Answer:
The number is [tex]N =1147[/tex] students
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 281[/tex]
The standard deviation is [tex]\sigma = 34.4[/tex]
The sample size is n = 2000
percentage of the would you expect to have a score between 250 and 305 is mathematically represented as
[tex]P(250 < X < 305 ) = P(\frac{ 250 - 281}{34.4 } < \frac{X - \mu }{\sigma } < \frac{ 305 - 281}{34.4 } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (Standardized \ value \ of \ X )[/tex]
So
[tex]P(250 < X < 305 ) = P(-0.9012< Z<0.698 )[/tex]
[tex]P(250 < X < 305 ) = P(z_2 < 0.698 ) - P(z_1 < -0.9012)[/tex]
From the z table the value of [tex]P( z_2 < 0.698) = 0.75741[/tex]
and [tex]P(z_1 < -0.9012) = 0.18374[/tex]
[tex]P(250 < X < 305 ) = 0.75741 - 0.18374[/tex]
[tex]P(250 < X < 305 ) = 0.57[/tex]
The percentage is [tex]P(250 < X < 305 ) = 57\%[/tex]
The number of students that will get this score is
[tex]N = 2000 * 0.57[/tex]
[tex]N =1147[/tex]
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
the product of two consecutive positive integer is 306
Answer:
[tex]\Large \boxed{\sf 17 \ and \ 18}[/tex]
Step-by-step explanation:
The product means multiplication.
There are two positive consecutive integers.
Let the first positive consecutive integer be x.
Let the second positive consecutive integer be x+1.
[tex](x) \times (x+1) =306[/tex]
Solve for x.
Expand brackets.
[tex]x^2 +x =306[/tex]
Subtract 306 from both sides.
[tex]x^2 +x -306=306-306[/tex]
[tex]x^2 +x -306=0[/tex]
Factor left side of the equation.
[tex](x-17)(x+18)=0[/tex]
Set factors equal to 0.
[tex]x-17=0[/tex]
[tex]x=17[/tex]
[tex]x+18=0[/tex]
[tex]x=-18[/tex]
The value of x cannot be negative.
Substitute x=17 for the second consecutive positive integer.
[tex](17)+1[/tex]
[tex]18[/tex]
The two integers are 17 and 18.
The product of two consecutive positive integers is 306.
We need to find the integers
solution : Let two consecutive numbers are x and (x + 1)
A/C to question,
product of x and (x + 1) = 306
⇒x(x + 1) = 306
⇒x² + x - 306 = 0
⇒ x² + 18x - 17x - 306 = 0
⇒x(x + 18) - 17(x + 18) = 0
⇒(x + 18)(x - 17) = 0⇒ x = 17 and -18
so x = 17 and (x +1) = 18
Therefore the numbers are 17 and 18.
Hope it helped u if yes mark me BRAINLIEST
TYSM!
Determine the value(s) for which the rational expression 2x^2/6x is undefined. If there's more than one value, list them separated by a comma, e.g. x=2,3.
Answer:
0
Step-by-step explanation:
Hello, dividing by 0 is not defined. so
[tex]\dfrac{2x^2}{6x}[/tex]
is defined for x different from 0
This being said, we can simplify by 2x
[tex]\dfrac{2x^2}{6x}=\dfrac{2x*x}{3*2x}=\dfrac{1}{3}x[/tex]
and this last expression is defined for any real number x.
Thank you
If the average fixed cost (AFC) of producing 5 bags of rice is $20.00, the average fixed cost of producing 10 bags will be
Answer:$40.00
Step-by-step explanation:first divide 20 by 5 and the answer will be 4. now multiply 10 into 4 and you'll get the answer $40.00
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x+12=48,where x represents the cost of a. Ticket.how much is one ticket
Answer:
x=9; one ticket is $9
Step-by-step explanation:
4x+12=48
4x=48-12
4x=36
x=36/4
x=9
In a genetics experiment on peas, one sample of offspring contained green peas and yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of that was expected? 350 127 3 4 The probability of getting a green pea is approximately . (Type an integer or decimal rounded to three decimal places as needed.) Is this probability reasonably close to ? Choose the correct answer below. 3 4 A. No, it is not reasonably close. B. Yes, it is reasonably close.
