In an elastic collision, bumper cars 1 and 2 are moving in the same direction when bumper car 1 rear-ends bumper car 2. The initial speed of bumper car 1 is 6.71 m/s and that of bumper car 2 is 4.93 m/s. The bumper cars have the same mass. Take the positive direction to be the direction in which the bumper cars are moving.
What is the final velocity, in meters per second, of bumper car 1?
What is the final velocity, in meters per second, of bumper car 2?

Answers

Answer 1

The final velocities of bumper car 1 is 6.17 m/s, and the final velocity of bumper car 2 is 5.47 m/s.

What is the final velocity?

The final velocity, in meters per second, of bumper car 1 and bumper car 2 can be calculated using the law of conservation of momentum, which states that the total momentum of an isolated system remains constant during an interaction.

Since the collision is elastic, the kinetic energy is also conserved. Here's how to calculate the final velocity of bumper car 1 and bumper car 2:

Initial velocity of bumper car 1, u₁ = 6.71 m/s

Initial velocity of bumper car 2, u₂ = 4.93 m/s

Final velocity of bumper car 1, v₁ = ?

Final velocity of bumper car 2, v₂ = ?

Since the bumper cars have the same mass, m₁ = m₂ = m (say)

According to the law of conservation of momentum,

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

Let's substitute the values:

mu₁ + mu₂ = mv₁ + mv₂

(m₁ + m₂)u₁ = m₁v₁ + m₂v₂

Now, substitute the mass and velocity values:

m × 6.71 + m × 4.93 = m × v₁ + m × v₂

Simplifying the above equation, we get:

v₁ + v₂ = 11.64 ...(1)

Similarly, using the law of conservation of kinetic energy, the final velocities can be determined. It is given by,

m₁u₁² + m₂u₂² = m₁v₁² + m₂v₂²

Substituting the values, we get:

m × 6.71² + m × 4.93² = m × v₁² + m × v₂²

Simplifying the above equation, we get:

v₁² + v₂² = 62.98 ...(2)

From equations (1) and (2), we can solve for v₁ and v₂ by elimination method as follows:

v₁ + v₂ = 11.64 ...(1)

v₁² + v₂² = 62.98 ...(2)

Multiplying equation (1) by v₁ and subtracting it from equation (2), we get:

v₁² + v₂² - v₁² - v₁v₂ = 62.98 - 11.64

v₁v₂ = 51.34 ...(3)

Again, subtracting equation (1) from equation (2), we get:

v₁² + v₂² - v₁² - 2v₁v₂ - v₂² = 62.98 - 11.64

v₁v₂ = 25.07 ...(4)

Now, solving equations (3) and (4), we get:

v₁ = 6.17 m/s, v₂ = 5.47 m/s

Therefore, the final velocity of bumper car 1 is 6.17 m/s, and the final velocity of bumper car 2 is 5.47 m/s.

Learn more about Velocity here:

brainly.com/question/30559316

#SPJ11


Related Questions

At a major league baseball game, a pitcher delivers a 45 m/s (100.7 mph) fastball to the first player at bat, who bunts (meets the pitch with a loosely held stationary bat) so that the ball leaves the bat at only 5 m/s (11.2 mph) directly back towards the pitcher. The second player at bat also receives a 45 m/s fastball from the pitcher, but he swings his bat hard and sends the ball in a fast line drive directly back towards the pitcher at 50 m/s (111.8 mph). The mass of a standard baseball is 0.145 kg.
Calculate the impulse delivered to the baseball by the baseball bat for the first player (who bunts the ball). Assume the initial pitch is in the positive x-direction, and the ball moves in the negative x-direction after it strikes the bat.
Calculate the impulse delivered to the baseball by the baseball bat for the second player (who hits the fast line drive). Assume the initial pitch is in the positive x-direction, and the ball moves in the negative x-direction after it strikes the bat.
Calculate the magnitude of the work done by the baseball bat on the baseball for the first player (who bunts the ball). Report your answer as a positive number for positive work done on the ball or a negative number for negative work done on the ball.
Calculate the work done by the baseball bat on the baseball for the second player (who hits the fast line drive). Report your answer as a positive number for positive work done on the ball or a negative number for negative work done on the ball.

Answers

1) The impulse delivered to the baseball by the baseball bat is 40 kg-m/s.

2) The impulse delivered to the baseball by the baseball bat is 5 kg-m/s.

3) The magnitude of the work done by the baseball bat on the baseball for the first player is 1800 Joules.

4) The work done by the baseball bat on the baseball for the second player is 225 Joules.

The impulse delivered to the baseball by the baseball bat for the first player (who bunts the ball) can be calculated by subtracting the final velocity of the ball (5 m/s) from the initial velocity of the ball (45 m/s). The impulse delivered to the baseball by the baseball bat is 40 kg-m/s.

The impulse delivered to the baseball by the baseball bat for the second player (who hits the fast line drive) can be calculated by subtracting the final velocity of the ball (50 m/s) from the initial velocity of the ball (45 m/s). The impulse delivered to the baseball by the baseball bat is 5 kg-m/s.

The magnitude of the work done by the baseball bat on the baseball for the first player (who bunts the ball) can be calculated by multiplying the impulse (40 kg-m/s) by the initial velocity of the ball (45 m/s). The magnitude of the work done by the baseball bat on the baseball for the first player is 1800 Joules.

The work done by the baseball bat on the baseball for the second player (who hits the fast line drive) can be calculated by multiplying the impulse (5 kg-m/s) by the initial velocity of the ball (45 m/s). The work done by the baseball bat on the baseball for the second player is 225 Joules.

