Answer: 72°
Step-by-step explanation:
To find the interior angle of this shape, use the formula 180(n-2)/n, where n is the amount of sides. Plugging 5 in for the interior angle of a pentagon, you get 180(3)/5, or 108°.
Using the statement that PR intersects QS, we can see that triangle QOR is isosceles (to get this, look at triangle PQR, and note that because it has 2 equal side lengths, and its last length is not equivalent to the other 2 sides, it is isosceles). Solving for angle PRQ, we know one angle is 108°, and the other two are equal. The total angle in a triangle is 180°, so (180°-108°)/2 = 36° (angles QPR and PRQ).
Since the angle of R = 108°, we can find angle PRS as 108° - 36°, or 72°. Since triangles PQR and QRS are similar (share the same angles and side lengths), we can see that angle RQS and RSQ are both 36°.
Since ORS is a triangle, its angle total is 180°. Since we know the angles ORS and OSR (respectively) already as 72° and 36°, we can subtract these angles to find angle ROS. 180°-72°-36° = 72°
Suppose f is a continuous function defined on a rectangle R=[a,b]X[c,d]. What is the geometric interpretation of the double integral over R of f(X,y) if f(X,y)>0
If f(x,y) > 0 and is a continuous function defined over a rectangle R=[a,b]x[c,d], then the double integral over R of f(x,y) can be interpreted as the volume of a solid that lies in the first octant and under the graph of the function f(x,y) over the region R.
The geometric interpretation of the double integral over R of f(x,y) if f(x,y) > 0, where f is a continuous function defined on a rectangle R = [a,b] × [c,d] is given as follows:
The double integral of f(x,y) over R, if f(x,y) > 0, gives the volume under the graph of the function f(x,y) over the region R in the first octant.
Consider a point P (x, y, z) on the graph of f(x, y) that is over the region R, and let us say that z = f(x,y). If f(x,y) > 0, then P is in the first octant (i.e. all its coordinates are positive).
As a result, the volume of the solid that lies under the graph of f(x,y) over the region R in the first octant can be found by integrating the function f(x,y) over the rectangle R in the xy-plane, which yields the double integral.
The following formula represents the double integral over R of f(x,y) if f(x,y) > 0:
∬Rf(x,y)dydx
The geometric interpretation of the double integral over R of f(x,y) if f(x,y) > 0 is given by the volume of the solid that lies under the graph of the function f(x,y) over the region R in the first octant.
To know more about the "continuous function": https://brainly.com/question/30089593
#SPJ11
What are the zeros of the function? Set the function = 0, factor, and use the zero-product property. Show your steps!
f(x) = x² + 7x – 60
(100 POINTS AND BRAINLIEST)
The zeroes of the function are -12 and 5.
What is meant by Zeros of the function?Zeros of a function are the values of the input variables that make the output of the function equal to zero. The zeros are the solutions of equation f(x) = 0.
According to the question:
To find the zeros of the function
f(x) = x² + 7x - 60, we must set f(x) equal to zero and solve for x.
So we start with the equation:
x² + 7x - 60 = 0
Next, we need to factor the left side of the equation. We are looking for two numbers that multiply to -60 and add to 7. After some trial and error, we find that the numbers are 12 and -5:
x² + 7x - 60 = (x + 12)(x - 5) = 0
Now we can apply the zero product property, which states that if the product of two factors is zero, then at least one of the factors must be zero. Therefore, we set each factor equal to zero and solve for x:
x + 12 = 0 or x - 5 = 0
Solving for x, we get:
x = -12 or x = 5
The zeros of the function f(x) = x² + 7x - 60 are therefore x = -12 and x = 5.
To know more about Zeros of the function visit:
brainly.com/question/16633170
#SPJ1
the product of 2 rational numbers is 16/3.If one of the rational number is -26/3,find the other rational number
Answer:
- [tex]\frac{8}{13}[/tex]
Step-by-step explanation:
let n be the other rational number , then
- [tex]\frac{26}{3}[/tex] n = [tex]\frac{16}{3}[/tex]
[a number × its reciprocal = 1 ]
multiply both sides by the reciprocal - [tex]\frac{3}{26}[/tex]
n = [tex]\frac{16}{3}[/tex] × - [tex]\frac{3}{26}[/tex] ( cancel the 3 on numerator/ denominator )
n = - [tex]\frac{16}{26}[/tex] = - [tex]\frac{8}{13}[/tex]
Pablo needs to memorize words on a vocabulary list for Latin class he has 12 words to memorize and he is 3/4 done how many words has Pablo memorized so far
Answer:
9 words
Step-by-step explanation:
We know
He has 12 words to memorize, and he is 3/4 done.
