Answer:
The 90% confidence interval for the mean waste recycled per person per day for the population of Montana is between 2.68 and 2.92 pounds.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 7 - 1 = 6
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 6 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 1.9432.
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 1.9432\frac{0.16}{\sqrt{7}} = 0.12[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 2.8 - 0.12 = 2.68 pounds.
The upper end of the interval is the sample mean added to M. So it is 2.8 + 0.12 = 2.92 pounds.
The 90% confidence interval for the mean waste recycled per person per day for the population of Montana is between 2.68 and 2.92 pounds.
HELPPPP PLZ
Witch statement is true about the value of |6|?
Answer:
The third choice is the correct one.
Step-by-step explanation:
The absolute value of six means that it's the distance from 0 to six, and that distance will be positive regardless of the number being negative or not.
Answer: The third answer is correct
Step-by-step explanation:
Since |6| is the absolute value of positive six, the value of an absolute value of any number is always positive.
For the function F defined by F(x) = x2 – 2x + 4, find F(b+3).
Answer:
[tex]\displaystyle F(b + 3) = b^2 + 4b + 7[/tex]
Step-by-step explanation:
We are given the function:
[tex]\displaystlye F(x) = x^2 - 2x + 4[/tex]
And we want to find F(b + 3).
We can substitute:
[tex]\displaystyle F(b + 3) = (b + 3)^2 - 2(b+3) + 4[/tex]
Expand:
[tex]\displaystyle = (b^2 + 6b + 9) + (-2b -6) + 4[/tex]
Rearrange:
[tex]\displaystyle = (b^2) + (6b-2b) + (9 - 6 + 4)[/tex]
Combine like terms. Hence:
[tex]\displaystyle = b^2 +4b + 7[/tex]
In conclusion:
[tex]\displaystyle F(b + 3) = b^2 + 4b + 7[/tex]
Sydney has finished all his work on time, but many of his teammates are still struggling to complete their assignments. What should he do? a) Not distract them; they may get farther behind. O b) Listen to them complain about their workloads O c) Help them complete their work d) Share his thoughts on how they could get their work done faster
Answer:
I think the correct option is c
Answer:
I think the correct answer is (d)
Step-by-step explanation:
if he shares his thoughts on how they could get their work done faster like using an app like this, then it would be of great help to them
Salaries of entry-level computer engineers have Normal distribution with unknown mean and variance. Three randomly selected computer engineers have following salaries (in $1000s): 70, 80, 90. The average and the standard deviation of the data in the sample are 80 and 10. Using hypothesis testing, determine if this sample provides a sufficient evidence, at a 10% level of significance, that the average salary of all entry-level computer engineers is different from $60,000.
a. Null hypothesis.
b. alternative hypothesis.
c. test statistic.
d. acceptance region.
Answer:
H0 : μ = 60000
H1 : μ ≠ 60000
Test statistic = 3.464
Step-by-step explanation:
Given :
Sample mean salary, xbar = 80000
Sample standard deviation, s = 10000
Population mean salary , μ = 60000
Sample size, n = 3
Hypothesis :
H0 : μ = 60000
H1 : μ ≠ 60000
The test statistic :
T = (xbar - μ) ÷ (s/√(n))
T = (80000 - 60000) ÷ (10000/√(3))
T = 20000 / 5773.5026
T = 3.464
The Decison region :
If Tstatistic >Tcritical
Tcritical at 10%, df = 2 ; two - tailed = 2.9199
Tstatistic > Tcritical ; He
In a 2-digit number, the tens digit is 5 less than the units digit. If you reverse the number, the result is 7 greater than double the original number. Find the original number.
The original number is 38
A 2-digit number can be written as:
N = a*10 + b*1
Where a is the tens digit, and b is the units digit, these two are single-digit numbers.
We know that:
"the tens digit is 5 less than the units digit."
This means that:
a = b - 5
(notice that a must be larger than zero and smaller than 10, from this, we can conclude that b is a number in the range {6, 7, 8, 9})
"If you reverse the number, the result is 7 greater than double the original number"
The reverse number is:
b*10 + a
and this is 7 greater than 2 times the original number, then:
b*10 + a = 7 + 2*(a*10 + b)
Then we found two equations:
a = b - 5
b*10 + a = 7 + 2*(a*10 + b)
Replacing the first equation in the second, we get:
b*10 + (b - 5) = 7 + 2*((b - 5)*10 + b)
Now let's solve that:
b*10 + b - 5 = 7 + 2*(11*b - 50)
11*b - 5 = 7 + 22*b - 100
-5 - 7 + 100 = 22*b - 11*b
88 = 11*b
88/11 = b = 8
Now that we know that b = 8, we can use the equation:
a= b - 5
a = 8 -5 = 3
Then the original number is:
a*10 + b = 3*10 + 8 = 38
The original number is 38
If you want to read more about this, you can see:
https://brainly.com/question/19902993
A bicyclist is at point A on a paved road and must ride to point C on another paved road. The two roads meet at
an angle of 38° at point B. The distance from A to B is 18 mi, and the distance from B to C is 12 mi (see
the figure). If the bicyclist can ride 22 mph on the paved roads and 6.8 mph off-road, would it be faster for the bicyclist to ride from A to C on the paved roads or to ride a direct line from A to C off-road? Explain.