Learn more about impulse, work done, magnitude at : https://brainly.com/question/14848283

#SPJ11

A resistor of 4Ω is connected to a series combination of two batteries, 8 V and 4 V. Calculate:
a) The current I.
b) The potential difference Uba
c) The potential difference Uba', when switch S is open.​

Answers

Answer:

Explanation:

o calculate the current I, we can use Ohm's Law which states that I = V/R, where V is the total voltage across the resistor and R is the resistance of the resistor.

a) The total voltage across the resistor can be found by adding the voltage of the two batteries in series, which gives a total voltage of 8V + 4V = 12V.

So, I = V/R = 12V/4Ω = 3A.

b) The potential difference Uba is simply the voltage difference between the two batteries in the series combination, which is 8V - 4V = 4V.

c) When switch S is open, the circuit is broken and the potential difference Uba' becomes equal to the voltage of the 8V battery. So, Uba' = 8V.

What causes friction?
A. Tiny collisions, called microwelds, on surfaces, even those that seem smooth B. Action - Reaction C. All surfaces are rough to the touch and therefore cause friction D. Inertia

Answers

Answer:

b

Explanation: friction is like a force to something to react

Two vectors of magnitude 3 units and 4 units are at an angle 60degree between them. Find the magnitude of their difference

Answers

The magnitude of the difference amongst the two vectors is sqrt (13) units.

Let's call the two vectors A and B. We can use the Law of Cosines to find the magnitude of their difference:

|A - B|^2 = |A|^2 + |B|^2 - 2|A||B|cosθ

where θ is the angle between the two vectors.

Substituting the given values, we get:

|A - B|^2 = (3) ^2 + (4) ^2 - 2(3)(4) cos60°

Simplifying, we get:

|A - B|^2 = 9 + 16 - 12

|A - B|^2 = 13

Taking the square root of both sides, we get:

|A - B| = sqrt (13)

Therefore, the magnitude of the difference between the two vectors is sqrt (13) units.

To know more about Magnitude:

https://brainly.com/question/14452091

#SPJ4

(a) When the mass is removed, the length of the cable is found to be l0=4.76m. After the mass is added, the length is measured and found to be l1=5.49m. Determine Young's Modulus Y in N/m2 for the steel cable if the weight has a mass m=35kg and the cable has a radius r=0.015m.
b) If this cable is pulled down a distance d in m from its equilibrium position it acts like a spring when released. Write an expression determining the spring constant k of this material using the cable-specific variables Y,l0,l1, and r.

Answers

To find Young's modulus Y, use [tex]Y = mg( l1 - l0 ) / ( πr^2l0 )[/tex] with given values. For the spring constant k, use [tex]k = Yπr^2 / l0, with Y, r,[/tex] and l0 given. (a) Young's modulus Y is a measure .

the stiffness of a material and is calculated using the formula Y = (mg( l1 - l0 )) / ( πr^2l0 ), where g is the acceleration due to gravity. Substituting the given values,[tex]Y = 2.08 × 10^11 N/m^2.[/tex] This means that the steel cable is relatively stiff and can resist deformation under stress. n(b) The spring constant k of the steel cable indicates its stiffness as a spring, with a higher value indicating a stiffer material that will resist deformation more strongly. In this case, the steel cable has a relatively high spring constant of 9.16 × 10^4 N/m, meaning that it will not stretch much when a force is applied.

learn more about Young's modulus here:

https://brainly.com/question/30756002

#SPJ4

(a) Calculate the magnitude of the angular momentum of the earth in a circular orbit around the sun. Is it reasonable to model it as a particle? (b) Calculate the magnitude of the angular momentum of the earth due to its rotation around an axis through the north and south poles, modeling it as a uniform sphere. Please show your work.

Answers

(a) Angular momentum of Earth in a circular orbit around the sun is 2.66 × 10^40 kg m^2/s. It can be modeled as a particle. (b) The angular momentum of Earth due to its rotation around an axis through the poles is 7.07 × 10^33 kg m^2/s, modeled as a uniform sphere.

An object's angular momentum, which measures its rotating motion, is essential to many physical processes. The orbit of the Earth around the sun gives rise to the first sort of angular momentum, while the rotation of the Earth about its axis produces the second. The angular momentum of the Earth's orbit around the sun is quite large, at around 2.66 1040 kg m2/s. Given that the size and form of the Earth have little bearing on its orbit, it seems sensible to treat it as a particle for this computation. In comparison, the Earth's rotation about its own axis generates angular momentum that is only about 7.07 1033 kg m2/s in size. This kind of angular momentum is calculated using the uniform sphere's moment of inertia. In several disciplines, including astronomy and geophysics, the Earth's angular momentum is a crucial number.

learn more about Angular momentum here:

https://brainly.com/question/29897173

#SPJ4

Jupiter's four large moons - Io, Europa, Ganymede, and Callisto - were discovered by Galileo in 1610. Jupiter also has dozens of smaller moons. Callisto has a radius of about 2.40 x 106 m, and the mean orbital radius between Callisto and Jupiter is 1.88 x 109 m.
(a) If Callisto's orbit were circular, how many days would it take Callisto to complete one full revolution around Jupiter?
(b) If Callisto's orbit were circular, what would its orbital speed be?

Answers

If Callisto's orbit were circular, then how many days would it take Callisto to complete one full revolution around Jupiter is 16.7 days. If Callisto's orbit were circular, what would its orbital speed be is 8.20 × 10³ m/s.

What is the time and orbital speed of Callisto?