How many words has Pablo memorized so far?
We Take
12 x 3/4 = 9 words
So, Pable has memorized 9 words.
Question
Find the value of y
for the given value of x
.
y=x+5;x=3
Answer: y is equal to 8
Step-by-step explanation:
by substituting the x for its vale of three we can add the two values to get 8 or y=8
A coffee maker is on sale for 45$. If the sales tax is 7%, how much will the buyer spend altogether?
Answer: 38 I think if it's not right I'm sorry I'm bad at math that's like the only thing I suck at
Step-by-step explanation:
Alfonso wants to purchase a pool membership
for the summer. He has no more than y dollars to
spend. The Aquatics Club charges an initial fee
of $75 plus $20 per month. The Swimming Hole
charges an initial fee of $15 plus $65 per month.
Write a system of inequalities that you can use to
determine which company offers the better deal.
Let x represent the number of months.
The system of inequalities of the company with the better offer is 75 + 20x ≤ y and 15 + 65x ≤ y
Identifying the system of inequalitiesLet's use A to represent the total cost (in dollars) of purchasing a pool membership from the Aquatics Club,
Let S represent the total cost of purchasing a pool membership from the Swimming Hole.
Then we can write the following system of inequalities:
A = 75 + 20x (total cost of Aquatics Club membership)
S = 15 + 65x (total cost of Swimming Hole membership)
Alfonso has no more than y dollars to spend
So, we have
75 + 20x ≤ y
15 + 65x ≤ y
Hence, the system is 75 + 20x ≤ y and 15 + 65x ≤ y
Read more about system of inequalities at
https://brainly.com/question/23093488
#SPJ1
The tires on Mavis’ car will have to be replaced when they each have 160 000 km of wear on them. If new tires cost $140.00 each, what is the total cost of the wear on Mavis’ tires for a year in which she drives 25 000 km?
Answer:
If the tires on Mavis’ car have to be replaced when they each have 160 000 km of wear, then the total distance Mavis can drive on a set of tires is:
4 tires * 160,000 km = 640,000 km
If Mavis drives 25,000 km in a year, she will need to replace her tires after:
640,000 km ÷ 25,000 km/year = 25.6 years
Since Mavis will need to replace her tires once every 25.6 years, the cost of the wear on her tires for a single year is:
$140.00/tire * 4 tires = $560.00
So the total cost of the wear on Mavis’ tires for a year in which she drives 25,000 km is $560.00.
Step-by-step explanation:
source: trust me bro
The average between 3. 15 and x is 40 what is x?
The value of x that makes the average between 3.15 and x equal to 40 is 76.85.
In this problem, we are given two numbers, 3.15 and x, and told that the average between them is 40. We can set up an equation to solve for x as follows:
(3.15 + x) / 2 = 40
To find the average between 3.15 and x, we add the two numbers together and divide by 2, which gives us the equation above.
To solve for x, we can start by multiplying both sides of the equation by 2:
3.15 + x = 80
Next, we can subtract 3.15 from both sides of the equation:
x = 76.85
To know more about average here
https://brainly.com/question/16956746
#SPJ4
What is an equation for the quadratic function represented by the table shown?
using the net below find the area of the triangular prism
6 cm
3 cm
4 cm
6 cm
5 cm
2 cm
Answer:153
Step-by-step explanation:
in how many ways can a class of 40 students select a committee from the class that consists of a president, a vice president, a treasurer and a secretary g
The total number of ways of selecting the committee is, therefore,40 x 39 x 38 x 37= 7,903,040
A class of 40 students select a committee from the class that consists of a president, a vice president, a treasurer, and a secretary in the following way:Step-by-step explanation:The number of ways that a class of 40 students can choose a committee consisting of a president, vice president, treasurer, and a secretary can be found by using the permutation formula.If we assume that the positions of the committee members are different, the number of ways can be calculated as follows:The number of ways of selecting the president from 40 students is 40.The number of ways of selecting the vice president from the remaining 39 students is 39.The number of ways of selecting the treasurer from the remaining 38 students is 38.The number of ways of selecting the secretary from the remaining 37 students is 37.The total number of ways of selecting the committee is, therefore,40 x 39 x 38 x 37= 7,903,040Thus, secretary.
