In a random sample of 64 people, 48 are classified as 'successful.' Determine the sample proportion of 'successful' people.

Answers

Answer 1

Answer:

The sample proportion of 'successful' people is [tex]\frac{3}{4}[/tex].

Step-by-step explanation:

The sample consist of 64 people and 48 of them are 'successful'. Hence, the proportion of 'successful' people is:

[tex]p = \frac{n}{N}[/tex]

Where:

[tex]N[/tex] - People that forms the sample, dimensionless.

[tex]n[/tex] - People classified as 'successful', dimensionless.

Given that [tex]n = 48[/tex] and [tex]N = 64[/tex], the sample proportion of 'successful' people is:

[tex]p = \frac{48}{64}[/tex]

[tex]p = \frac{3}{4}[/tex]

The sample proportion of 'successful' people is [tex]\frac{3}{4}[/tex].


Related Questions

I NEED HELP ASAP
FUND THE VALUE OF X

Answers

Answer:

2 sqrt(41) = x

Step-by-step explanation:

This is a right triangle so we can use the Pythagorean theorem

a^2 + b^2 = c^2

8^2 + 10 ^2 = x^2

64+ 100 = x^2

164 = x^2

Take the square root of each side

sqrt(164) = sqrt(x^2)

sqrt(4) sqrt(41) = x

2 sqrt(41) = x

Select the correct answer. If , which statement is true? if g(x) = f(1/3x)
A. The graph of function f is stretched vertically by a scale factor of 3 to create the graph of function g.
B. The graph of function f is stretched horizontally by a scale factor of 3 to create the graph of function g.
C. The graph of function f is compressed horizontally by a scale factor of to create the graph of function g.
D. The graph of function f is compressed vertically by a scale factor of to create the graph of function g.

Answers

Answer:

B. The graph of function f is stretched horizontally by a scale factor of 3 to create the graph of function g.

Step-by-step explanation:

The rules for linear transformations are that

 g(x) = a·f(b·(x-c)) +d

stretches the graph vertically by a factor of "a" (before the shift)

compresses the graph horizontally by a factor of "b" (before the shift)

shifts it to the right by amount "c"

shifts it up by amount "d".

Your equation has b=1/3, so the graph is compressed by a factor of 1/3, which is equivalent to a stretch by a factor of 3.

The appropriate choice of description is ...

 b) the graph of g(x) is horizontally stretched by a factor of 3

Answer:

B

Step-by-step explanation:

Correct on Plato

How dose this input and output table work?​

Answers

Aswer:I am sure of the answer it is 6 and 42

Step-by-step explanation:

5+30=3512+30=4230+30=6036+30=6640+30=60

Different varieties of field daisies have numbers of petals that follow a Fibonacci sequence. Three varieties have 13, 21, and 34 petals.

Answers

The next two petal varieties are
A. 55, 89

Answer:

A. 55, 89

Step-by-step explanation:

In a Fibonacci sequence, you start with 2 given numbers. Then each subsequent number is the sum of the last two numbers.

12, 21, 34

12 + 21 = 34

34 + 21 = 55

55 + 34 = 89

Answer: 55, 89

Please help with this

Answers

Answer:

A. 120

Step-by-step explanation:

The rest of the answers are acute.

120 is the only one that matches the type of angle <V is.

Always pay attention to the type of angle it is.

Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n)

Answers

This sequence converges to 0.

Proof: Recall that

[tex]\displaystyle\lim_{n\to\infty}\frac1{\sqrt n}=0[/tex]

is to say that for any given [tex]\varepsilon>0[/tex], there is some [tex]N[/tex] for which [tex]\left|\frac1{\sqrt n}-0\right|=\frac1{\sqrt n}<\varepsilon[/tex] for all [tex]n>N[/tex].

Let [tex]N=\left\lceil\frac1{\varepsilon^2}\right\rceil[/tex]. Then

[tex]n>\left\lceil\dfrac1{\varepsilon^2}\right\rceil\ge\dfrac1{\varepsilon^2}[/tex]

[tex]\implies\dfrac1n<\varepsilon^2[/tex]

[tex]\implies\dfrac1{\sqrt n}<\varepsilon[/tex]

as required.

ASAP Two points ___________ create a line. A. sometimes B. always C. never D. not enough information

Answers

Answer: B. Always

Explanation:

Two points always create a line. The correct answer is option B.

What is a line?

A line has length but no width, making it a one-dimensional figure. A line is made up of a collection of points that can be stretched indefinitely in opposing directions.