Answer:
Step-by-step explanation:
The diagrammatic expression to understand this question very well is attached in the image below.
By applying the law of cosine rule; we have:
a² = b² + c² - 2bc Cos A --- (1)b² = a² + c² - 2ac Cos B --- (2)c² = a² + b² - 2ab Cos C --- (3)From the diagram attached below, we need to determine the side "b" by using equation (2) from above:
b² = a² + c² - 2ac Cos B
From the information given:
a = 12 miles; c = 18 miles; ∠B = 38°
∴
replacing the values into the above equation:
b² = 12² + 18² - 2(12)(18) Cos (38°)
b² = 144 + 324 - 432 × (0.7880)
b² = 468 - 340.416
b² = 127.584
[tex]b = \sqrt{127.584}[/tex]
b = 11.30 miles
However, we are also being told that the speed from A → C = 6.8 mph
Thus, the time required to go from A → C can be determined by using the relation:
[tex]\mathbf{speed = \dfrac{distance}{time}}[/tex]
making time the subject of the formula, we have:
[tex]\mathbf{time= \dfrac{distance}{speed }}[/tex]
[tex]\mathbf{time= \dfrac{11.30}{6.8}}[/tex]
time = 1.66 hours
By using the paved roads, the speed is given as = 22 mph
thus, the total distance covered = |AB| + |BC|
= (18+12) miles
= 30 miles
∴
[tex]\mathbf{time= \dfrac{distance}{speed }}[/tex]
[tex]\mathbf{time= \dfrac{30}{22}}[/tex]
time = 1.36 hours
Therefore, the time used off-road = 1.661 hours while the time used on the paved road is 1.36 hours.
Since we are considering the shortest time possible;
We can conclude that it would be faster for the bicyclist to ride from A to C on the paved roads since it takes a shorter time to reach its destination compared to the time used off-road.
Learn more about Law of cosine here:
https://brainly.com/question/24077856?referrer=searchResults
It would be faster for the bicyclist to ride from A to C on the paved roads since the time to go from A to C on the paved roads is 1.4 h and the time to go from A to C off-road is 1.7 h.
To calculate which way would be faster we need to find the distance from point A to C with the law of cosines:
[tex] \overline{AC}^{2} = \overline{AB}^{2} + \overline{BC}^{2} - 2\overline{AB}\overline{BC}cos(38) [/tex]
Where:
[tex]\overline{AB}[/tex]: is the distance between the point A and B = 18 mi
[tex]\overline{BC}[/tex]: is the distance between the point B and C = 12 mi
[tex] \overline{AC} = \sqrt{(18 mi)^{2} + (12 mi)^{2} - 2*18 mi*12 mi*cos(38)} = 11.3 mi [/tex]
Now, let's find the time for the two following cases.
1. From point A to C on the paved roads (t₁)
[tex] t_{1} = t_{AB} + t_{BC} [/tex]
The time can be calculated with the following equation:
[tex] t = \frac{d}{v} [/tex] (1)
Where:
d: is the distance
v: is the velocity
Then, the total time that it takes the bicyclist to go from point A to C on the paved roads is:
[tex] t_{1} = t_{AB} + t_{BC} = \frac{18 mi}{22 mph} + \frac{12 mi}{22 mph} = 1.4 h = 84 min [/tex]
2. From point A to C off-road (t₂)
With equation (1) we can calculate the time to go from point A to C off-road:
[tex] t_{2} = \frac{\overline{AC}}{v_{2}} = \frac{11.3 mi}{6.8 mph} = 1.7 h = 102 min [/tex]
Therefore, it would be faster for the bicyclist to ride from A to C on the paved roads.
To find more about the law of cosines, go here: https://brainly.com/question/15740431?referrer=searchResults
I hope it helps you!
A farmer wishes to construct a fence around his rectangular field. The farmer has 150 feet of fence and
wishes to have the length be three more than the width. What is the width of the field. Make sure and
include feet in your answer.
Help
Answer:
The width is 36 feet
Step-by-step explanation:
If the width of the fence is x then its length is x+3.
The perimeter is 150 feet, so we have the equation:
2(x + x + 3) = 150
4x + 6 = 150
x = 144/4 = 36 feet
Cj took a math test and got 36 correct and 9 incorrect answers. What was percentage of correct answers?
