The probability that less than 70 are dissatisfied with their vacation time is approximately 0.000008.
The normal distribution can be used to approximate this binomial distribution.
The probability that less than 70 are dissatisfied with their vacation time is approximately 0.0082, using the normal curve approximation.
How to Solve the Probability?Using the binomial formula:
n = 500
p = 0.16
q = 1 - p = 0.84
We want to find P(X < 70), where X is the number of people out of 500 who are dissatisfied with their vacation time.
P(X < 70) = Σi=0^69 (500 choose i) * 0.16^i * 0.84^(500-i)
Using technology, we can find this probability to be approximately 0.000008.
To show that this distribution can be approximated by the normal distribution, we need to check if the conditions for the normal approximation are met:
np = 500 * 0.16 = 80 ≥ 10
nq = 500 * 0.84 = 420 ≥ 10
Since both conditions are met, we can use the normal distribution to approximate this binomial distribution.
To use the normal curve to approximate the probability that less than 70 are dissatisfied with their vacation time, we need to standardize the binomial distribution:
μ = np = 80
σ = sqrt(npq) = sqrt(500 * 0.16 * 0.84) ≈ 4.58
We want to find P(X < 70), which is equivalent to finding the probability that a standard normal variable Z is less than (69.5 - 80) / 4.58 = -2.37.
Using a standard normal table or technology, we find this probability to be approximately 0.0082.
Therefore, the probability that less than 70 are dissatisfied with their vacation time is approximately 0.0082, using the normal curve approximation.
Learn more about probability here: https://brainly.com/question/30912058
#SPJ1
The surface area of a globe in Mr.Patton’s classroom is about 452.39 square inches. Find its volume in cubic inches . Use 3.14 for pi. Round to the nearest whole number
The volume of the globe is 905 cubic inches, for the given surface area.
What is surface area?The area is the area occupied by a two-dimensional flat surface. It has a square unit of measurement. The surface area of a three-dimensional object is the space taken up by its outer surface. The region that includes the base(s) and the curved portion is referred to as the total surface area. It is the overall area that the object's surface occupies. The total area of a form with a curved base and surface is equal to the sum of the two areas.
The volume of the globe is given as:
V = 4/3πr³
The surface area if given as:
SA = 4πr²
Substituting the values of the given SA we have:
452.39 = 4 * 3.14(r²)
r = 6.01
Now, substitute the value of r in the equation of volume we have:
V = 4/3(3.14)(6.01)³
V = 904.78.
Hence, the volume of the globe is 905 cubic inches, for the given surface area.
Learn more about surface area here:
https://brainly.com/question/9267281
#SPJ1
Please help me answer part 1, part 2, and part 3 question ASAP!!
Will mark as brainliest if correct and 50+ points!
Answer:
Step-by-step explanation:
Section 1
1: 2x + 20
2. 8x - 49
3: 7x + 21
4.8x - 4
5. 15x + 5
6. 12x + 15
7. 20x - 50
8. 21x + 14
9. 24x - 6
10. 45x - 18
11. 18x - 8
12. 30x + 9
13. 24x + 36
14. 25x - 20
15. 14x - 63
16. 32x + 20
17. 24x - 10
18. 42x - 18
19. 24x - 80
20. 48x - 32
in a class if 108 students, 60 like football, 53 like Tennis and 10 like neither. calculate the number of students who like football but not tennis
Answer:
60 - 10 = 50
;
;
;
;
;
;
;
;
NEED HELP ASAP 10 PONTS!!! please help me find the area and the perimeter!!!! i beg you at this point.