Complete Question
In a genetic experiment on peas, one sample of offspring contained 436 green peas and 171 yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of 3/4 that was expected? The probability of getting a green pea is approximately: Is the probability reasonably close to 3/4?
Answer:
The probability is [tex]P(g) =0.72[/tex]
Yes the result is reasonably close
Step-by-step explanation:
From the question we are told that
The number of of green peas is [tex]g = 436[/tex]
The number of yellow peas is [tex]y = 171[/tex]
The sample size is [tex]n = 171 + 436 = 607[/tex]
The probability of getting an offspring pea that is green is mathematically represented as
[tex]P(g) = \frac{g}{n}[/tex]
[tex]P(g) = \frac{436}{607}[/tex]
[tex]P(g) =0.72[/tex]
Comparing [tex]P(g) =0.72[/tex] to [tex]\frac{3}{4} = 0.75[/tex] we see that the result is reasonably close
A spinner has 10 equally sized sections, 5 of which are gray and 5 of which are blue. The spinner is spun twice. What is the probability that the first spin lands on gray and the second spin lands on blue? Write your answer as a fraction in the simplest form.
Answer:
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
Step-by-step explanation:
Given
[tex]Sections = 10[/tex]
[tex]n(Gray) = 5[/tex]
[tex]n(Blue) = 5[/tex]
Required
Determine P(Gray and Blue)
Using probability formula;
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
Calculating P(Gray)
[tex]P(Gray) = \frac{n(Gray)}{Sections}[/tex]
[tex]P(Gray) = \frac{5}{10}[/tex]
[tex]P(Gray) = \frac{1}{2}[/tex]
Calculating P(Gray)
[tex]P(Blue) = \frac{n(Blue)}{Sections}[/tex]
[tex]P(Blue) = \frac{5}{10}[/tex]
[tex]P(Blue) = \frac{1}{2}[/tex]
Substitute these values on the given formula
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{2} * \frac{1}{2}[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
The radius of a sphere is measured as 7 centimeters, with a possible error of 0.025 centimeter.
Required:
a. Use differentials to approximate the possible propagated error, in cm3, in computing the volume of the sphere.
b. Use differentials to approximate the possible propagated error in computing the surface area of the sphere.
c. Approximate the percent errors in parts (a) and (b).
Answer:
a) dV(s) = 15,386 cm³
b) dS(s) = 4,396 cm²
c) dV(s)/V(s) = 1,07 % and dS(s)/ S(s) = 0,71 %
Step-by-step explanation:
a) The volume of the sphere is
V(s) = (4/3)*π*x³ where x is the radius
Taking derivatives on both sides of the equation we get:
dV(s)/ dr = 4*π*x² or
dV(s) = 4*π*x² *dr
the possible propagated error in cm³ in computing the volume of the sphere is:
dV(s) = 4*3,14*(7)²*(0,025)
dV(s) = 15,386 cm³
b) Surface area of the sphere is:
V(s) = (4/3)*π*x³
dV(s) /dx = S(s) = 4*π*x³
And
dS(s) /dx = 8*π*x
dS(s) = 8*π*x*dx
dS(s) = 8*3,14*7*(0,025)
dS(s) = 4,396 cm²
c) The approximates errors in a and b are:
V(s) = (4/3)*π*x³ then
V(s) = (4/3)*3,14*(7)³
V(s) = 1436,03 cm³
And the possible propagated error in volume is from a) is
dV(s) = 15,386 cm³
dV(s)/V(s) = [15,386 cm³/1436,03 cm³]* 100
dV(s)/V(s) = 1,07 %
And for case b)
dS(s) = 4,396 cm²
And the surface area of the sphere is:
S(s) = 4*π*x³ ⇒ S(s) = 4*3,14*(7)² ⇒ S(s) = 615,44 cm²
dS(s) = 4,396 cm²
dS(s)/ S(s) = [ 4,396 cm²/615,44 cm² ] * 100
dS(s)/ S(s) = 0,71
A buoy floating in the sea is bobbing in simple harmonic motion with amplitude 13 in and period 0.25 seconds. Its displacement d from sea level at time t=0 seconds is 0in, and initially it moves downward. (Note that downward is the negative direction.)Required:Give the equation modeling the displacement d as a function of time t.