If there are two points A(x₁,y₁) and B(x₂,y₂) then the distance between the two points will be the length of the line. The formula to calculate the distance is given as below:-

Distance = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Therefore, the two points always create a line. The correct answer is option B.

To know more about lines follow

https://brainly.com/question/3493733

#SPJ5

I suck at math, online school is really hard I need to find a tutor, can this be explained?

Answers

Answer:

its [c] if Bradley serves 4 tables he will earn an average of $25

Step-by-step explanation:

To find ∫ (x − y) dx + (x + y) dy directly, we must parameterize C. Since C is a circle with radius 2 centered at the origin, then a parameterization is the following. (Use t as the independent variable.)

x = 2 cos(t)
y = 2 sin(t)
0 ≤ t ≤ 2π

With this parameterization, find the followings

dy=_____
dx=_____

Answers

Answer:

Step-by-step explanation:

Hello, please consider the following.

[tex]x=x(t)=2cos(t)\\\\dx=\dfrac{dx}{dt}dt=x'(t)dt=-2sin(t)dt[/tex]

and

[tex]y=y(t)=2sin(t)\\\\dy=\dfrac{dy}{dt}dt=y'(t)dt=2cos(t)dt[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

The values of dx and dy are give as -2sin(t)dt and 2cos(t)dt respectively. The answer to the given problem can be stated as,

dy = 2cos(t)dt

And,  dx = -2sin(t)dt.

What is the integration of a function?

The integration can be defined as the inverse operation of differentiation. If a function is the integration of some function f(x) , then differentiation of that function is f(x).

The given integral over C is ∫ (x − y) dx + (x + y) dy.

And, the parameters for C are as follows,

x = 2cos(t)

y = 2sin(t)

0 ≤ t ≤ 2π

Now, on the basis of these parameters dx and dy can be found as follows,

x =  2cos(t)

Differentiate both sides with respect to t as follows,

dx/dt = 2d(cos(t))/dt

=> dx/dt = -2sin(t)

=> dx =  -2sin(t)dt

And, y = 2sin(t)

Differentiate both sides with respect to t as follows,

dy/dt = 2d(sin(t))/dt

=> dy/dt = 2cos(t)

=> dy = 2cos(t)dt

Hence, the value of dx and dy as per the given parameters is -2sin(t)dt and 2cos(t)dt respectively.

To know more about integration click on,

https://brainly.com/question/18125359

#SPJ2

20
#1. Which statement is the converse to: If a polygon is a triangle, then it
has 3 sides. *
O A polygon is a triangle, if and only if, it has 3 sides.
If a polygon has 3 sides, then the polygon is a triangle.
If the polygon does not have 3 sides, then it is not a triangle
If a polygon is not a triangle, then it does not have 3 sides

Answers

Answer:

If a polygon has 3 sides, then the polygon is a triangle.

Step-by-step explanation:

Bold = hypothesis

Italic = conclusion

Statement:

If p, then q.

Converse: If q, then p.

To find the converse, switch the hypothesis and conclusion.

Statement:

If a polygon is a triangle, then it  has 3 sides.

Now we switch the hypothesis and the conclusion to write the converse of the statement.

If it  has 3 sides, then a polygon is a triangle.

We fix a little the wording:

If a polygon has 3 sides, then it is a triangle.

Answer: If a polygon has 3 sides, then the polygon is a triangle.

The converse statement will be;

⇒ If a polygon has 3 sides, then the polygon is a triangle.

What is mean by Triangle?

A triangle is a three sided polygon, which has three vertices and three angles which has the sum 180 degrees.

Given that;

The statement is,

''If a polygon is a triangle, then it has 3 sides. ''

Now,

Since, The statement is,

''If a polygon is a triangle, then it has 3 sides. ''

We know that;

The converse of statement for p → q will be q → p.

Thus, The converse statement is find as;

⇒ If a polygon has 3 sides, then the polygon is a triangle.

Learn more about the triangle visit:

https://brainly.com/question/13984402

#SPJ2

For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is

Answers

Answer:

8

Step-by-step explanation:

Ham with or without cheese-2 choices

Bologna with or without cheese-2 choices

Bologna with cheese with water or juice-2 choices

Bologna without cheese with juice or water-2 choices

Ham with cheese with juice or water -2 choices

Ham without cheese with juice or water -2 choices

2+2+2+2=8

Kile has 8 choices for lunch

Which parent functions have an intercept at (0,0)Choose all that are correct.
Linear
Quadratic
Radical
Absolute Value
Rational
Exponential
Logarithmic (Log)
Cubic
Cube Root

Answers

Answer:

Linear, Quadratic, Radical, Absolute Value, Cubic, Cube Root

Step-by-step explanation:

To find:

Which functions have an intercept at (0, 0).