Answer: Area = 113.14 ft sq. Perimeter =
Step-by-step explanation:
break down the figure and solve area and perimeter for each
triangle = A = 1/2bh
A = 1/2 (8) (6)
A = 24 ft sq.
square = A = LW
A = (8) (8)
A = 64 ft sq
semi circle = A = 1/2 TT r^2
A = 1/2 (3.14) (4)^2
A = 1/2 (3.14) (16)
A = approximately 25.14 ft sq
rounded to hundredths
total AREA = 24 + 64 + 25.14 = 113.14
now we can find perimeter by breaking down the figures again
triangle
we know one leg is 6 ft and the other is 8 ft
we need to find the hypoteneuse using Pythagorean theorem.
a^2 + b^2 = c^2
6^2 = 8^2 = c^2
36 + 64 = c^2
100 = c^2
√100 = √c^2
10 ft = c
square
given two sides are 8ft and 8ft
semi circle - P is the same as circumference
P = ( 1/2 ) 2 π r
P = (1/2) (2) (3.14) (4)
P = 12.56
total PERIMETER = 12.56 + 8 + 8 + 6 + 10 = 44.56 ft
i attached a print screen showing my breakdowns
Let S be the universal set, where:
S={1,2,3,...,18,19,20}
Let sets A and B be subsets of S, where:
The elements in the set (A∩B¹) = {2,11,12,} and (B∩A¹) ={5,7,8,9,13,15,16,18}
What is set theory?You should understand that Set theory is a branch of mathematical logic that studies sets, which can be informally described as collections of objects such as numbers, alphabets and variables.
The universal set
S = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
A = {1,2,6,11,12,19,20}
B = {1,5,6,7,8,9,13,15,16,18,19,20}
S = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
B¹ = {2.3.4.10.11.12.14.17)
A = {1,2,6,11,12,19,20}
(A∩B¹) = {2,11,12,}
The elements of (B∩A¹) is
S = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
A = {1,2,6,11,12,19,20}
A¹ = {3,4,5,7,8,9,10,13,14,15,16,17,18}
B = {1,5,6,7,8,9,13,15,16,18,19,20}
(B∩A¹) = {5,7,8,9,13,15,16,18}
Learn more about set theory on https://brainly.com/question/27333813
#SPJ1
Assuming that the equation defines a differential function of x, find Dxy by implicit differentiation. 4)2xy-y2 = 1 5) xy + x + y = x2y2
For the equations 2xy - y^2 = 1 and xy + x + y = x^2y^2 using implicit differentiation the value Dxy is given by Dxy = (1 - 2xy + 3y^2)/(x - y)^3 and Dxy = (2y^2 - 2xy - 3y - 1)/(x - 2xy + 1)^3 respectively.
Equation 2xy - y^2 = 1,
Differentiate both sides of the equation with respect to x,
Treating y as function of x and then differentiate again with respect to x.
Using implicit differentiation,
First, differentiate both sides with respect to x,
2y + 2xy' - 2yy' = 0
Next, solve for y',
⇒2xy' - 2yy' = -2y
⇒y' (2x - 2y) = -2y
⇒y' = -y/(x - y)
Now, differentiate again with respect to x,
y''(x - y) - y'(2x - 2y) = y/(x - y)^2
Substitute the expression we obtained for y' in terms of y and x,
y''(x - y) - (-y/(x - y))(2x - 2y) = y/(x - y)^2
Simplify and solve for y'',
y''(x - y) + (2xy - 3y^2)/(x - y)^2 = 1/(x - y)^2
The expression for Dxy is,
Dxy = (1 - 2xy + 3y^2)/(x - y)^3
For the equation xy + x + y = x^2y^2,
Differentiate both sides of the equation with respect to x,
Using implicit differentiation,
First, differentiate both sides with respect to x,
⇒y + xy' + 1 + y' = 2xyy'
Solve for y',
⇒xy' - 2xyy' + y' = -y - 1
⇒y' (x - 2xy + 1) = -y - 1
⇒y' = -(y + 1)/(x - 2xy + 1)
Now, differentiate again with respect to x,
y''(x - 2xy + 1) - y'(2y - 2x y' + 1) = (y + 1)/(x - 2xy + 1)^2
Substitute the expression we obtained for y' in terms of y and x,
y''(x - 2xy + 1) - (-y - 1)/(x - 2xy + 1)^2 (2y - 2x y' + 1) = (y + 1)/(x - 2xy + 1)^2
Simplify and solve for y''
y''(x - 2xy + 1) - (2y^2 - 2xy - 2y)/(x - 2xy + 1)^2 = (y + 1)/(x - 2xy + 1)^2
The expression for Dxy is,
Dxy = (2y^2 - 2xy - 3y - 1)/(x - 2xy + 1)^3
Therefore , the value of Dxy using implicit differentiation for two different functions is equal to
Dxy = (1 - 2xy + 3y^2)/(x - y)^3 and Dxy = (2y^2 - 2xy - 3y - 1)/(x - 2xy + 1)^3
Learn more about implicit differentiation here
brainly.com/question/20709669
#SPJ4
the expression the quantity cosecant squared of theta minus 1 end quantity over cotangent of theta simplifies to which of the following?
