\chi^2 = 7[/tex] and 22 - 1 = 21 degrees of freedom, and a two-tailed test(test if the mean is different of a value).
Using the calculator, the p-value of the test is 0.0038.
The p-value of the test is 0.0038 < 0.05, which means that the investor can conclude that the variance of the share price of the bond fund is different than claimed at α = 0.05.
For more on hypothesis tests using variances/standard deviation, you can check https://brainly.com/question/13993951
5/\sqrt{x} +1+4/\sqrt{x} -1-8\sqrt{x}/x-1
Answer:
535525-62635-$6#62626636$66$6$63663636$6$62
brainly is dustbin
The produce of three and the sum of a number and eight
Answer:
3(x + 8)
Step-by-step explanation:
"The product of three and the sum of a number and eight".
First, note that:
1) Product means multiply.
2) Sum means addition.
With that in mind, also note the order of operations. The order of operations is defined as PEMDAS, or:
Parenthesis
Exponents (& Roots)
Multiplication
Division
Addition
Subtraction
Also, let "a number" be denoted as the variable, x.
~
Firstly, "the sum of a number and eight": x + 8
Next, "The product of...": 3 *
Putting the two parts together will generate: 3(x + 8)
3(x + 8) is your answer.
~
[tex]\lim_{x\to \ 0} \frac{\sqrt{cos2x}-\sqrt[3]{cos3x} }{sinx^{2} }[/tex]
Answer:
[tex]\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
L'Hopital's Rule
Differentiation
DerivativesDerivative NotationBasic Power Rule:
f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
We are given the limit:
[tex]\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}[/tex]
When we directly plug in x = 0, we see that we would have an indeterminate form:
[tex]\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}[/tex]
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
[tex]\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}[/tex]
Plugging in x = 0 again, we would get:
[tex]\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}[/tex]
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
[tex]\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}[/tex]
Substitute in x = 0 once more:
[tex]\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}[/tex]
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Solve x/4 > 2 Question 10 options: x ≥ 8 x < –8 x > 8 x ≤ –8
Answer:
x > 8
Step-by-step explanation:
You can start y multiplying both sides by 4 to cancel out the division by 4:
x/4 > 2
*4 *4
x > 8
Answer:
x > 8
Step-by-step explanation:
x/4 > 2
=> x > 2 × 4
=> x > 8
The place value of 7 in 87534 is____________
Find the length of AB
Answer:
C. 44.98
Step-by-step explanation:
Hi there!
We are given the right triangle ABC, m<B=12°, and CB =44
We want to find the length of AB
We can use trigonometry to do it
Let's find the ratio in reference to angle B, as that angle is given.
In reference to angle B the opposite angle is AC, the adjacent side is CB, and the hypotenuse is AB
Now let's recall the 3 most commonly used functions:
[tex]sine=\frac{opposite}{hypoptenuse}[/tex]
[tex]cosine=\frac{adjacent}{hypotenuse}[/tex]
[tex]tangent=\frac{opposite}{adjacent}[/tex]
Let's find the cosine of angle B, as it uses CB and AB, which are the given side and the side we need to find
In that case,
cos(12)=[tex]\frac{CB}{AB}[/tex]
cos(12)=[tex]\frac{44}{AB}[/tex]
Multiply both sides by AB
[tex]AB[/tex]*cos(12)=44
Divide both sides by cos(12)
AB=[tex]\frac{44}{cos(12)}[/tex]
Now plug [tex]\frac{44}{cos(12)}[/tex] into your calculator. Make sure your calculator is on degree mode
AB≈44.98
So the answer is C
Hope this helps!
What is the difference between the centroid and the center of mass?A: When (), ,, ,x y zc x y zthen the center of mass is the centroid.
The centroid and center of mass need not be the same point. They are the same only when a body's mass is uniformly distributed.
I need help in math please, if you can
Answer:
Step-by-step explanation:
400*e^(.09*3)
$523.97
answer is b
Answer: Option B
$523.97
Explanation:
= 400×e^(0.09×3)
= $523.97
Must click thanks and mark brainliest
I can’t solve plz help me ...
Your answer is in the attachment.
PLEASE HELP!
Determine which of the following points lies on the graph of y=[tex]\sqrt{x} x+4[/tex]
I have been working on this all morning. I have used different calculators and the answers that I am getting do not match any of the choices I am given on my homework. I can choose from (0,4), (5,3), (-3,0), and (12,5).
Answer:
-
Step-by-step explanation:
Forget using calculators.
Test each point by plugging its coordinates into the equation, and checking if the equation holds true.
Don't bother testing (-3,0), because you can't take the square root of -3.