That means, when we put a value [tex]x=0[/tex] in the [tex]y =f(x)[/tex], value of [tex]y=0[/tex].

Let us discuss each parent function one by one:

1. Linear:

[tex]y = x[/tex]

When we put x = 0, y = 0

Therefore, it has intercept at (0, 0).

2. Quadratic:

[tex]y = x^2[/tex]

When we put x = 0, y = 0

Therefore, it has intercept at (0, 0).

3. Radical:

[tex]y = \sqrt x[/tex]

When we put x = 0, y = 0

Therefore, it has intercept at (0, 0).

4. Absolute Value:

[tex]y = |x|[/tex]

When we put x = 0, y = 0

Therefore, it has intercept at (0, 0).

5. Rational:

[tex]y = \dfrac{1}{x}[/tex]

When we put [tex]x = 0\Rightarrow y \rightarrow \infty[/tex]

Therefore, it does not have intercept at (0, 0).

6. Exponential:

[tex]y = b^x[/tex]

b is any base

When we put [tex]x = 0\Rightarrow y =1[/tex]

Therefore, it does not have intercept at (0, 0).

7. Logarithmic:

[tex]y = logx[/tex]

When we put [tex]x = 0 \Rightarrow y\rightarrow[/tex] Not defined

Therefore, it does not have intercept at (0, 0).

8. Cubic:

[tex]y = x^3[/tex]

When we put [tex]x = 0\Rightarrow y =0[/tex]

Therefore, it has intercept at (0, 0).

9. Cube Root:

[tex]y = \sqrt[3]x[/tex]

When we put [tex]x = 0\Rightarrow y =0[/tex]

Therefore, it has intercept at (0, 0).

Determine two pairs of polar coordinates for the point (4, -4) with 0° ≤ θ < 360°.

Answers

Answer:

[tex] \sqrt{4 {}^{2} + ( - 4) {}^{2} } [/tex]

[tex] \sqrt{32} [/tex]

and the angle

[tex] \tan( \alpha ) = - 4 \div 4 = - 1[/tex]

and since the sin component is -ve, we have our angle on 4th quadrant, which equals 315 degrees

Options:

Determine two pairs of polar coordinates for the point (-4, 4) with 0° ≤ θ < 360°. (5 points)

Group of answer choices

(4  , 135°), (-4  , 315°)

(4  , 45°), (-4  , 225°)

(4  , 315°), (-4  , 135°)

(4  , 225°), (-4  , 45°)

Step-by-step explanation:

The guy asking forgot to provide the options you can comment the awnswe in the comments just do it before brainly turns off comments to try and prevent people from learning

Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer ​

Answers

Answer:

Step-by-step explanation:

Hello, first, let's use the product rule.

Derivative of uv is u'v + u v', so it gives:

[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]

Now, we distribute the expression of f(x) and find the derivative afterwards.

[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

I need all the steps

Answers

Answer:

ig

Step-by-step explanation:

[tex](9-\sqrt{-8} )- (5 + \sqrt{-32} ) \\(9-5) + (-\sqrt{-8}- \sqrt{-32} )\\4 - \sqrt{-8} -\sqrt{-32} \\4-2i\sqrt{2} -4i\sqrt{2} \\4-6i\sqrt{2}[/tex]

Given two points M & N on the coordinate plane, find the slope of MN , and state the slope of the line perpendicular to MN . (there's two questions)
1) M(9,6), N(1,4)

2) M(-2,2), N(4,-4)

Answers

Answer:

Problem 1)       [tex] m = \dfrac{1}{4} [/tex]     [tex] slope_{perpendicular} = -4 [/tex]

Problem 2)      [tex] m = \dfrac{1}{3} [/tex]     [tex] slope_{perpendicular} = -3 [/tex]

Step-by-step explanation:

[tex] slope = m = \dfrac{y_2 - y_1}{x_2 - x_1} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{m} [/tex]

Problem 1) M(9,6), N(1,4)

[tex] slope = m = \dfrac{6 - 4}{9 - 1} = \dfrac{2}{8} = \dfrac{1}{4} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{4}} = -4 [/tex]

Problem 2) M(-2,2), N(4,-4)

[tex] slope = m = \dfrac{4 - 2}{4 - (-2)} = \dfrac{2}{6} = \dfrac{1}{3} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{3}} = -3 [/tex]

In a stable matching problem, if every man has a different highest-ranking woman on his preference list, and given that women propose, then it is possible that, for some set of women's preference lists, all men end up with their respective highest-ranking woman.a. Trueb. False

Answers

Answer:

True

Step-by-step explanation:

The statement given above in the question is correct. It is mentioned that men are free to create a list of women's according to their preferences. There will be order sequence of women and men places them in queue of their preference. The men proposes the women with highest ranking in the list then it is possible that all men gets their preferred choice.