Students were asked to simplify the expression using trigonometric identities:
A. student A is correct; student B was confused by the division
B. 3: cos²(θ)/(sin(θ)csc(θ)); 4: cos²(θ)
Trigonometric Identities are equality statements that hold true for all values of the variables in the equation and that use trigonometry functions.
There are several distinctive trigonometric identities that relate a triangle's side length and angle. Only the right-angle triangle is consistent with the trigonometric identities.
The six trigonometric ratios serve as the foundation for all trigonometric identities. Sine, cosine, tangent, cosecant, secant, and cotangent are some of their names.
Each student correctly made use of the trigonometric identities
cosec(θ) = 1/sin(θ)
1 -sin²(θ) = cos²(θ)
A.
Student A's work is correct.
Student B apparently got confused by the two denominators in Step 2, and incorrectly replaced them with their quotient instead of their product.
The transition from Step 2 can look like:
[tex]\frac{(\frac{1-sin^2\theta}{sin\theta} )}{cosec\theta} =\frac{1-sin^2\theta}{sin\theta} .\frac{1}{cosec\theta} =\frac{cos^2\theta}{(sin\theta)(cosec\theta)}[/tex]
Learn more about Simplify expressions:
https://brainly.com/question/29163610
#SPJ4
Complete question:
Students were asked to simplify the expression the quantity cosecant theta minus sine theta end quantity over cosecant period Two students' work is given. (In image below)
Part A: Which student simplified the expression incorrectly? Explain the errors that were made or the formulas that were misused. (5 points)
Part B: Complete the student's solution correctly, beginning with the location of the error. (5 points)
a water park sold 1679 tickets for total of 44,620 on a wa summer day..each adult tocket is $35 and each child ticket is $20. how many of each type of tixkwt were sold?
Therefore , the solution of the given problem of unitary method comes out to be the attraction sold 943 child tickets and 736 adult tickets on that particular day.
What is an unitary method?It is possible to accomplish the objective by using previously recognized variables, this common convenience, or all essential components from a prior malleable study that adhered to a specific methodology. If the expression assertion result occurs, it will be able to get in touch with the entity again; if it does not, both crucial systems will undoubtedly miss the statement.
Here,
Assume the attraction sold x tickets for adults and y tickets for kids.
Based on the supplied data, we can construct the following two equations:
=> x + y = 1679 (equation 1, representing the total number of tickets sold)
=> 35x + 20y = 44620 (equation 2, representing the total revenue generated)
Using the elimination technique, we can find the values of x and y.
When we divide equation 1 by 20, we obtain:
=> 20x + 20y = 33580 (equation 3)
Equation 3 is obtained by subtracting equation 2 to yield:
=> 15x = 11040
=> x = 736
When we enter x = 736 into equation 1, we obtain:
=> 736 + y = 1679
=> y = 943
As a result, the attraction sold 943 child tickets and 736 adult tickets on that particular day.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
Write the function in factored form. Check by multiplication.
y = - 4x³ - 16x² +84x
y= (Factor completely.)
Answer:
Step-by-step explanation:
We can factor out a common factor of -4x from the equation:
y = -4x(x² + 4x - 21)
To factor the quadratic expression in the parentheses, we need to find two numbers that multiply to -21 and add to 4. These numbers are 7 and -3:
y = -4x(x + 7)(x - 3)
To check our work, we can multiply the three factors:
y = -4x(x + 7)(x - 3) = -4x(x² + 4x - 21) = -4x³ - 16x² + 84x
So the factored form is y = -4x(x + 7)(x - 3), and the check shows that we have factored the equation correctly.
Please indicate which is the best answer to complete the figure below.