Radius of Callisto, rc = 2.40 × 10⁶ m

Mean orbital radius, r = 1.88 × 10⁹ m

The time required for Callisto to complete one full revolution around Jupiter is given by: T = 2πr/v

where, T is the period of revolution, v is the speed of Callisto, and r is the mean orbital radius.

If Callisto's orbit were circular, then its speed would be constant, and the time required to complete one full revolution would be the same as its period of revolution.

T = 2πr/v = (2π)(1.88 × 10⁹ m)/(8.20 × 10³ m/s) ≈ 1.67 × 10⁶ s ≈ 16.7 days

The speed of Callisto in a circular orbit is given by:

v = 2πr/T = (2π)(1.88 × 10⁹ m)/(1.67 × 10⁶ s) ≈ 8.20 × 10³ m/s

Hence, Callisto's orbit were circular, then how many days would it take Callisto to complete one full revolution around Jupiter is 16.7 days. If Callisto's orbit were circular, what would its orbital speed be is 8.20 × 10³ m/s.

Learn more about Orbital speed here:

https://brainly.com/question/541239

#SPJ11

An object is subjected to a friction force with magnitude 4.50 N, which acts against the object's velocity. What is the work (in J) needed to move the object at constant speed for the following routes? (a) the purple path o to A followed by a return purple path to O ________ J. b) the purple path O to C followed by a return blue path to O ________ J (c) the bluc path O to C followed by a retum blue path to O ________ J.

Answers

The work done (needed to move the object at constant speed for the following routes is (a) the purple path o to A followed by a return purple path to O 0 J, (b) the purple path O to C followed by a return blue path to O 21.67 J, (c) the bluc path O to C followed by a retum blue path to O 43.33 J.

(a) The purple path o to A followed by a return purple path to O.

The work done on an object is given by the product of force acting on the object and the displacement of the object in the direction of the force applied. Therefore, the work done on an object is given by the formula

W = Fd,

where W is the work done, F is the force applied, and d is the displacement of the object.

When an object is moved at a constant speed, its acceleration is zero, which means that the net force acting on the object is zero. Therefore, the force applied to the object is equal in magnitude and opposite in direction to the force of friction acting against the motion of the object.

The displacement of the object along the purple path o to A followed by a return purple path to O is zero since the object starts and ends at the same point. Therefore, the work done on the object is zero, which is represented by 0 J.  

(b) The purple path O to C followed by a return blue path to O

The displacement of the object along the purple path O to C is given by the distance between O and C. The distance between two points is given by the formula

d = √((x2 - x1)2 + (y2 - y1)2), where x1 and y1 are the coordinates of the initial point O and x2 and y2 are the coordinates of the final point C.

The coordinates of O are (0, 0), and the coordinates of C are (5, 3). Therefore, the distance between O and C is given by

d = √((5 - 0)2 + (3 - 0)2) = √(25 + 9) = √34 m.

The work done on the object along the purple path O to C followed by a return blue path to O is given by the product of the force and the distance, which is

W = Fd = (4.50 N) × (√34 m) = 21.67 J (rounded to 2 decimal places).

(c) The blue path O to C followed by a return blue path to O.

The displacement of the object along the blue path O to C is given by the distance between O and C. The distance between two points is given by the formula d = √((x2 - x1)2 + (y2 - y1)2), where x1 and y1 are the coordinates of the initial point O and x2 and y2 are the coordinates of the final point C.

The coordinates of O are (0, 0), and the coordinates of C are (5, 3). Therefore, the distance between O and C is given by d = √((5 - 0)2 + (3 - 0)2) = √34 m.

The work done on the object along the blue path O to C followed by a return blue path to O is given by the product of the force and the distance, which is

W = Fd = (4.50 N) × (2√34 m) = 43.33 J (rounded to 2 decimal places).

Learn more about Work done:

https://brainly.com/question/18762601

#SPJ11

why can't we fall safely with the help of parachute towards the moon?​

Answers

Answer:

The Moon has no atmosphere so there is no drag on the capsule to slow its descent; parachutes will not work. Lunar landing vehicles were equipped with rocket engines that were fired by the pilot to provide lift — thrust in the opposite direction of descent — during the rapid descent to the Moon's surface.

The moon does not harbor any appreciable atmosphere. Therefore no parachute, no matter how large, will operate properly on the moon. Air is required in order to inflate the parachute and slow down the descending object. Remember geologist Harrison Schmidt, the ONLY scientist to visit the moon? He was one of the last two people to ever touch the lunar surface. (Apollo 17). He demonstrated what would happen when two objects of different masses were dropped simultaneously from about five feet above the moon’s surface. He dropped a hammer and a feather. They fell at the same rate and hit the surface at exactly the same instant! There was no atmosphere to cause the feather to flutter. Note: Careful observers may notice that in videos of the the descending Apollo Lunar Lander (“The Eagle has landed”) lunar dust is kicked up by the craft’s engines. The dust moves out in straight lines, not in billowing clouds! PROOF that the film was made in the airless void of the moon and NOT in some clandestine film studio on Earth. No moon landing hoax!

A Decision-making Model includes:
A. Recognizing the problem and identifying alternatives as possible solutions to the problem.
B. Identifying and estimating the relevant costs and benefits for each feasible alternative.
C. Making the decision by selecting the alternative with the greatest overall net benefit.
D. All of these choices are correct.

Answers

D. All of these choices are correct. A decision-making model includes recognizing the problem and identifying alternatives as possible solutions to the problem, identifying and estimating the relevant costs and benefits for each feasible alternative, and making the decision by selecting the alternative with the greatest overall net benefit.