Answer:
Step-by-step explanation:
Your answer would be 80% or a B
look at the image below
Answer:
201.1 km²
Step-by-step explanation:
Surface area of the figure,
4πr²
= 4×π×4²
= 64π
= 201.1 km² (rounded to the nearest tenth)
what is the aswer to 5 is 2 more than?
Answer:
Cuz 5 is greater than 2
Step-by-step explanation:
Answer:
3
Step-by-step explanation:
Factor this polynomial expression.
3x^2 - 12x+ 12
A. (3x - 2)(x-6)
B. 3(x-2)(x + 2)
C. 3(x-2)(x-2)
D. 3(x + 2)(x + 2)
This is a list of the heights ( each nearest cm ) of 12 children
150 134 136 139 131 141
132 134 136 137 150 146
Select the type of the data.PLEASE HELP CHOOSE ONE
Discrete
Continuous
Categorical
Qualitative
Answer:
qualitative
Step-by-step explanation:
bcos it is in quality format
if the value of a any quadratic function f (x)=ax^2 + BX + C is -8, the function will
Answer:
The parabola will open downward
Step-by-step explanation:
f (x)=ax^2 + BX + C
Since a = -8
The parabola will open downward
When a< 0 the graph opens downwards
a>0 the graph opens upwards
Convert the degree measurement to radians. Express answer as multiple of π: - 60°
A. π/3
B. −π/4
C. −π/5
D. −π/3
Answer:
-pi/3
Step-by-step explanation:
To convert from degree to radians, multiply by pi/180
-60 * pi/180 = -60/180 *pi = -pi/3
Answer:
D. -pi/3
Step-by-step explanation:
degree to radians formula: x=degree, x*pi/180
x=-60
-60*pi/180=-pi/3
There are 36 tables and 7 booths in the family restaurant. Each table seats 4 people. If the restaurant can seat up to 179 people, what is the capacity of each booth?
4 people
5 people
6 people
7 people
Answer:
5 people.
Step-by-step explanation:
First we need to find how many people 36 tables seats. In order to do this, we need to multiply 36 (tables) by 4 (people sitting) to get 144. Now just subtract 144 from 179 to see how many people are left, here we get 35. Since there are 7 booths, we divide 35 by 7 to get 5. Each booth holds 5 people.
(179-36x4)/7=5
what is the answer I need help?
Answer:
8 1/8 units^3
Step-by-step explanation:
This figure is a rectangular prism, and the volume of a rectangular prism is given by the formula:
lwh
But since we have the area of the base snd the height of the figure, there is also one formula that we can use to find the volume:
bh
Which means area of base times the height.
USE THE FORMULA bh:
16 1/4 x 1/2
= 65/4 x 1/2
= 65/8
SIMPLIFIED: 8 1/8
Volume is measured in cubic units
SO YOUR ANSWER IS 8 1/8 units^3
Help!!????
Please!!!????
Answer:
true
mark me brainist if it comes out to be true
Answer:
The answer is TRUE.
Step-by-step explanation:
any equations that equal three?
2. Solve the following system of equations. y = 5 + x 2x + 2y = 30
if a circumference of a circle is 22cm.find it diameter take pie 22/7.
Answer:
➕
Step-by-step explanation:
i know the answer ok it is easy
Can someone please help me solve the equation?
Subtracting 10 from the original equation will shift the graph down 10 units
The answer is D.
Please help out explanation need it
Answer:
[tex] \sin(θ) = \frac{19}{41} \\ θ = 27.6 \\ θ = 28[/tex]
8x + 2 = = 7 + 5x + 15
Answer:
2.5
Step-by-step explanation:
8x + 2 = 7 + 5x + 15
Combine like terms:
8x + 2 = 7 + 5x + 15
8x + 2 = 22
-2 -2
-----------------
8x = 20
---- ----
8 8
x = 2.5
Hope this helped.
Can someone help me with this?
Answer:
183.3 in^3
Step-by-step explanation:
Find the volume of the rectangular bottom
V = l*w*h
V = 5*5*6 =150 in^3
Find the volume of the triangular pyramid
V = 1/3 Bh where B is the area of the base and h is the height
V = 1/3 ( 5*5) * 4 = 100/3
Add the two volumes together
150 + 100/3
150 +33.3
183.3 in^3
Jua Kali Products Ltd has been in operation for the last 10 years. Its annual revenue and cost functions take form of quadratic functions. The following data was obtained from the records of the company. Year 2017 2018 2019 Units produced and sold (000) 5 10 15 Revenue (sh000) 1900 3600 5100 Cost (sh000) 7525 7100 6725 Required: The revenue and cost functions (10 marks) The breakeven number of units (5 marks)
Answer:
Step-by-step explanation:
vxcvxcvxcvxcvxcvcxvxcbcvbcvnxcgjfgjfgjghjghjghjghj
The revenue function is y₁ = –4x² + 400x, the cost function is y₁ = x² – 100x + 8000, and the break-even number of units is 20 or 80.