Answer:b
Step-by-step explanation:
3x + y = 6
Y + 2 = x
Answer: x = 2, y = 0
Step-by-step explanation:
Assuming you need help solving for x or y, and the capital Y is y, we have the system of equations:
3x + y = 6
y + 2 = x
Substituting x for y + 2 gives us
3(y + 2) + y = 6
3y + 6 + y = 6
4y = 0
y = 0
Plugging y = 0 in for the second equation gives us
x = 0 + 2, or x = 2
TERM 1 ASSIGNMENT GRADE 7 Question 3 3.1. Calculate the following WITHOUT using a calculator; 3.1.1 6234 ×32
Answer: 6234 × 32 = 199488.
Step by step:
To calculate 6234 × 32 without using a calculator, you can use the traditional multiplication method as follows:
6234
x 32
-------
12468 (2 x 6234)
+ 62340 (3 x 6234 with a zero added)
--------
199488
A block of mass 2kg is attached to the spring of spring constant 50Nm −1. The block is pulled to a distance of 5 cm from its equilibrium position at x=0 on a horizontal frictionless surface from rest at t = 0. The displacement of the block at any time t is thenA. x= 0.05sin5tmB. x= 0.05cos5tmC. x= 0.5sin5tmD. x= 5sin5tm
The displacement of the block at any time t is then x= 0.05cos5tm. (option b).
Now, when the block is released, it starts oscillating back and forth about its equilibrium position due to the force exerted by the spring. This motion is described by the equation of motion for a simple harmonic oscillator:
x = Acos(ωt + φ)
The angular frequency ω of the oscillation is given by:
ω = √(k/m)
where k is the spring constant and m is the mass of the block.
Substituting the given values of k and m, we get:
ω = √(50/2) = 5 rad/s
The phase angle φ depends on the initial conditions of the system, i.e., the initial displacement and velocity of the block. Since the block is initially at rest, its initial velocity is zero and the phase angle is zero as well.
Therefore, the equation of motion for the displacement of the block is:
x = 0.05cos(5t)
Hence, option B, x = 0.05cos(5t), is the correct answer.
To know more about displacement here
https://brainly.com/question/24642562
#SPJ4
A bag has 4 blue marbles, 3 green marbles, and 5 red
marbles. You select 2 marbles one at a time without
replacement.
Determine the probability the first marble is blue and
the second marble is green Round your answer to
the hundredths place.
The probability of selecting a blue marble on the first draw and a green marble on the second draw is 0.09.
What is probability?
Probability is a measure of the likelihood of an event occurring. It is a number between 0 and 1, where 0 means the event is impossible and 1 means the event is certain to happen.
There are 12 marbles in total in the bag, so the probability of selecting a blue marble on the first draw is 4/12.
After the first marble is drawn, there are 11 marbles left in the bag, so the probability of selecting a green marble on the second draw, given that the first marble was blue and has already been removed, is 3/11.
To determine the probability of both events occurring together, we multiply the probabilities. Therefore, the probability of selecting a blue marble on the first draw and a green marble on the second draw is:
(4/12) * (3/11) = 0.0909
Rounding to the hundredth place, the probability is approximately 0.09.
Therefore, the probability of selecting a blue marble on the first draw and a green marble on the second draw is 0.09.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
PLease help me and answer the questions in the picture below you will make my day!
Answer:
b the solution is (3,5)
Step-by-step explanation:
look at the points where the lines intersect
use the equation that you wrote in excerise 21 to find the number of vertices of a cube, which has 12 edges and 6 faces
The cube has 8 vertices. Exercise 21 states that for a polyhedron with V vertices, E edges, and F faces, the following equation holds:
V - E + F = 2
To use this equation to find the number of vertices of a cube with 12 edges and 6 faces, we first need to identify the values of E and F.
A cube has 12 edges, as given in the problem statement, and it has 6 faces since a cube has 6 square faces.
Substituting these values into the equation, we get:
V - 12 + 6 = 2
Simplifying this equation, we have:
V - 6 = 2
Adding 6 to both sides, we get:
V = 8
To know more about vertices as a cube:
https://brainly.com/question/30133495
#SPJ4
Decrease R450 in the ratio 9:8
The value of R500 decrease to ratio 9:8 is x = 400.