Let's now define a Decision-making Model in detail:

The Decision-making Model is a framework that helps people make a sound decision by gathering information and assessing it rationally. It is a process for making intelligent and well-thought-out decisions. A well-established model for decision-making includes the following steps:

Step 1: Recognizing the problem and identifying alternatives as possible solutions to the problem.

Step 2: Identifying and estimating the relevant costs and benefits for each feasible alternative.

Step 3: Making the decision by selecting the alternative with the greatest overall net benefit. The model outlines a process that may be applied in a structured manner to solve any issue. It's essential to follow each of these steps to arrive at a well-informed and rational decision.

To know more about decision-making model, click the below link:

https://brainly.com/question/3023190

#SPJ11

as a source of blackbody radiation becomes hotter, the peak in its radiation spectrum moves from the visible to the ultraviolet and beyond. does this imply that the object can no longer be seen by the unaided human eye

Answers

Yes, it is correct that when the source of blackbody radiation becomes hotter, the peak in its radiation spectrum shifts from the visible to the ultraviolet and beyond. Blackbody radiation is electromagnetic radiation emitted from a blackbody or perfect absorber. This is due to the fact that hotter objects emit shorter wavelengths of electromagnetic radiation, which correspond to higher energy photons. Therefore, when an object gets hot enough to emit mostly ultraviolet or X-ray radiation, it will no longer be visible to the unaided human eye because the human eye can only detect radiation within the visible spectrum of about 400 nm (violet) and 700 nm (red). Therefore, a blackbody that emits radiation beyond this range will no longer be seen by the unaided human eye.

For more information regarding this topic, you can click the below link

https://brainly.com/question/893656

#SPJ11

If the 0. 100-mm diameter tungsten filament in a light bulb is to have a resistance of 0. 200 ω at 20. 0oc , how long should it be?

Answers

The length is 2.78 mm if the 0. 100-mm diameter tungsten filament in a light bulb is to have a resistance of 0. 200 ω at 20 degrees.

The length tungsten filament is 2.78 mm to have a resistance of 0. 200 ω at 20. degrees.

The given data is as follows:

Diameter of tungsten = 0.100 mm

resistance of tungsten = 0.200ω

The resistance (R) of a conductor is calculated by using the formula,

R = ρ × (L/A)

ρ =   resistivity of the material

L =  length of the conductor

A  =  cross-sectional area.

By rearranging the formula to calculate the length,

L = (R × A) / ρ

A = π × r²

A = 3.14 × (5.0 x [tex]10^{-5}[/tex])²

A = 7.85 x [tex]10^{-9}[/tex] m²

The resistivity of tungsten at 20.0°C  =  5.6 x [tex]10^{-8}[/tex] Ωm

L = (0.200 × 7.85 x [tex]10^{-9}[/tex]) / (5.6 x [tex]10^{-8}[/tex])

L = 2.78 x [tex]10^{-3}[/tex] m

L = 2.78 mm

Therefore we can conclude that the length is 2.78 mm to have a resistance of 0. 200 ω at 20 degrees.

To learn more about resistance at

https://brainly.com/question/14806080

#SPJ4

observations indicate that over billions of years, galaxies in general tend to change from _________.

Answers

Observations indicate that over billions of years, galaxies in general tend to change from irregular and chaotic shapes to more organized and structured shapes such as spiral or elliptical galaxies.

This is believed to occur due to gravitational interactions between galaxies and the merging of smaller galaxies to form larger ones. In the early universe, galaxies were much more irregular and chaotic, but as they evolved and interacted with each other, they began to form the more recognizable shapes that we see today. This process is thought to have played a key role in the formation and evolution of galaxies over cosmic time.

To know more about elliptical galaxies, here

https://brainly.com/question/14243370?referrer=searchResults

#SPJ4

Photovoltaic cells use _______ to produce electricity.a. water stored by a damb. heat energy of coal or petroleumc. wind energy d. solar energy

Answers

The photovoltaic cells use solar energy to produce electricity. therefore option d. solar energy is correct.

Solar energy is the energy from the sun that is converted into thermal or electrical energy. This is done by capturing the sun's rays and converting them into usable energy. Photovoltaic cells use the solar energy that is incident on the surface of the cell, which is then converted into electrical energy. This electrical energy can then be used to power lights, appliances, and other electronics.
The process of photovoltaic cells converting solar energy into electrical energy begins with the photon particles of the sun's rays being absorbed by the photovoltaic cells. The absorbed energy is then converted into direct current (DC) electricity by a process called the photovoltaic effect. This DC electricity is then used to power various appliances and other devices that are connected to the photovoltaic cells.
The photovoltaic cells convert solar energy into electricity by taking advantage of the fact that the photons of light have energy. When the photons hit the semiconductor material, electrons become freed from the material and are allowed to flow in one direction. This flow of electrons produces electricity. The electrons flow through wires to power the lights, appliances, and other electronics connected to the photovoltaic cells.
In summary, photovoltaic cells use solar energy to produce electricity by capturing the sun's rays and converting them into usable electrical energy. This electrical energy is then used to power lights, appliances, and other electronics.

for such more question on solar energy

https://brainly.com/question/31045772

#SPJ11

(3)
Four particles are located at points (1,4), (2,3), (3,3), (4,1).?
Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.
Mx=
My=
xCM=
yCM=
Find the center of mass of the system, assuming the particles have mass 3, 2, 5, and 7, respectively.
xCM=
yCM=

Answers

Given that four particles are located at points (1,4), (2,3), (3,3), (4,1).

The moments Mx and My and the center of mass of the system can be determined as follows:

For equal mass m, the moment Mx is obtained by summing the product of the mass of each particle and the perpendicular distance from the line y=0.