A population of bacteria P is changing at a rate of dP/dt = 3000/1+0.25t where t is the time in days. The initial population (when t=0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3 days.

Answers

Answer:

- At any time t, the population is:

P = 375t² + 3000t + 1000

- At time t = 3 days, the population is:

P = 13,375

Step-by-step explanation:

Given the rate of change of the population of bacteria as:

dP/dt = 3000/(1 + 0.25t)

we need to rewrite the given differential equation, and solve.

Rewriting, we have:

dP/3000 = (1 + 0.25t)dt

Integrating both sides, we have

P/3000 = t + (0.25/2)t² + C

P/3000 = t + 0.125t² + C

When t = 0, P = 1000

So,

1000/3000 = C

C = 1/3

Therefore, at any time t, the population is:

P/3000 = 0.125t² + t + 1/3

P = 375t² + 3000t + 1000

At time t = 3 days, the population is :

P = 375(3²) + 3000(3) + 1000

= 3375 + 9000 + 1000

P = 13,375

Chapter: Simple linear equations Answer in steps

Answers

Answer:

6x-3=21

6x=24

x=4

........

6x+27=39

6x=39-27

6x=12

x=2

........

8x-10=14

8x=24

x=3

.........

6+6x=22

6x=22-6

x=3

......

12x-2=28

12x=26

x=3

.....

8-4x=16

-4x=8

x=-2

.....

4x-24=3x-3

4x-3x=24-3

x=21

....

9x+6=6x+12

9x-6x=12-6

3x=6

x=2

Answer:

Step-by-step explanation:

1. 3(2x - 1) = 21

 = 6x - 3 = 21

 = 6x = 24

 = x = 24/6 = 4

------------------------------

2. 3(2x+9) = 39

   = 6x + 27 = 39

   = 6x = 39 - 27

   = 6x = 12

   = x = 12/6 = 2

--------------------------------

3. 2(4x - 5) = 14

  = 8x - 10 = 14

  = 8x = 14+10

 = x = 3

-------------------------------

The table shows data collected on the relationship between time spent playing video games and time spent with family. The line of best fit for the data is ý = -0.363 +94.5. Assume the line of best fit is significant and there is a strong linear relationship between the variables.

Video Games (Minutes) Time with Family (Minutes)
40 80
55 75
70 69
85 64

Required:
a. According to the line of best fit, what would be the predicted number of minutes spent with family for someone who spent 36 minutes playing video games?
b. The predicted number of minutes spent with family is:_________

Answers

Answer:

81.432 minutes

Step-by-step explanation:

Given the following :

Video Games (Mins) - - - Time with Family(Mins)

40 - - - - - - - - - - - - - - - - - - - 80

55 - - - - - - - - - - - - - - - - - - - 75

70 - - - - - - - - - - - - - - - - - - - 69

85 - - - - - - - - - - - - - - - - - - - 64

Best fit line:

ý = -0.363x +94.5

For someone who spent 36 minutes playing video games, the predicted number of minutes spent with family according to the best fit line will be:

Here number of minutes playing video games '36' is the independent variable

ý is the dependent or predicted variable ;

94.5 is the intercept

ý = -0.363(36) +94.5

ý = −13.068 + 94.5

ý = 81.432 minutes

Which is about 81 minutes to the nearest whole number.

T= 2pi times the sqrt of l/g (l=2.0m; g= 10m/s^2

Answers

Answer:

v (m/s) a(m/s2). √. ½. 0. ¼. √. -¼. Movimiento circular y M.A.S. Un punto se mueve ... como la que se ilustra en la figura, llamada onda cuadrada. ... Movimiento Armónico Simple I. Una partícula cuya masa es de 1 g vibra con movimiento ... Multiplicando por el Periodo de oscilación del sistema T (con ... distancia de 10 m?