Answer:
The equation is [tex]x(t) = -13 cos (8 \pi t )[/tex]
Step-by-step explanation:
From the question we are told that
The amplitude is [tex]A = 13 \ in[/tex]
The period is [tex]T = 0.25[/tex]
Generally the displacement function for a simple harmonic motion is mathematically represented as
[tex]x(t) = A cos (wt )[/tex]
Here [tex]w[/tex] is the angular frequency which is mathematically represented as
[tex]w = \frac{2 \pi }{T}[/tex]
substituting values
[tex]w = \frac{2 \pi }{ 0.25}[/tex]
[tex]w = 8\pi[/tex]
Given that at t = 0 the displacement is equal to 0 it means that there is no phase shift and also we are told that it is initially moving downward which implies that its Amplitude is [tex]A = -13\ in[/tex]
So the equation modeling the displacement d as a function of time t is mathematically represented as
[tex]x(t) = -13 cos (8 \pi t )[/tex]
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itselfJesse bought 3 T-shirts for $6 each and 4 T-shirts for $5 each. What expression can you use to describe what Jesse bought?
use the product of powers property to simplify the numeric expression.
4 1/3 • 4 1/5 = _____
Answer:
The value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Step-by-step explanation:
We need to simplify the numeric expression using property. The expression is as follows :
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex]
The property to be used is : [tex]x^a{\cdot} x^b=x^{a+b}[/tex]
This property is valid if the base is same. Here, base is x.
In this given problem, x = 4, a = 1/3 and b = 1/5
So,
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}}=4^{\dfrac{1}{3}+\dfrac{1}{5}}\\\\=4^{\dfrac{5+3}{15}}\\\\=4^{\dfrac{8}{15}}[/tex]
So, the value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Which expression is equal to 7 times the sum of a number and 4
Answer:
7(n + 4)
Step-by-step explanation:
Represent the number by n. Then the verbal expression becomes
7(n + 4).
what are the next terms in the number pattern -11, -8, -5, -2, 1
Answer:
4, 7, 10, 13
Step-by-step explanation:
Hey there!
Well in the given pattern,
-11, -8, -5, -2, 1
we can conclude that the pattern is +3 every time.
-11 + 3 = -8
-8 + 3 = -5
-5 + 3 = -2
-2 + 3 = 1
And so on
4, 7, 10, 13Hope this helps :)
Luke owns a trucking company. For every truck that goes out, Luke must pay the driver $17 per hour of driving and also has an expense of $1.75 per mile driven for gas and maintenance. On one particular day, the driver drove an average of 40 miles per hour and Luke's total expenses for the driver, gas and truck maintenance were $522. Write a system of equations that could be used to determine the number of hours the driver worked and the number of miles the truck drove. Define the variables that you use to write the system.
Answer:
17h+1.75m=522 m=40h
Step-by-step explanation:
Let h= {the number of hours the driver drove}
Let m= the number of miles driven
The driver makes $17 for each hour working, so if the driver worked for hh hours, Luke would have to pay him 17h17h dollars. The cost of gas and maintenance is $1.75 per mile, so for mm miles Luke's costs would be 1.75m1.75m dollars. The total cost of the route 17h+1.75m17h+1.75m equals \$522:$522:
17h+1.75m=522
17h+1.75m=522
Since the driver drove an avearge of 40 miles per hour, if the driver drove hour, he would have driven 40 miles, and if the driver drove hh hours, he would have driven 40h40h miles, therefore mm equals 40h:40h:
m=40h
m=40h
Write System of Equations:
17h+1.75m= 522
m=40h
The truck is going for a run for 6 hours and the system of the equation to solve a further problem related to this is [tex]\rm{Cost}=17x+1.75y[/tex]
The following are the different costs of the truck that Luke must be pay while running a truck:
Luke must pay the driver $17 per hour of driving.A truck has an expense of $1.75 per mile driven for gas and maintenance.Let ' x ' be the total time of driving a truck in hours.
and ' y ' be the total mile distance that is covered by the truck.
Therefore, the system of the equation for the overall running cost for a truck is given below.
[tex]\rm{Cost}=17x+1.75y[/tex]
Now, On one particular day, the driver drove an average of 40 miles per hour, and Luke's total expenses for the driver, gas and truck maintenance were $522.
Thus,
The total distance traveled by truck is 40x.