Learn more about Committee
brainly.com/question/11621970
#SPJ11
Please help quick with this question.
Answer:
b = [tex]\frac{S-2la}{h+l}[/tex]
Step-by-step explanation:
S = bh + lb + 2la ( reversing the equation )
bh + lb + 2la = S ( subtract 2la from both sides )
bh + lb = S - 2la ← factor out b from each term on the left side
b(h + l) = S - 2la ← divide both sides by (h + l)
b = [tex]\frac{S-2la}{h+l}[/tex]
Use substitution to solve -4x + y = 3, 5x - 2y = -9
Using the substitution method, the solution of the system of equations -4x + y = 3 and 5x - 2y = -9 is (x, y) = (1, 7)
We can solve this system of equations using the substitution method by solving for one variable in terms of the other in one equation, and then substituting that expression into the other equation. Here's how:
-4x + y = 3 (Equation 1)
5x - 2y = -9 (Equation 2)
Solving Equation 1 for y, we get:
y = 4x + 3
Now, we substitute this expression for y into Equation 2 and solve for x:
5x - 2(4x + 3) = -9
5x - 8x - 6 = -9
-3x = -3
x = 1
We have found the value of x to be 1. Now, we substitute this value back into Equation 1 to find the value of y:
-4(1) + y = 3
y = 7
Therefore, the solution to the system of equations is (x, y) = (1, 7)
Learn more about substitution method here
brainly.com/question/14619835
#SPJ4
48 identical looking bags of lettuce were delivered to Circle J grocers. Unfortunately, 12 of these bags of lettuce are contaminated with listeria. Joe, from Joes Cafe randomly selects 4 bags of the lettuce for his cafe. Let X equal the number of the selected packets which are contaminated with listeria. a. How many possible ways are there to select the 4 out of 48 packets (order does not matter) without replacement? b. What is the probability thatX=0
c. What is the probability thatX=4? d. What is the probability thatx>2? e. What is the expected value ofX? f. What is the standard deviation ofX? g. What is the probability that X is smaller than its expected value?
h. What is the probability thatX=5?
Probability that X = 5:Since, Joe selects only 4 bags of lettuce. X can't be 5.P(X=5) = 0Hence, the probability that X = 0 is 0.3164 and the probability that X = 5 is 0.
The given problem can be solved using the concept of binomial distribution.
In the given question, there are 48 bags of lettuce out of which 12 bags are contaminated with listeria.
Joe selects 4 bags of lettuce. X is the random variable which represents the number of contaminated bags of lettuce selected by Joe. X can take values from 0 to 4. (as Joe selects only 4 bags).
Part A)Number of ways to select 4 bags of lettuce out of 48:This can be solved using the concept of combinations. The formula to calculate the number of combinations is[tex]:nCr = n! / r!(n-r)![/tex]Here, n = 48 and r = 4.
Number of ways = 48C4 = 194,580
Part B)Probability that X = 0:This can be calculated using the formula for the binomial distribution :
[tex]P(X = r) = nCr * p^r * q^(n-r)[/tex]
Here, p = probability of selecting contaminated bag = 12/48 = 0.25q = probability of selecting non-contaminated bag = 1-0.25 = 0.75Also, n = 4 and r = [tex]0P(X=0) = 4C0 * 0.25^0 * 0.75^4= 0.3164[/tex]
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
6. 4 The point Q (3, -1) has been translated from P by the vector (3) What are the coordinates of the point P?
The coordinates of the point P is (-1,2) .
What is translation?
In mathematics, a translation is a geometric transformation that moves every point of a figure or a space by the same amount in a given direction. The amount and direction of the movement can be described using a vector, which is a mathematical object that has both magnitude and direction.
Finding the coordinates of the point P :
The coordinates of point P can be found by subtracting the vector from point Q.