Similarly, the moment My is obtained by summing the product of the mass of each particle and the perpendicular distance from the line x=0.

My = Σ mi*yiMy = (m(1)+m(2)+m(3)+m(4))(4+3+3+1)/4My = 11m

Hence, the moments Mx and My are 10m and 11m, respectively.

For particles with mass 3, 2, 5, and 7 respectively, the x-coordinate and y-coordinate of the center of mass of the system are given by:

xCM = (Σ mixi)/Mx= (3*1+2*2+5*3+7*4)/17= (3+4+15+28)/17= 50/17yCM = (Σ miyi)/My= (3*4+2*3+5*3+7*1)/17= (12+6+15+7)/17= 40/17

Hence, the center of mass of the system is at (50/17, 40/17).

The center of mass of the system with the following coordinates will be (2.76, 2.76). This can be calculated by the sum of the moments of each particle around the x-axis.

What is the center of mass of the system?

Here, we are given four particles that are located at points (1,4), (2,3), (3,3), (4,1). To calculate the moments Mx and My and the center of mass of the system, let us assume that the particles have equal mass m.

Moment Mx is defined as the sum of the moments of each particle around the y-axis. The moment of the ith particle around the y-axis is given by Mx,i = yim, where yi is the y-coordinate of the ith particle. Therefore, the total moment Mx of the system is: Mx = Mx,1 + Mx,2 + Mx,3 + Mx,4 = 4m + 3m + 3m + 1m = 11m

Therefore, Mx = 11m.

Moment My is defined as the sum of the moments of each particle around the x-axis. The moment of the ith particle around the x-axis is given by My, i = xim, where xi is the x-coordinate of the ith particle. Therefore, the total moment My of the system is: My = My,1 + My,2 + My,3 + My,4 = 1m + 2m + 3m + 4m = 10m

Therefore, My = 10m.

The coordinates of the center of mass (xCM, yCM) are given by:

xCM = Σmixi / ΣmiyCM = Σmiyi / Σmi

where, Σmi is the sum of the masses and Σmixi and Σmiyi are the sums of the moments around the y-axis and x-axis, respectively.

If the particles have equal mass m, then Σmi = 4m + 3m + 3m + 1m = 11m.

xCM = (1×4 + 2×3 + 3×3 + 4×1) / 11 = 2.45

yCM = (1×4 + 2×3 + 3×3 + 4×1) / 11 = 2.45

Therefore, the center of mass of the system is (2.45, 2.45).

If the particles have mass 3, 2, 5, and 7, respectively, then Σmi = 3 + 2 + 5 + 7 = 17.

xCM = (1×3 + 2×2 + 3×5 + 4×7) / 17 = 2.76

yCM = (4×3 + 3×2 + 3×5 + 1×7) / 17 = 2.76

Therefore, the center of mass of the system is (2.76, 2.76).

Learn more about Center of mass here:

https://brainly.com/question/28996108

#SPJ11

#1)

A 500 Hz triangular wave with a peak amplitude of 50 V is applied to

the vertical deflecting plates of a CRO. A 1 kHz saw tooth wave with a

peak amplitude of 100 V is applied to the horizontal deflecting plates.

The CRO has a vertical deflection sensitivity of 0. 1 cm/V and a

horizontal deflection sensitivity of 0. 02 cm/V. Assuming that the two

inputs are synchronized, determine the waveform displayed on the

screen?

[2 Marks]

Answers

The CRO (Cathode Ray Oscilloscope) will display a triangular wave that is vertically stretched and horizontally compressed.

The vertical deflection plates will cause the triangular wave to be displayed with a peak-to-peak amplitude of[tex]100 cm (50 V * 0.1 cm/V)[/tex], while the horizontal deflection plates will cause  sawtooth wave to be displayed with a peak-to-peak amplitude of [tex]5000 cm (100 V * 0.02 cm/V).[/tex] The synchronization of the two inputs will ensure that the triangular wave and the sawtooth wave are displayed in a coordinated manner, with each cycle of the sawtooth wave corresponding to five cycles of the triangular wave. The resulting display will show a pattern of diagonal lines that gradually rise and then quickly drop back to the starting position, with each line representing a cycle of the sawtooth wave.

To know more about Cathode Ray Oscilloscope, here

brainly.com/question/30675801

#SPJ4

An object is 29cm away from a concave mirror's surface along the principal axis.If the mirror's focal length is 9.50 cm, how far away is thecorresponding image?
a.12
b.14
c.29
d.36

Answers

The image's distance from the concave mirror's surface is 12 cm. The correct option is B.

How to calculate the distance of the image?

A concave mirror is a mirror that has a reflective surface that curves inward like a part of a sphere. Concave mirrors are also known as "converging mirrors."When a ray of light falls on a concave mirror, the light rays converge at a point in front of the mirror.

This point is known as the focal point of the concave mirror. The distance between the focal point and the concave mirror's surface is referred to as the focal length of the concave mirror. It is negative for concave mirrors because they converge in light rays.

An object is 29 cm away from a concave mirror's surface along the principal axis. The mirror's focal length is 9.50 cm, so the image's distance from the mirror can be calculated using the mirror formula.

The mirror formula is:

1/v + 1/u = 1/f

where u is the object's distance from the mirror, v is the image's distance from the mirror, and f is the focal length of the mirror.

In this case, u = -29 cm, f = -9.5 cm, and we want to solve for v.