Step-by-sv (m/s) a(m/s2). √. ½. 0. ¼. √. -¼. Movimiento circular y M.A.S. Un punto se mueve ... como la que se ilustra en la figura, llamada onda cuadrada. ... Movimiento Armónico Simple I. Una partícula cuya masa es de 1 g vibra con movimiento ... Multiplicando por el Periodo de oscilación del sistema T (con ... distancia de 10 m?tep explanation:

HELP ASAP ROCKY!!! will get branliest.​

Answers

Answer:

Hey there!

The slope is -1/3, because the rise over run is -1/3.

Let me know if this helps :)

Help me I’m stuck please

Answers

Answer:

choice 1,2,4,5 from top to bottom

Step-by-step explanation:

1:the points given are in the line where both planes intersect

2:point H is not on any plane

3:in the diagram point F is on plane R so false

4:if you connect the points given they will intersect so not collinear

5:the points F and G are on the plane R

6:so F is on plane R but H is not on any do false

The graph below represents the function f.
f(x)

if g is a quadratic function with a positive leading coefficient and a vertex at (0,3), which statement is true?

А.
The function fintersects the x-axis at two points, and the function g never intersects the x-axis.

B
The function fintersects the x-axis at two points, and the function g intersects the x-axis at only one point.

c.
Both of the functions fand g intersect the x-axis at only one point.

D
Both of the functions fand g intersect the x-axis at exactly two points.

Answers

Answer: А.

The function f intersects the x-axis at two points, and the function g never intersects the x-axis.

Step-by-step explanation:

In the graph we can see f(x), first let's do some analysis of the graph.

First, f(x) is a quadratic equation: f(x) = a*x^2 + b*x + c.

The arms of the graph go up, so the leading coefficient of f(x) is positive.

The vertex of f(x) is near (-0.5, -2)

The roots are at x = -2 and x = 1. (intersects the x-axis at two points)

Now, we know that:

g(x) has a positive leading coefficient, and a vertex at (0, 3)

As the leading coefficient is positive, the arms go up, and the minimum value will be the value at the vertex, so the minimum value of g(x) is 3, when x = 0.

As the minimum value of y is 3, we can see that the graph never goes to the negative y-axis, so it never intersects the x-axis.

so:

f(x) intersects the x-axis at two points

g(x) does not intersect the x-axis.

The correct option is A.

Answer:

The answer is A.) The function f  intersects the x-axis at two points, and the function g never intersects the x-axis.

Step-by-step explanation:

I took the test and got it right.

Use the order of operations to simplify this expression 1.2x3.5x4.1= What

Answers

[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]

$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$

$=(3+0.5+0.6+0.1)(4+0.1)$

$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$

$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$

$=16+0.4+0.8+0.02=17.22$

Need Assistance
Please Show Work​

Answers

Answer:

3 years

Step-by-step explanation:

Use the formula I = prt, where I is the interest money made, p is the starting amount of money, r is the interest rate as a decimal, and t is the time the money was borrowed.

Plug in the values and solve for t:

108 = (1200)(0.03)(t)

108 = 36t

3 = t

= 3 years

which expression have a value of 2/3
A: 8+(24 divided by 12) X 4
B:8+24 divided by (12X4)
C: 8+24 divided 12X4
D: (8+24) divided (12X4)

Answers

B is the correct answer!
32 / 48 =2/3

Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.

Answers

Answer:

√(x)

Step-by-step explanation:

(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2

1/2 is same as 2^-1

so therefore we can simplify the above as

x^-(-1/2)

x^(1/2)

and 4^(1/2)

is same as √(4)

so we conclude as

√(x)

Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r

Answers

Answer:

Note that orthogonal to the plane means perpendicular to the plane.

Step-by-step explanation:

-1x+3y-3z=1 can also be written as -1x+3y-3z=0

The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).

Let us find a point on this  line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively

Therefore, the vector equation is given as:

-1(x-0) + 3(y-0) + -3(z-5) = 0

-x + 3y + (-3z+15) = 0

-x + 3y -3z + 15 = 0

Multiply through by - to get a positive x coordinate to give

x - 3y + 3z - 15 = 0

Identify each x-value at which the slope of the tangent line to the function f(x) = 0.2x^2 + 5x − 12 belongs to the interval (-1, 1).