What is cross multiplication?By using the cross multiplication approach, the denominator of the first term is multiplied by the numerator of the second term, and vice versa. Using the mathematical rule of three, we may determine the answer based on proportions. The best illustration is cross multiplication, where we may write in a percentage to determine the values of unknown variables.
Given that, decrease R450 in the ratio 9:8.
Let 9 = 450
Then 8 will have the value = x.
That is,
9 = 450
8 = x
Using cross multiplication we have:
9x = 450(8)
x = 50(8)
x = 400
Hence, the value of R500 decrease to ratio 9:8 is x = 400.
Learn more about cross multiplication here:
https://brainly.com/question/29190202
#SPJ1
HELP ASAP PLEASE! A yard plan includes a rectangular garden that is surrounded by bricks. In the drawing, the garden is 7 inches by 4 inches. The length and width of the actual garden will be 35 times larger than the length and width in the drawing.
What is the perimeter of the drawing? Show your work.
What is the perimeter of the actual garden? Show your work.
What is the effect on the perimeter of the garden with the dimensions are multiplied by 35? Show your work.
The perimeter of the garden in the drawing is 22 inches and the perimeter of the actual garden is 770 inches
The perimeter of the drawingThe perimeter of the garden in the drawing is calculated as
Perimeter of garden in drawing = 2(length + width)
So, we have
Perimeter of garden in drawing = 2(7 inches + 4 inches)
Evaluate
Perimeter of garden in drawing = 22 inches
So the perimeter of the garden in the drawing is 22 inches.
The perimeter of the actual gardenFor the perimeter of the actual garden, we have
Perimeter of actual garden = 22 inches * 35
Perimeter of actual garden = 770 inches
The effect on the perimeterWe can see that the perimeter of the actual garden is 35 times larger than the perimeter of the garden in the drawing.
This makes sense since the length and width of the actual garden are 35 times larger than the length and width in the drawing, so the perimeter (which is the sum of the lengths of all four sides) would also be 35 times larger.
Read more about scale drawing at
https://brainly.com/question/29229124
#SPJ1
I’m having a hard time understanding how to get the Domain and Range. If you help please
Answer:
[-1,inf) and [-2,inf)
Step-by-step explanation:
Domain is all the X coordinates that the function will pass through. it starts at -1 and goes to inf so [-1,inf) is the domain. The range is all the Y coordinates the function will pass through. It starts at -2 and goes up to inf so [-2,inf) and that is your answer
Please help !!!! Given m∥n, find the value of x.
(3x+5) (x-25) = 180 degrees
Answer:
Step-by-step explanation:
[tex](3x+5)+(x-25)=180 \text{ \ (angles on a straight line are supplementary)}[/tex]
[tex]4x-20=180[/tex]
[tex]4x=200[/tex] (+20 both sides)
[tex]x=50[/tex] (÷4 both sides)
A regular hexagon is inscribed into a circle. Find the length of the side of the hexagon, if the radius of the circle is 12 cm.
A. 20 cm
B. 18 cm
C. 16 cm
D. 12 cm
E. None of these
The length of the side of the hexagon is 12 cm and option d is the correct answer.
What is a regular polygon?A regular polygon is a closed shape made up of straight line segments with sides and angles that are all of the same length. For instance, a regular hexagon is a polygon having six equal-length sides and six equal-sized angles. Regular polygons have a variety of intriguing characteristics. For instance, their diagonals (lines connecting non-adjacent vertices) all intersect at a single point, and their centre of symmetry is located at the centre of the polygon's circumscribed circle (the circle that passes through all of the polygon's vertices).
Given that, regular hexagon is inscribed into a circle.
The radius of a circle enclosing a regular hexagon is the same as the length of the hexagon's sides.
Hence, the length of the side of the hexagon is 12 cm and option d is the correct answer.
Learn more about hexagon here:
https://brainly.com/question/28762234
#SPJ1
Please help fast!! Find the slope of a line parallel to the line whose equation is 3x+18y=−486.