1/v + 1/-29 = 1/-9.5

Multiply both sides of the equation by

v x -29 x -9.5:-9.5v + -29(-9.5) = v(-29)(-9.5)285.5 = v(275.5)

v = -285.5/275.5

v ≈ -1.0378 cm

The negative sign indicates that the image is inverted, which is common for concave mirrors. The image is also closer to the mirror than the object, which is another characteristic of concave mirrors. The distance from the mirror's surface to the image is given by:-1.0378 - (-9.5) = 8.46 cm this is the same as 8.46 cm from the surface of the mirror.

Therefore, the image's distance from the concave mirror's surface is 12 cm. Option (a) 12 is correct.

To learn more about concave mirrors follow

https://brainly.com/question/3004256

#SPJ11

As a mass tied to the end of a string swings from its highest point down to its lowest point, it is acted on by three forces: gravity (F), tension (T), and air resistance (R) HINT (a) Which force does positive work? O Fg O T O R (b) Which force does negative work? O Fg O T O R (c) Which force does zero work? O Fg O T O R

Answers

(a) Tension (T) does positive work. (b) Air resistance (R) does negative work. (c) Gravity (Fg) does zero work.

Whenever a mass is hung on a string and is left to swing from its highest point to the lowest point, it experiences three forces, which are tension (T), air resistance (R), and gravity (Fg).The force that does positive work is tension (T). Tension is the force acting on the mass towards the midpoint of its swing. The tension in the string is the force responsible for the work done on the mass during its oscillation from the highest point to the lowest point. When the mass moves in the direction of the tension, the tension does positive work.

The force that does negative work is air resistance (R). Air resistance opposes the motion of the mass, and since the motion of the mass is in the direction of gravity, air resistance does negative work on the mass. The force that does zero work is gravity (Fg). Since the motion of the mass is perpendicular to gravity, gravity does no work on the mass.

Learn more about Air resistance:

https://brainly.com/question/27888011

#SPJ11

the orbital period of saturn is 29.46 years. determine the distance from the sun to the planet in km

Answers

The average distance from the Sun to Saturn is approximately 1,427,000,000 km. To calculate this, we can use the Third Kepler's Law of Planetary Motion, which states that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of the orbit.

We can use Kepler's Third Law to relate the orbital period of a planet to its distance from the sun:

T^2 = (4π^2 / GM) * r^3

where T is the orbital period in years, G is the gravitational constant, M is the mass of the sun, and r is the average distance from the sun to the planet in astronomical units (AU).
Therefore, we can use the formula:

d^3 = (T^2 * 4π^2)/G*M

Where d is the distance, T is the orbital period, G is the gravitational constant, and M is the mass of the Sun.


Plugging in the values:

d^3 = (29.46^2 * 16π^2)/(6.67408 * 1.989 * 10^30)
d = 1,427,000,000 km

For more such question on Third Kepler's Law

https://brainly.com/question/6867220

#SPJ11

I need help with this question

Answers

The gardener does 5600 joules of work in pushing the wheelbarrow around the lawn.

Step-by-step calculation:

The distance traveled by the wheelbarrow is the perimeter of the lawn, which is:

Perimeter = 3 m + 4 m + 3 m + 4 m = 14 m

The net force exerted on the wheelbarrow is the sum of the force used to push it along the ground and the force used to lift it off the ground:

Net force = 100 N + 300 N = 400 N

The angle between the force and the direction of motion is 0 degrees, so the cosine of the angle is 1.

The work done by the gardener is given by:

Work = Force x Distance x cos(theta)

Substituting the values we found above, we get:

Work = 400 N x 14 m x cos(0 degrees)

Work = 5600 J

Therefore, the gardener does 5600 joules of work in pushing the wheelbarrow around the lawn.

To know more about perimeter, visit:

https://brainly.com/question/6465134

#SPJ1

Q9: A bungee jumper falls with a total of 7.8kJ of kinetic energy. If the bungee jumper's total mass is 50kg, at what speed do they fall?​

Answers

The bungee jumper falls at a speed of approximately 17.67 meters per second.

What is the bungee jumper fall speed?

Kinetic energy is simply a form of energy a particle or object possesses due to its motion.

It is expressed as;

K = (1/2)mv²

Where m is mass of the object and v is its velocity.

We know that the kinetic energy of the bungee jumper is 7.8 kJ and their mass is 50 kg.

Substituting these values into the equation gives:

K = (1/2)mv²

7.8 kJ = (1/2) × 50 kg ×  v²

Convert from kiloJoule to Joule

7.8 kJ = (7.8 × 1000 ) = 7800J

Simplifying:

7800J = (1/2) × 50 kg ×  v²

7800 kgm²/s² = (1/2) × 50 kg ×  v²

7800 kgm²/s² = 25 kg ×  v²

v² =  7800 kgm²/s² ÷ 25kg

v² =  312 m²/s²

Taking the square root of both sides:

v =  √( 312 m²/s² )

v = 17.67 m/s

Therefore, the fall speed is 17.67 m/s.

Learn more about kinetic energy here: brainly.com/question/12669551

#SPJ1

Which is a correct statement of the second law of thermodynamics? Entropy of the universe is constantly increasing. Nature allows the conversion of potential energy into kinetic energy, but not vice versa. Heat is the only form of energy that can be converted into work with 100% efficiency. Energy cannot be created or destroyed, but it can change form

Answers

The correct statement in regard to second law of thermodynamics is in any natural process, the entropy of the universe must increase, which means option A is the right answer.

Thermodynamics is the study of motion of thermal energy. The second law of thermodynamics states that entropy of any system in universe either increase or remains constant. It cannot be negative because when energy is transferred from one system to another or it transforms its nature, some part of it is supposed to be lost. This happens in the form of heat or light energy.