To find the coordinates of point P, we need to subtract the vector [tex]\begin{pmatrix}4\\-3\end{pmatrix}[/tex] from the coordinates of point Q, which are (3, -1).
Subtracting the x-coordinate of the vector from the x-coordinate of point Q gives us:
3 - 4 = -1
Similarly, subtracting the y-coordinate of the vector from the y-coordinate of point Q gives us:
-1 - (-3) = 2
Therefore, the coordinates of point P are (-1, 2).
So, the correct answer is (C) (-1, 2).
To know more about coordinates visit :
brainly.com/question/16634867
#SPJ1
Hi. Please help me convert this non-linear to linear form y=mx+c. The answer is square root of y= 6/p x - 2/q .
Thank you so much.
Answer: To convert the given equation, √y = (6/p)x - (2/q), into the linear form y = mx + c, we can use the following steps:
Square both sides of the equation to eliminate the square root:
√y = (6/p)x - (2/q)
√y^2 = (6/p)x - (2/q)^2
Simplifying the right-hand side, we get:
y = (36/p^2)x - (4/q) + 4/q^2
Rearrange the equation to the form y = mx + c:
y = (36/p^2)x + (4/q^2 - 4/q)
So the linear form of the given non-linear equation is y = (36/p^2)x + (4/q^2 - 4/q).
Step-by-step explanation:
Jayden evaluated the expression a + (2 + 1. 5) for a = 14. He said that the value of the expression was 8. 5. Select all the statements that are true. Jayden's solution is incorrect. Jayden added inside the parentheses before dividing. Jayden substituted the wrong value for a. Jayden divided 14 by 2 and then added 1. 5. Jayden added inside the parentheses before multiplying.
It is true that Jayden's solution is incorrect. It is false that Jayden added inside the parentheses before dividing.
It is false that Jayden substituted the wrong value for a. It is true that Jayden divided 14 by 2 and then added 1. 5. Jayden added inside the parentheses before multiplying.
1) The correct solution is
Given,
a ÷ (2 + 1. 5)
Substituting the value of a which is 14
= 14 ÷ (2 + 1. 5)
= 14 ÷ 3.5
= 4
2) As there is no term which needs to be divided so, the second statement is false.
3) Jayden didn't substitute the wrong value of a he just solved the given expression without considering the bracket and divided the 14 which is the value of a by 2.
4) Jyaden divided 14 by 2 and then added 1. 5. Jayden added inside the parentheses before multiplying.
i.e. a ÷ (2 + 1. 5)
14 ÷ 2 + 1. 5
7+1.5
8.5
This is the way Jayden solved the equation due to which he arrived at the wrong solution.
Learn more about Expression here: brainly.com/question/14083225
#SPJ4
The Correct question is as below
Jayden evaluated the expression a ÷ (2 + 1.5) for a = 14. He said that the answer was 8.5. Choose True or False for each statement.
1. Jayden's solution is incorrect.
2. Jayden added in the parentheses before dividing.
3. Jayden substituted the wrong value for a.
4. Jayden divided 14 by 2 and added 1.5
A man sells an article at rs 600and makes a profit of 20%. Calculate his profit percentage
Answer:
120
Step-by-step explanation:
20 percent of 600 is 120 so he will get 120
A triangle has two sides of length 3 and 16. What is the largest possible whole-number length for the third side
The largest possible whole-number length for the third side is 18, which satisfies all three inequalities.
What is inequality theorem?The triangle inequality theorem explains the relationship between the three sides of a triangle. This theorem states that for any triangle, the sum of the lengths of the first two sides is always larger than the length of the third side.
According to question:Let x be the length of the third side. By the triangle inequality, we have:
3 + 16 > x and 16 + x > 3 and 3 + x > 16
Simplifying, we get:
19 > x and x > 13 and x < 19
The largest possible whole-number length for the third side is 18, which satisfies all three inequalities.
To know more about Inequality visit:
brainly.com/question/30228778
#SPJ1
Suppose Z follows the standard normal distribution. Calculate the following probabilities using the ALEKS calculator. Round your responses to at least three decimal places. (a) P(Z < 0.79) = Х 5 ? (b) P(Z > 0.75) (c) P(-1.06 < Z< 2.17) =
The probabilities Z > 0.75 is P(Z > 0.75) = 1 - P(Z < 0.75).