What is a quadratic equation?It is a polynomial that is equal to zero. Polynomial of variable power 2, 1, and 0 terms are there. Any equation having one term in which the power of the variable is a maximum of 2 then it is called a quadratic equation.
Jua Kali Products Ltd has been in operation for the last 10 years.
Its annual revenue and cost functions take the form of quadratic functions.
The following data was obtained from the records of the company.
Year Unit Sold Revenue Cost
2017 5 1900 7525
2018 10 3600 7100
2019 15 5100 6725
We know that the quadratic equation is given as
[tex]\rm y = ax^2 + bx + c[/tex]
Let y₁ be the revenue function, y₂ be the cost function and x be the unis sold.
Then the revenue function will be
1900 = 25a + 5b + c ...i
3600 = 100a + 10b + c ...ii
5100 = 225a + 15b + c ...iii
From equations (i), (ii), and (iii), we have
a = –4, b = 400, and c = 0
Then the revenue function will be
y₁ = –4x² + 400x
Similarly, the cost function will be
7525 = 25a + 5b + c ...1
7100 = 100a + 10b + c ...2
6725 = 225a + 15b + c ...3
From equations 1, 2, and 3, we have
a = 1, b = –100, and c = 8000
Then the cost function will be
y₁ = x² – 100x + 8000
For the break-even units, the cost function and the revenue function will be equal. Then we have
[tex]\begin{aligned} x^2 -100x + 8000 &= -4x^2 + 400x\\\\5x^2 -500x + 8000 &= 0\\\\x^2 - 100x + 1600 &= 0\\\\x^2 - 80 x - 20x + 1600 &= 0\\\\x(x-80) - 20 (x-80) &= 0\\\\(x-80)(x-20) &= 0\\\\x &= 20, 80 \end{aligned}[/tex]
More about the quadratic equation link is given below.
https://brainly.com/question/2263981
A 40-foot tree casts a shadow 60 feet long. How long would the shadow of a 6-foot man be at that time?
Answer:
26 ft
Step-by-step explanation:
I'm guessing this is how it's done
60-40= 20
there for at this time any shadow would be 20x it's original height/length
so 6+20=26 ft
lmk if I'm correct
Taking ratios
Let the shadow length=x ft
[tex]\\ \sf\longmapsto 40:60=6:x[/tex]
[tex]\\ \sf\longmapsto \dfrac{40}{60}=\dfrac{6}{x}[/tex]
[tex]\\ \sf\longmapsto \dfrac{4}{6}=\dfrac{6}{x}[/tex]
[tex]\\ \sf\longmapsto 4x=6(6)[/tex]
[tex]\\ \sf\longmapsto 4x=36[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{36}{4}[/tex]
[tex]\\ \sf\longmapsto x=9[/tex]
PLS HELP! What is the mistake made below in solving x2 – 12x + 10 = 0 using the completing the square method?
x2 – 12x + 10 = 0
x2 – 12x + (- 6)2 = - 10 + (- 6)2
x2 – 12x + 36 = 26
(x – 6)(x – 6) = 26
x – 6 = √26
x = 6 + √26
Answer:
Step-by-step explanation:
Everything is correct. But you forgot to add
x = 6 - square root of 26. The answer is
x = 6 + square root of 26 or
x = 6 - square root of 26
Primo car rental agency charges $21 per day plus $0.20 por milo. Ultimo car rental agency charges $24 per day plus $1.00 per milo. Find the daily mileage for which the Ultimo charge is four times the Primo charge.
The mileage is
Answer:
300 miles
Step-by-step explanation:
Let us consider the miles they travelled is 'm'
Mileage for Primo= 21 + (m × 0.20) = 21+0.2m
Mileage for Ultimo= 24+ ( m× 1.00) = 24 + m
Question says The mileage is equal when Ultimo's charge is 4× Primo
Thus,
4 × (21+0.2m) = 24+ m
84 + 0.8m = 24 + m
60 = 0.2m
m = 300
You have $90 in your bank account. Each work you plan to deposit $3 from your allowance and $25 from your paycheck. The equation b: 90+ (25+5)w gives the amount b in your account after w woeks. How rary works from
now will you have $220 in your bank account?
There will be 5220 in the account after works
(Type a whole number
The graph shows the solution of the following system of equations. y=-5/3x+3 y=1/3x-3 What is the solution? A. (-3,2) B. (3,2) C. (-3,-2) D. (3,-2)
Answer:
(3,-2)
Step-by-step explanation:
-5/3x + 3 = 1/3x - 3
-5/3x = 1/3x - 6
-2x = -6
x = 3
y = -5/3(3) + 3
y = -5 + 3
y = -2