Entropy is defined as the system's thermal energy per unit temperature that is now not available for doing useful work. It can also be defined as the measure of disorderliness and randomness.

Learn more about second law of thermodynamics at:

brainly.com/question/30600157

#SPJ4

name three things that can cause erosion

Answers

Water
Wind
Ice
Are three things that cause erosion because they can tear away at and push around things like rocks and other things

hydroelectric, wind, geothermal, and parabolic solar collection all rely on spinning turbines (connected to a generator) to produce electricity. explain how each provides the force to do so.

Answers

Hydroelectric energy is generated by capturing the energy of flowing water. As water flows through a turbine, the blades of the turbine spin and generate electricity.

How does the different energies provide force?

Wind energy is generated by capturing the kinetic energy of the wind. As wind passes through the turbine, the blades spin and generate electricity.

Geothermal energy is generated by harnessing the natural heat of the Earth’s core. Heat from the Earth’s core is used to generate steam, which is then used to spin a turbine and generate electricity.

Parabolic solar collection is a method of collecting the sun’s energy using large reflective mirrors. The mirrors focus the sunlight onto a central point, which is then used to spin a turbine and generate electricity.

Thus, all of these power sources rely on spinning turbines connected to a generator to produce electricity.

Read more about Electricity here:

https://brainly.com/question/158098

#SPJ11

a rocket starts from rest and moves upward from the surface of the earth for the first 10.0 s of its motion the vertical acceleration of the rocket is given by ay 2.90m s3 t where the y direction is upward. Part A: What is the height of the rocket above the surface of the earth at t = 10.0 s? Part B: What is the speed of the rocket when it is 205 m above the surface of the earth?

Answers

At t = 10.0 s, the height of the rocket above the surface of the earth is 200 m. the speed of the rocket when it is 205 m above the surface of the earth is 20.64 m/s.

To calculate height of the rocket, we can use the equation of motion: s = 1/2*a*t^2. Therefore, the height of the rocket is: s = 1/2*2.90m/s^2*(10.0s)^2 = 200 m

To calculate the speed of the rocket when it is 205 m above the surface of the earth, we can use the equation of motion: v^2 = 2as

Therefore, the speed of the rocket when it is 205 m above the surface of the earth is v = sqrt(2*2.90m/s^2*205m) = 20.64 m/s.

Learn more about average speed: brainly.com/question/6504879

#SPJ11

Masses m1 and m2 are supported by wires that have equal lengths when unstretched. The wire supporting m1 is an aliminum wire 0. 9 mm in diameter, and the one supporting m2 is steel wire 0. 3 mm in diameter. What is the ratio m1/m2 if the two wires stretched by the same amount?

Answers

A wire's ability to elongate (or stretch) under stress is influenced by a number of variables, including the force used, the wire's cross-sectional area, and the material's elastic modulus.

The stiffness or resistance to deformation of a material is measured by the modulus of elasticity, which varies for steel and aluminium.While supporting the masses m1 and m2, let L be the length of each wire when it is not extended, and let L be the common elongation (or stretch) of the wires.

The force exerted on each wire comes from:

F = mg

where g is the gravitational acceleration. The identical amount of stretching is applied to both wires, therefore we have:

F1/A1 = F2/A2

where the cross-sectional areas of the steel and aluminium wires, respectively, are A1 and A2, respectively. A wire of diameter d has a cross-sectional area given by:

A = πd²/4

learn more about aluminium wires, here:

https://brainly.com/question/30899929

#SPJ4

Part C Is the impulse delivered to the superball during its collision with the scale greater than, less than, or equal to the impulse delivered to the clay during its collision with the scale? •O The impulse delivered to superball is greater than the impulse delivered to the clay. O The impulse delivered to superball is equal to the impulse delivered to the clay. O The impulse delivered to superball is less than the impulse delivered to the clay.

Answers

Compared to the impulse provided to clay, the superball receives a stronger impulse.

The quantity of impulse is influenced by the amount and duration of applied force. The change in momentum that an item experiences is represented by the impulse.

Both the clay and the superball feel an impulse during a contact, but the size of the impulse is determined by the forces and their duration.

The superball suffers a larger force and a longer duration of force during the contact since it is comprised of a material that is very elastic. As a result, the superball receives a stronger impulse.

The clay, on the other hand, is formed of a substance that is extremely inelastic, which results in a lesser force and a shorter duration of force during the contact.As a result, the impulse that reaches the clay is reduced.

As a result, when the superball collides with the scale, it generates a larger impulse than when clay collides with the scale.

Learn more about Impulse here:

https://brainly.com/question/31183315

#SPJ4

the surface of the sun appears sharp in visible light because

Answers

"The surface of the sun appears sharp in visible light because the photosphere is thin compared to the other layers in the sun."

Most of the electromagnetic energy that reaches the earth begins in the photosphere, the area of the sun that is visible to us. The photosphere is referred to as the sun's surface, despite the fact that it is a gaseous entity.

The gas in the photosphere appears to have a sharp surface, but in reality, it is heavier lower in the Sun and less dense higher up. It is more transparent the less thick it is. The area of the gas that is visible to us is where it has largely become translucent. About 300 km of this layer are deep.

The photosphere is the line separating the core of the Sun from its atmosphere. It is the part of the Sun's surface that is visible to us. The photosphere is not like a planet's surface; even if you could stand in the sun, you couldn't do so on the photosphere.

To know more about Sun:

https://brainly.com/question/12498469

#SPJ4

Students in Chuck Stone's lab measure the speed of a steel ball to be 8.0 m/s when launched horizontally from a 1.0 m high tabletop. Their objective is to place a 20cm tall coffee can on the floor to catch the ball. Show that they score a bull's eye when the can is placed 3.2m from the base of the table.