The probability of Z > 0.75 is 1 - 0.77337 = 0.22663
The probability of Z < -1.06 from it. P(-1.06 < Z< 2.17) = P(Z < 2.17) - P(Z < -1.06) = 0.98425 - 0.14457 = 0.83968
Suppose Z follows the standard normal distribution. The probabilities using the ALEKS calculator are given below.(a) P(Z < 0.79) = 0.78524. (rounded to 5 decimal places)(b) P(Z > 0.75) = 1 - P(Z < 0.75) = 1 - 0.77337 = 0.22663. (rounded to 5 decimal places)(c) P(-1.06 < Z< 2.17) = P(Z < 2.17) - P(Z < -1.06) = 0.98425 - 0.14457 = 0.83968. (rounded to 5 decimal places). In the standard normal distribution, the mean is equal to zero and the standard deviation is equal to 1. The notation for a standard normal random variable is z. Z is a random variable with a standard normal distribution and P(Z) denotes the probability of the random variable Z. Suppose z follows a standard normal distribution then the probability of Z < 0.79 is P(Z < 0.79) = 0.78524. So, the answer is 0.78524(rounded to 5 decimal places).Suppose z follows a standard normal distribution then the probability of Z > 0.75 is P(Z > 0.75) = 1 - P(Z < 0.75). Therefore, the probability of Z > 0.75 is 1 - 0.77337 = 0.22663(rounded to 5 decimal places).Therefore, the probability of -1.06 < Z< 2.17 can be found by finding the probability of Z < 2.17 and then subtracting the probability of Z < -1.06 from it. P(-1.06 < Z< 2.17) = P(Z < 2.17) - P(Z < -1.06) = 0.98425 - 0.14457 = 0.83968(rounded to 5 decimal places).
Learn more about Probabilities
brainly.com/question/30034780
#SPJ11
I NEED HELPP PLEASEEEEEEEE
The slope between the points (-3, 0) and (0, -1) is -1/3.
What is slope?The slope of a line serves as a gauge for its steepness. It may be calculated by dividing the difference in y-coordinate by the difference in x-coordinate between any two points on a line. A line's slope might be zero, positive, negative, or undefinable. A line with a positive slope is moving upward from left to right, a negative slope is moving downward from left to right, and a line with a zero slope is level. The line is vertical if the slope is undefinable.
Let us consider the first two points (-3, 0) and (0, -1).
The slope of the line is given as:
m = (y2 - y1) / (x2 - x1)
Substituting the values we have:
m = (-1 - 0) / (0 - (-3)) = -1/3
Hence, the slope between the points (-3, 0) and (0, -1) is -1/3.
Learn more about slope of line here:
https://brainly.com/question/11559942
#SPJ1
Let A, B, and C be subsets of some universal set U. (a) Draw two general Venn diagrams for the sets A, B, and C. On one, shade the region that represents A - (B nC), and on the other, shade the region that represents (A -B) U (A C). Based on the Venn diagrams, make a conjecture about the relationship between the sets A-(BnC) and (A -B)U (A -C). (b) Use the choose-an-element method to prove the conjecture from Exer- cise (5a). (c) Use the algebra of sets to prove the conjecture from Exercise (5a).
In conclusion, we can prove that[tex](A -B) U (A C)[/tex] is a superset of[tex]A - (B nC)[/tex] using both the choose-an-element method and the algebra of sets.
To answer this question, let's first draw two Venn diagrams to represent the sets A, B, and C. In the first Venn diagram, shade the region that represents[tex]A - (B nC)[/tex].
This is the region outside of the intersection of B and C and inside of A. In the second Venn diagram, shade the region that represents [tex](A -B) U (A C).[/tex] This is the union of the region outside of B and the region outside of C, both of which are inside of A. Based on these diagrams, we can make the conjecture that (A -B) U (A C) is a superset of A - (B nC).
To prove this conjecture, we can use the choose-an-element method. Let a be an element of A - (B nC). This means that a is in A, but not in B or C. Since a is in A, it is also in (A -B) U (A C), and therefore (A -B) U (A C) is a superset of A - (B n C).