Fully simplify your answer.
Answer: -1/6
Step-by-step explanation:
Put the equation into y = mx + b (slope) form.
3x + 18y = -486
18y = -3x - 486
y = -1/6x - 27
If the line is parallel to this line, the slope must be the same.
Consider the line segment AB
shown. Which of the following
locations for point C makes ABC a right triangle with hypotenuse AB?
A - C(7,9)
B - C(1,4)
C - C(2,3)
D - C(8,7)
Consider the line segment AB shown the locations for point C makes ABC a right triangle with hypotenuse AB
C - C(2,3)How to find point C with hypotenuse ABIn a coordinate pair the points are as represented as (x, y).
The point that forms the right triangle is located by tracing the point on the x axis of of the point A and the point on the y axis of the point B. This is done below
A (2, 1) point on x axis here is 2B (9, 3) point on y axis here is 3therefore we can say that the point C that forms the right triangle is
C (2, 3)
Learn more about right triangle at:
https://brainly.com/question/2437195
#SPJ1
PLEASE HELP!!! 40 points.
Answer:
D. 7/5
Step-by-step explanation:
In right triangle ABC with right angle C,
sinA = 4/5 = cosB
cosA = 3/5 = sinB
sinB + cosB = 3/5 + 4/5 = 7/5
What is the Taylor's series for 1+3e^x+1 at x=0
Answer:
To find the Taylor series of a function f(x) about a point a, we can use the following formula:
f(x) = f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...
where f'(a), f''(a), f'''(a), ... denote the first, second, third, ... derivatives of f evaluated at a.
In this case, we have:
f(x) = 1 + 3e^(x+1)
To find the Taylor series about x=0, we need to evaluate the function and its derivatives at x=0.
f(0) = 1 + 3e^(0+1) = 1 + 3e
f'(x) = 3e^(x+1)
f'(0) = 3e^(0+1) = 3e
f''(x) = 3e^(x+1)
f''(0) = 3e^(0+1) = 3e
f'''(x) = 3e^(x+1)
f'''(0) = 3e^(0+1) = 3e
and so on.
Substituting these values into the formula for the Taylor series, we get:
f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ...
= (1 + 3e) + 3ex + 3ex^2/2! + 3ex^3/3! + ...
= 1 + (3 + 3e)x + (3/2)e x^2 + (1/2)e x^3 + ...
Therefore, the Taylor series for 1+3e^x+1 about x=0 is:
1 + (3 + 3e)x + (3/2)e x^2 + (1/2)e x^3 + ...
Can someone please tell me what 5 divided by 1/3 is?
Answer:
15.
The trick to working out 5 divided by 1/3 is similar to the method we use to work out dividing a fraction by a whole number.All we need to do here is multiply the whole number by the numerator and make that number the new numerator. The old numerator then becomes the new denominator.
So, the answer to the question "what is 5 divided by 1/3?" is
15!
Also, please mark me as Brainliest! It would really be appreciated :D (just click the little crown)
A bicycle wheel is 63m in diameter. how many metres does the bicycle travel for 100 revolutions of the wheel. (pie=²²/⁷
Answer:
19782m
Step-by-step explanation:
1 revolution = circumference
circumference = π * diameter
π = 3.1416
Then
circumference = 3.1416 * 63
= 197.92m
1 revolution = 197.82m
100 revolutions = 100*197.82m
= 19782m
Answer:
19.8 km
Step-by-step explanation:
To find:-
The distance travelled in 100 revolutions .Answer:-
We are here given that,
diameter = 63mWe can first find the circumference of the wheel using the formula,
[tex]:\implies \sf C = 2\pi r \\[/tex]
Here radius will be 63/2 as radius is half of diameter. So on substituting the respective values, we have;
[tex]:\implies \sf C = 2\times \dfrac{22}{7}\times \dfrac{63}{2} \ m \\[/tex]
[tex]:\implies \sf C = 198\ m \\[/tex]
Now in one revolution , the cycle will cover a distance of 198m . So in 100 revolutions it will cover,
[tex]:\implies \sf Distance= 198(100)m\\[/tex]
[tex]:\implies \sf Distance = 19800 m \\[/tex]
[tex]:\implies \sf Distance = 19.8 \ km\\[/tex]
Hence the bicycle would cover 19.8 km in 100 revolutions.