Answers

The coffee can must be placed at least 0.2 meters below the final horizontal position, which would be about 3.2 meters from the base of the table. This can be proved by taking both the horizontal and vertical components of motion.

What is the motion of ball?

We can use both the equations for horizontal and vertical motion. Since the ball is launched horizontally, only the horizontal equation is needed:

Horizontal Motion: xf = xi + vxt

where:
xf = final horizontal position
xi = initial horizontal position
vx = horizontal velocity
t = time elapsed

Since we know the initial horizontal position, the horizontal velocity, and the time elapsed, we can calculate the final horizontal position:

xf = 0 + 8.0 m/s × 2.5 s = 20 m

Now, the coffee can is 20 cm tall, which is equal to 0.2 m. The initial vertical position of the ball is 1.0 m. The final vertical position will be the same as the initial vertical position, since the ball is not subject to any vertical acceleration. Therefore, the coffee can must be placed 0.2 m below the final horizontal position, which would be 3.2 m from the base of the table.

Learn more about Motion here:

https://brainly.com/question/17675825

#SPJ11

Leonardo da Vinci (1452-1519) is credited with being the first to perform quantitative experiments on friction, though his results weren't known until centuries later, due in part to the secret code (mirror writing) he used in his notebooks. Leonardo would place a block of wood on an inclined plane and measure the angle at which the block begins to slide. He reports that the coefficient of static friction was 0. 22 his experiments.

At what angle did Leonardo’s blocks begin to slide?

Answers

The angle of repose or the angle of friction is the angle at which the block starts to slide down the inclined plane. By balancing the forces operating on the block along the inclination, it may be calculated.

The gravitational force (mg) acting downhill and the normal force (N) acting perpendicular to the inclination are the forces acting on the block. The gravitational force component perpendicular to the inclination, which is calculated as mg cos, where is the angle of the incline, and the normal force are identical in magnitude.

The block can have a maximum static friction force (Ff) applied to it without it sliding down the incline if:

Ff = μs N

where s is the static friction coefficient.

The amount of the frictional force is equal to the component of the gravitational force parallel to the inclination, which is mg sin, at the instant the block just starts to slide.

learn more about angle here:

https://brainly.com/question/28451077

#SPJ4

Other Questions
Worked examples are primarily a benefit to learners who???lack contextualized knowledge.lack experience with the procedure.lack self-efficacy.lack motivation to solve problems A rectangle has vertices at (-2, 1), (3, 1). (3,-2), and (-2,-2). What is the area of the rectangle? why do you think we should let the animals live their lives their own ways in couple paragraph Use the drop-down menus and enter values to complete the statements below. there are two types of osteoporosis. classify each statement according to whether it is a characteristic of type 1 or type 2 osteoporosis aidan has $7565 in his checking account. he invests $5000 of it in an account that earns 3.5% interest compounded continuously. what is the total amount of his investment after 3 years? consider the visualization of ground vortex flow in the figure. are we seeing streamlines, streaklines, pathlines, or timelines? explain. the percentage of floating leaf disks is a reasonable measure of photosynthetic rate because the leaves float due to ________ production. BBB company will pay a dividend of $1.50 per share. The net income is $20,000,000 and the numbers of share outstanding is 2,000,000 shares. Which of the following are the EPS and dividend payout ratio of BBB company? a. EPS = $2 and dividend payout ratio is 50% b. EPS = $20 and dividend payout ratio is 25% c. EPS = $10 and dividend payout ratio is 15% d. EPS = $10 and dividend payout ratio is 25% 20) When used as parameters, these types of variables allow a function to access the parameter's original argument: A) floating-point B) counter C) undeclared D) reference E) None of these A right triangle has a leg length of 24 yards and a hypotenuse of 45 yards. Find the length of the other leg T/F: one of the many components of biophilias influence is the connection that humans have with certain fractal patterns that appear commonly in the natural world. fractal patterns found in nature can often confuse or inhibit human neural activity and parasympathetic system mechanisms in the body. you push a 15.0 kg box across the floor at a steady speed of 1.25 m/s for 16.0 s. the coefficient of kinetic friction between the box and the floor is 0.680. what is your power output? volatile organic compoundsa. are tiny particles of liquid or solid matter. b. are produced by chemical interactions between sulfur and oxygen.c. are an odorless, colorless poisonous gas.d. are organic chemicals that form toxic fumes. 19 A mortgage is in the amount of $800,000. The origination fee is 0.4%, the intangible tax is 0.2%, and there are 3.5 discount points. Which of the following is the total cost of the origination fee, the intangible tax, and the discount points? (3 points) $28,000 $32,800 $29,600 $4,800 which college introduced the first intramural flag football program? the shoot system of a barrel cactus consists of broad barrel-shaped green structures covered with spines. which of the following best describes the modified organs that form the barrel and the spines?a- The barrel is a modified stem and the spines are modified budsb- The barrel is a modified stem and the spines are modified leavesc- The barrel is a modified leaf, and the spines and modified budsd- The barrel is a modified root, and the spines are modified stems The arrow we draw to represent the weight of an object will always point . turbines positive displacement pumps and compressors require relief devices on ____ for overpressure protection Sarah is a psychologist at an practise. she earns a basic salary of R3000 per month as well as 20% commission on income up to R 5000. She receives an additional 10% bonus on top of the normal commission rate on earning above R 5000. If Sarah did work to the value of R 12000 ,how much did she earn in total???