Answers

Answer:

Step-by-step explanation:

Hello, the slope of the tangent is the value of the derivative.

f'(x) = 2*0.2x + 5 = 0.4x + 5

So we are looking for

[tex]-1\leq f'(x) \leq 1 \\ \\<=> -1\leq 0.4x+5 \leq 1 \\ \\<=> -1-5=-6\leq 0.4x \leq 1-5=-4 \\ \\<=> \dfrac{-6}{0.4}\leq 0.4x \leq \dfrac{-4}{0.4} \\\\<=> \boxed{-15 \leq x\leq -10}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Using derivatives, it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

What is the slope of the tangent line to a function f(x) at point x = x_0?

It is given by the derivative at x = x_0, that is:

m = f'(x_0)

In this problem, the function is:

f(x) = 0.2x^2 + 5x − 12

Hence the derivative is:

f'(x) = 0.4x + 5

For a slope of -1, we have that,

0.4x + 5 = -1

0.4x = -6

x = -15.

For a slope of 1, we have that,

0.4x + 5 = 1.

0.4x = -4

x = -10

Hence it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

More can be learned about derivatives and tangent lines at;

brainly.com/question/8174665

#SPJ2

Other Questions
A 1.2-m length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x= 5.0m on x-axis.a. 1.6 nt in the negative z direction b. 1.6 nt in the positive z direction c. 2.4 T in the positive z direction d. 2.4 nt in the negative z direction e. None of the above Please answer this correctly without making mistakes Write a differential equation that fits the physical description. The at time t is proportional to the power of its . If 2y = 6 - 3x, find y when x = 0 At dinner, 100 students pass through the cafeteria line and were served meals. 40 fish entrees and 60 pasta entrees were served to the students. A total of 20 students chose neither entree. Assuming all students were served zero, one, or two entrees, how many students were served two entrees 4. Which technological innovation had the greatest impact on the growth of the US into an industrialized society? Explain. Steel (Bessemer Process) Oil5. Who was the most influential businessman of the late 20th century? Explain. John D. Rockefeller Andrew Carnegie J.P. Morgan Cornelius Vanderbilt6. Which labor union had the greatest impact on the lives of workers? Explain. American Federation of Labor Knights of Labor International Workers of the World Please answer this question now The spread of AIDS in small-scale societies is often attributed to witchcraft and sorcery because: Select one: a. AIDS is a poorly understood disease of which there is no clear cause in the minds of the people b. modern medicine is relatively ineffective in treating AIDS c. AIDS appears to strike random, especially among the poor d. all of the above 4. Mathew is a brand manager for a large chocolate producer. Every six months, Mathew and a team of colleagues review the new product proposals that come from employees and managers and choose two that the company will pursue. This activity is part of What would happen to the rate of a reaction with rate law rate = k [NO]2[Hz] ifthe concentration of NO were doubled? Define, and identify the differences between a real estate broker, real estate associate broker, and real estate salesperson. Help!!!!!!! Thank you!!!!!!! Which of the following are assumptions of the sustainable (self-supporting) growth model? Check all that apply. The firm maintains a constant net profit margin. The firms liabilities and equity must increase at the same rate. The firm pays no dividends. The firm maintains a constant ratio of liabilities to equity. Which examination technique is the visualization of body parts in motion by projecting x-ray images on a luminous fluorescent screen? Which value would complete the last cell?(1 point)3.0100.025.04.0 The ratio of boys to girls in the ninth grade is 7 to 9. there are 218 girls set up a proportion to model this information what are the origins of Islam and the life and teachings of muhammad TB MC Qu. 8-174 LBC Corporation makes and sells ... LBC Corporation makes and sells a product called Product WZ. Each unit of Product WZ requires 2.0 hours of direct labor at the rate of $16.00 per direct labor-hour. Management would like you to prepare a Direct Labor Budget for June. The company plans to sell 39,000 units of Product WZ in June. The finished goods inventories on June 1 and June 30 are budgeted to be 610 and 110 units, respectively. Budgeted direct labor costs for June would be: Consider the circle of radius 10 centered at the origin. Find an equation of the line tangent to the circle at the point (6, 8) In situations where rivals can readily copy the successful features of a company's strategy or duplicate its attempts to attract customers, the only dependable path to competitive advantage is for a company to staff the company's organization with smarter and more talented people. outexecute rivals by developing a collection of resources and capabilities that enables the company to perform certain important value chain activities at lower cost than rivals or with greater effectiveness than rivals (thereby gaining the ability to deliver more value to customers via either a lower price or a more appealing product). do a better job of training, empowering, motivating, and compensating employees than rivals. perform value chain activities quicker or faster than rivals can. outsource more value chain activities than rivals do and thereby achieve lower operating costs.