That is,
[tex]y=40x[/tex]
Substitute the values and solve them further.
[tex]522=17x+1.75y\\522=17x+1.75 \times 40x\\522=17x+70x\\522=87x\\x=6[/tex]
Thus, the truck is going for a run for 6 hours and the system of the equation to solve the further problems related to this is [tex]\rm{Cost}=17x+1.75y[/tex]
To know more about variables, please refer to the link:
https://brainly.com/question/14393109
point estimate A sample of 81 observations is taken from a normal population with a standard deviation of 5. The sample mean is 40. Determine the 95% confidence interval for the population mean
Answer:
The 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Step-by-step explanation:
To solve the above question, we would be making use of the confidence interval formula:
Confidence Interval = Mean ± z score × σ/√n
In the above question,
Mean = 40
σ = Standard deviation = 5
n = number of samples = 81
Confidence Interval = 95%
The z score for a 95% confidence interval = 1.96
Therefore, the confidence interval =
= 40 ± 1.96 (5/√81)
= 40 ± 1.96(5/9)
= 40 ± 1.0888888889
Confidence Interval
a)40 + 1.0888888889
= 41.0888888889
Approximately = 41.089
b ) 40 - 1.0888888889
= 38.911111111
Approximately = 38.911
Therefore, the 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Find the volume of the cylinder. Round your answer to the nearest tenth.
Answer:
716.75 m^3
Step-by-step explanation:
Volume of a cylinder:
=> PI x R^2 x H
H = Height
R = Radius
=> PI x 3.9^2 x 15
=> PI x 15.21 x 15
=> PI x 228.15
=> 228.15 PI
or
=> 228.15 x 3.14159
=> 716.75 m^3
paul worked 50 hours last week. if he earns $10 per hour plus time-and-a-half for any hours worked beyond 40 in a week, how much did he earn last week?
Answer: 4150
Step-by-step explanation:
You take the 50, becuse the amount earned increases once you surpass 40 you do 40 x 10 and that = 4000 then you take the remaining 10 and times that by 15 (becuse after 40 it is 1.5 of what you where earning before you hit 40 hours and half of ten is 5 so you do 10 plus 5 and times that by 10) then add both numbers together and you have 4150! Hope that helped!
write 32 1/2 in radical form
Answer:
Nothing further, the simplest answer is 32 1/2
Step-by-step explanation:
f(x) = -3x + 7
What is f (0)?
Answer:
f(0) = 7
Step-by-step explanation:
f(x) = -3x + 7
Let x =0
f(0) = -3*0 + 7
f(0) = 7
the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
The base of a triangle is 4 cm greater than the
height. The area is 30 cm. Find the height and
the length of the base
h
The height of the triangle is
The base of the triangle is
Answer:
Step-by-step explanation:
Formula for area of a triangle:
Height x Base /2
Base (b) = h +4
Height = h
h + 4 x h /2 = 30cm
=> h +4 x h = 60
=> h+4h =60
=> 5h = 60
=> h = 12
Height = 12
Base = 12 +4 = 16
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
If Company X has 1600 employees and 80% of those employees have attended the warehouse training course how many employees have yet to attend?
Answer:
320
Step-by-step explanation:
Total no of employees = 1600
% of employees attended the training = 80%
no. of employee who attended the training = 80/100* 1600 = 1280
No. of employees who are yet to attend the training = Total no of employees - no. of employee who attended the training = 1600-1280 = 320
Thus, 320 employees have yet to attend the training
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
musah stands at the center of a rectangular field . He first takes 50 steps north, then 25 step west and finally 50 steps on a bearing of 315°. How far west and how far north is Musah final point from the center?
Answer:
85.36 far north from the center
10.36 far east from the center
Step-by-step explanation:
The extra direction taken in the north side is x
X/sin(360-315)=50/sin 90
Sin 90= 1
X/sin 45= 50
X= sin45 *50
X= 0.7071*50
X= 35.355 steps
X= 35.36
Then the west direction traveled
West =√(50² - 35.355²)
West = √(2500-1249.6225)
West= √1250.3775
West= 35.36 steps
But this was taken in an opposite west direction
From the center
He is 35.36 +50
= 85.36 far north from the center
And
25-35.36=-10.36
10.36 far east from the center