We can also use the algebra of sets to prove this conjecture.[tex]A - (B n C) = (A -B) U (A -C) since A - (B n C)[/tex]is the union of the regions outside of B and outside of C, both of which are inside of A. This implies that (A -B) U (A C) is a superset of A - (B nC).
for such more questions on Venn diagram
https://brainly.com/question/30599101
#SPJ11
A straw that is 15cm long leans against the inside of a glass. The diameter of a glass is
5cm, and has a height of 8cm. How far past the edge of the glass would the straw extend?
Round your answer to the nearest tenth.
The straw will extend past the edge of the glass in a straight line. To find the answer, subtract the diameter of the glass (5cm) from the length of the straw (15 cm): 15 cm - 5 cm = 10 cm. This is the distance the straw will extend past the edge of the glass. To round to the nearest tenth, round 10.0 up to 10.1. Therefore, the straw will extend past the edge of the glass 10.1 cm.
find the length of the cord pt.3
According to the circle theorem, we can find the length of the cord, x = 4 units.
Define circle theorem?Geometrical assertions known as "circle theorems" set forward significant conclusions pertaining to circles. These theorems provide significant information regarding several aspects of a circle.
A circle's chord is a line segment that hits the circle twice on its edge, separating it into two equal pieces. The circle is divided into two equal pieces by the longest chord of the circle, which runs through its centre.
Here in the given circle,
As per the intersecting chords theorem,
AB × CB= BE × BD
⇒ 6 × 6 = 9× x
⇒ x = 36/9=4
Therefore, the length of the chord, x = 4 units.
To know more about circle theorem, visit:
https://brainly.com/question/19906313
#SPJ1
what is the messure or the vertex angle of an isosceles triangle if one of its base angle measures 16 degrees
What’s -9.1 times 3.75
Use the following function to find d(0)
d(x)=-x+-3
d(0)=
Answer:
d(0) = -3
Step-by-step explanation:
d(x) = -x + -3 d(0)
d(0) = 0 - 3
d(0) = -3
So, the answer is d(0) = -3
I NEED YOUR HELP ASAP!!
To create a modified box plot for a data set, determine the outliers of the data set and the smallest and largest numbers in the data set that are not outliers. Next, determine the median of the first half of the data set, the median of the entire data set, and the median of the second half of the data set.
What are the values that are needed to create a modified box plot for this data set?
19, 15, 22, 35, 16, 22, 4, 22, 24, 16, 17, 21
Enter your answers in the blanks in order from least to greatest.
Smallest number in the data set that is not an outlier is 15, Median of the first half is 17, Median of the entire data set is 20.5. Median of the second half is 22. Largest number in the data set that is not an outlier is 35.
Give a short note on Median?
In statistics, the median is a measure of central tendency that represents the middle value in a dataset. To find the median, the data must first be sorted in ascending or descending order. If the dataset contains an odd number of values, the median is the middle value. If the dataset contains an even number of values, the median is the average of the two middle values.
The median is a useful measure of central tendency in datasets that are skewed or have outliers, as it is less sensitive to extreme values than the mean. It is also useful in datasets with non-numeric values, such as rankings or survey responses.
To create a modified box plot, we need the following values:
The smallest number in the data set that is not an outlier: 15
The median of the first half of the data set: 17
The median of the entire data set: 20.5
The median of the second half of the data set: 22
The largest number in the data set that is not an outlier: 35
So the values needed to create a modified box plot for this data set are: 15, 17, 20.5, 22, 35.
Use the following function to find d(0)
d(x)=-x+-3
d(0)=
When the function d(x) = -x +(-3), then the value of d(0) is -3
In mathematics, a function is a relationship between two sets of numbers, called the domain and range. A function assigns each element of the domain to exactly one element of the range.
In the given problem, we are given a function d(x)=-x-3. The notation d(0) represents the value of the function d(x) when x = 0.
To find d(0), we need to substitute x = 0 in the function d(x)=-x-3, which gives:
d(0) = -(0) - 3
The first term -(0) is equal to zero, and the second term -3 is a constant value that remains the same regardless of the value of x. Therefore, we can simplify the expression as
d(0) = -3
Learn more about function here
brainly.com/question/12431044
#SPJ4