TRUE OR FALSE to calculate the average of the numeric values in a list, the first step is to get the total of values in the list.
The given statement 'to calculate the average of the numeric values in a list the first step is to get the sum of all the given values ' is a true.
Average of the numeric values in a list,
First step is to get the sum of values in the list.
It is not the total number of values.
Once we have the sum, we can divide it by the number of values to get the average.
Here is an example,
Suppose we have a list of numeric values are as follow,
[2, 4, 6, 8, 10].
To calculate the average of these values, we first find their sum,
2 + 4 + 6 + 8 + 10 = 30
Next,
divide the sum by the number of values in the list
Number of values = 5
30 / 5 = 6
This implies,
The average of the values in the list is 6.
Therefore, to get the average first step is to get the total of all values is true statement.
Learn more about average here
brainly.com/question/29635181
#SPJ4
Cody has $7 dollars. he wants to buy at least 4 snacks. Hot dogs (x) and $2 each. Peanuts (y) are $1 each. which ordered pair is a solution
Since we can't find an ordered pair (x, y) that satisfies all the conditions, there is no solution to this problem.
What is equation?An equation is a mathematical statement that asserts the equality of two expressions. It typically contains variables, coefficients, and mathematical operations such as addition, subtraction, multiplication, and division. The goal of solving an equation is to find the value(s) of the variable(s) that make the equation true. Equations can be used to model relationships between variables, solve real-world problems, and make predictions.
Here,
Let's start by defining the variables:
x: number of hot dogs
y: number of peanuts
We need to find an ordered pair (x, y) that satisfies the following conditions:
x and y are both integers
x is greater than or equal to 0
y is greater than or equal to 0
2x + y ≤ 7 (total cost of snacks can't exceed $7)
x ≥ 4 (at least 4 snacks)
We can use trial and error to find a suitable ordered pair. Let's start with x = 4 and see if we can find a corresponding y value that satisfies the conditions:
If x = 4, then the total cost of hot dogs is 4 * $2 = $8.
We need to spend no more than $7, so we have $7 - $8 = -$1 left for peanuts.
Since we can't spend a negative amount of money, there is no solution for x = 4.
Let's try x = 5:
If x = 5, then the total cost of hot dogs is 5 * $2 = $10.
We have $7 - $10 = -$3 left for peanuts, so there is no solution for x = 5 either.
Finally, let's try x = 6:
If x = 6, then the total cost of hot dogs is 6 * $2 = $12.
We have $7 - $12 = -$5 left for peanuts, so there is no solution for x = 6 either.
To know more about equation,
https://brainly.com/question/28243079
#SPJ1
Complete question:
Cody has $7 dollars. he wants to buy at least 4 snacks. Hot dogs (x) and $2 each. Peanuts (y) are $1 each. Find the solution for this question of equation?
Jason invested $5,500 in an account paying an interest rate of 1 7/8 % compounded quarterly. Kayden invested $5,500 in an account paying an interest rate of 1 3/8 % compounded annually. After 8 years, how much more money would Jason have in his account than Kayden, to the nearest dollar?
Using compounding we know that the additional amount Jason has more than Kayden is $249.48.
What is compounding?Calculating interest on the principal borrowed as well as any prior interest.
In order to compute compound interest, multiply the principle of the original loan by the annual interest rate multiplied by the number of compound periods minus one.
So, the amount of Jason after 8 years:
Amount: $5500
Interest: 1.875%
Compounded: Quarterly
Using a compounding calculator:
Amount after 8 years: $6,387.85
The amount of Kayden:
Amount: $5500
Interest: 1.375%
Compounded: Quarterly
Using a compounding calculator:
Amount after 8 years: $6,138.37
The additional amount Jason got: 6,387.85 - 6,138.37 = $249.48
Therefore, using compounding we know that the additional amount Jason has more than Kayden is $249.48.
Know more about compounding here:
https://brainly.com/question/28020457
#SPJ1
Answer:253
Step-by-step explanation: