Answer:
positively skewed to the right
Step-by-step explanation:
The measure of the central tendency is a profound way to describe the mean, median and mode. The measure of central tendency indicates where the center of distribution tends to be. The measure of central tendency provide a validity and answers whether the scores are high or generally low.
In this measure,The mean is usually pulled to the tail. The skewed is determined by where the tail goes, to the right side , it is positively skewed and to the left side , it is known as negatively skewed distribution.
Given that:
In a frequency of distribution of 290 scores,
the mean = 99
the median = 86
One would expect this distribution to be; positively skewed to the right since the mean value is greater than the median value.
. A discount brokerage selected a random sample of 64 customers and reviewed the value of their accounts. The mean was $32,000 with a population standard deviation of $8,200. What is a 90% confidence interval for the mean account value of the population of customers
Answer:
The 90% confidence interval is [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 64
The sample mean is [tex]\= x = \$ 32, 000[/tex]
The standard deviation is [tex]\sigma= \$ 8, 200[/tex]
Given that the confidence interval is 90% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10 \%[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{ \sqrt{n} }[/tex]
=> [tex]E = 1.645 * \frac{ 8200 }{ \sqrt{64} }[/tex]
=> [tex]E = 1686.13[/tex]
The 90% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]32000 - 1689.13 < \mu < 32000 + 1689.13[/tex]
=> [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle?
Answer:
7.5 cm²
Step-by-step explanation:
Dimensions of the large ∆:
[tex] base (b) = 3cm, height (h) = 9cm [/tex]
[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]
Dimensions of the small ∆:
[tex] base (b) = 2cm, height (h) = 6cm [/tex]
[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]
Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²
Sherina wrote and solved the equation. x minus 56 = 230. x minus 56 minus 56 = 230 minus 56. x = 174. What was Sherina’s error?
Answer:
subtracting 56 instead of adding (or adding wrong)
Step-by-step explanation:
She wrote ...
x - 56 = 230
x - 56 - 56 = 230 -56 . . . . correct application of the addition property*
x = 230 -56 . . . . . . . . . . . . incorrect simplification
Correctly done, the third line would be ...
x -112 = 174
This would have made Sherina realize that the error was in subtracting 56 instead of adding it. The correct solution would be ...
x - 56 + 56 = 230 + 56 . . . using the addition property of equality
x = 286 . . . . . . . . . . . . . . . . correct simplification on both sides
__
There were two errors:
1) incorrect strategy --- subtracting 56 instead of adding
2) incorrect simplification --- simplifying -56 -56 to zero instead of -112
We don't know whether you want to count the error in thinking as the first error, or the error in execution where the mechanics of addition were incorrectly done.
_____
* The addition property of equality requires the same number be added to both sides of the equation. Sherina did that correctly. However, the number chosen to be added was the opposite of the number that would usefully work toward a solution.
Answer:
D: Sherina should have added 56 to both sides of the equation.
Step-by-step explanation:
I got a 100% on my test.
I hope this helps.
According to the United States Golf Association, the diameter of a golf ball should not be less than 42.67 millimeters. What is the estimate of this value rounded to the nearest tenth of a millimeter?
Answer:
42.7 mm
Step-by-step explanation:
To the nearest tenth of a mm, 42.67 mm would be 42.7 mm.
After estimate of this value rounded to the nearest tenth of a millimeter,
⇒ 42.67 ≈ 42.7
We have to given that,
According to the United States Golf Association, the diameter of a golf ball should not be less than 42.67 millimeters.
Hence, After estimate of this value rounded to the nearest tenth of a millimeter, we get;
⇒ 42.67
As, 7 is grater than 5, so we can add 1 to the tenth place.
⇒ 42.67 ≈ 42.7
Therefore, After estimate of this value rounded to the nearest tenth of a millimeter,
⇒ 42.67 ≈ 42.7
Learn more about the rounding number visit:
brainly.com/question/27207159
#SPJ2
The length of a rectangle is three times its width. If the perimeter of the rectangle is 160 cm, what are the dimensions of this rectangle?
Answer:
The dimensions or Area of the rectangle is 1200cm².
PLS HELP:Find all the missing elements:
Answer:
b = 9.5 , c = 15Step-by-step explanation:
For b
To find side b we use the sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]a = 7
A = 23°
B = 32°
b = ?
Substitute the values into the above formula
That's
[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex][tex] |b| \sin(23) = 7 \sin(32) [/tex]Divide both sides by sin 23°
[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]b = 9.493573
b = 9.5 to the nearest tenthFor cTo find side c we use sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]C = 125°
So we have
[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex][tex] |c| \sin(23) = 7 \sin(125) [/tex]Divide both sides by sin 23°
[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]c = 14.67521
c = 15.0 to the nearest tenthHope this helps you
Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5
If the sum of the daily unpaid balances is $7,812 over a 31-day billing cycle, what is the average daily balance?
Answer:
252
Step-by-step explanation:
Divide 7812 by 31 and we get the average daily answer... Hope this helps!!
What is the result of question?
Answer:
B
Step-by-step explanation:
x can not be greater than (1,325-270)/26 because $270 is fixed for the rental
Decide all proper subsets of A { 8 ,7 ,6 ,5 ,4 ,3 ,2 ,1} = A 1- { 4 ,3 ,2 ,1} 2- { } 3- { 9 ,8 ,7 } 4- { 11 ,2} 5- { 5 }
Answer:
A, E
Step-by-step explanation:
There should be 2^8-1 proper subsets of A. Its every one besides { }
write a thirdthird-degree polynomial expression that has only two terms with a leading term that has a coefficient of five and a constant of negative two
Answer:
5x^3-2
[tex]ax^{3} +bx^{2} +cx+d\\5x^{3}-given\\ d=-2-given\\5x^{3} -2[/tex]
Explanation:
The two terms are [tex]5x^3[/tex] and [tex]2[/tex]. Terms are separated by either a plus or minus.
We can write it as [tex]5x^3+(-2)[/tex] which is an equivalent form. Here the two terms are [tex]5x^3[/tex] and [tex]-2[/tex]. This is because adding a negative is the same as subtracting.
The coefficient is the number to the left of the variable.
The degree is the largest exponent, which helps form the leading term.
The third degree polynomial written above is considered a cubic binomial. "Cubic" refers to the third degree, while "binomial" means there are 2 terms.
We can write something like [tex]5x^3[/tex] as 5x^3 when it comes to computer settings.
What is the volume of a cube with a side length of
of a unit?
An engineer wishes to determine the width of a particular electronic component. If she knows that the standard deviation is 3.6 mm, how many of these components should she consider to be 90% sure of knowing the mean will be within ± 0.1 ±0.1 mm?
Answer:
She must consider 3507 components to be 90% sure of knowing the mean will be within ± 0.1 mm.
Step-by-step explanation:
We are given that an engineer wishes to determine the width of a particular electronic component. If she knows that the standard deviation is 3.6 mm.
And she considers to be 90% sure of knowing the mean will be within ±0.1 mm.
As we know that the margin of error is given by the following formula;
The margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]
Here, [tex]\sigma[/tex] = standard deviation = 3.6 mm
n = sample size of components
[tex]\alpha[/tex] = level of significance = 1 - 0.90 = 0.10 or 10%
[tex]\frac{\alpha}{2} = \frac{0.10}{2}[/tex] = 0.05 or 5%
Now, the critical value of z at a 5% level of significance in the z table is given to us as 1.645.
So, the margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]
0.1 mm = [tex]1.645 \times \frac{3.6}{\sqrt{n} }[/tex]
[tex]\sqrt{n} = \frac{3.6\times 1.645}{0.1 }[/tex]
[tex]\sqrt{n}[/tex] = 59.22
n = [tex]59.22^{2}[/tex] = 3507.0084 ≈ 3507.
Hence, she must consider 3507 components to be 90% sure of knowing the mean will be within ± 0.1 mm.
how do you figure out ratios? the problem is 12 quarters to 34 dollars. thanks
Step-by-step explanation:
When you have a ratio, you put one number as the numerator and than one number as the denominator.
so it would be (12/34)=(x/68)
In this example I made the ratio you are comparing it to have 68 dollars, so when you solve for the amount of quarters you need it should be 24, since all of the numbers in this example are just being doubled.
To solve for x, you multiply 68 on both sides of the equation, 68×(12/34)=x
24=x
So this proves that this is how ratios, are used. It also does not matter what number you place on the numerator or denominator.
What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24
Answer:
D question,somewhat confusing, itsit's like simultaneous equation,but values are different
Answer:
x = 4 + 2y/3
Step-by-step explanation:
How do you find x when knowing the probability?
Answer:
x
Step-by-step explanation:
probability is the branch of mathematics concerning numeral descriptions of how likely an event is to occur or how likely it is that a proposition is true
Megan has 12 pounds of cheesecake. On Monday, she and her friends eat 4 pounds. On Tuesday, she and her friends eat another 3 pounds. On Wednesday, her friend Mark gives her some more cheesecake so that she has 3 times as much as she had at the end of Tuesday. On Thursday, some of her cheesecake goes bad, so she has the amount that she had at the end of Wednesday, but divided by 5. On Friday, she gives 3 pounds to her dog. On Saturday, her mom gives her one more pound. On Sunday, how many pounds of cheesecake does Megan have left?
Answer:
Step-by-step explanation:
First we start with 12 pounds
On Monday, she and her friends eat 4 pounds. So we have 8 now.
On Tuesday, she and her friends eat another 3 pounds. So we gave 5 now.
On Wednesday, her friend Mark gives her some more cheesecake so that she has 3 times as much as she had at the end of Tuesday. 5 * 3 = 15
On Thursday, some of her cheesecake goes bad, so she has the amount that she had at the end of Wednesday, but divided by 5. She had 15 at the end of Wednesday. 15/5 = 3.
On Friday, she gives 3 pounds to her dog. 5 - 3 = 2.
On Saturday, her mom gives her one more pound. 2 + 1 = 3.
On Sunday, she finally has 3 pounds.
Answer:
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Step-by-step explanation:
Which rule describes this transformation? (Zoom in to see it clearly)
Answer:
(x,y) -> (x+6, y-3)
Step-by-step explanation:
I followed c and it translated like the last ans choice.
What is 5 feet and 11 inches in inches
Answer:
60
Step-by-step explanation:
5 is 60 inch
Given a dataset with the following properties:
mean = 50
median = 40
standard deviation = 5
What is the shape of the distribution?
Answer:
The distribution is positively skewed.
Step-by-step explanation:
A measure of skewness is defined in such a way that the measure should always be zero when the distribution is symmetric and measure should be a pure number i.e independent of origin and units of measurement.
The shape of the distribution can be found by finding the coefficient of skewness.
The coefficient of skewness can be found by
Sk= 3(Mean-Median)/ Standard Deviation
Sk= 3( 50-40)5= 30/5=6
The shape will be positively skewed.
In a positively skewed distribution the mean > median > mode. It has a long right tail.
Using the skewness formula, it is found that the distribution is right-skewed.
------------------
The skewness of a data-set with mean M, median [tex]M_e[/tex] and standard deviation s is given by:[tex]S = \frac{3(M - M_e)}{s}[/tex]
If |S| < 0.5, the distribution is said to be symmetric.If S <-0.5, the distribution is left-skewed.If S > 0.5, the distribution is right-skewed.------------------
Mean of 50, thus, [tex]M = 50[/tex]Median of 40, thus [tex]M_e = 40[/tex]Standard deviation of 5, thus, [tex]s = 5[/tex]The coefficient is:
[tex]S = \frac{3(M - M_e)}{s} = \frac{3(50 - 40)}{5} = \frac{30}{5} = 6[/tex]
Thus, the distribution is right-skewed.
A similar problem is given at https://brainly.com/question/24415645
Find the Vertical asymptotes of the graph of f
[tex]f(x) = \frac{x + 2}{ {x}^{2} - 4}[/tex]
Answer:
x = 2 and x = -2
Step-by-step explanation:
To find the vertical asymptotes, set the denominator equal to zero and solve for x:
vertical asymptotes are x = 2 and x = -2
Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...
Answer:
C. -8, -6, -4, -2, ...
Step-by-step explanation:
An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.
A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.
B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.
C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.
Hope this helps!
Reduce the following fraction to lowest terms: 8/14
Answer:
4/7
Step-by-step explanation:
divide both by two for its simplest form
Answer:4/7
Step-by-step explanation
Divide both the numerator and denominator by 2
The result for the numerator is 8/2=4
that of the denominator is 14/2=7
Therefore the resultant answer is 4/7
The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0
Answer:
Step-by-step explanation:
A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).
X = 100pth percentile of W
Y = 100(1-p)th percentile of W
Expressing Y as a function of X;
Y = 100(1-p)th = 100th - 100pth
Recall that 100pth is same as X, so substitute;
Y = 100th - X
where 100th = hundredth percentile of W and X = 100pth percentile of W
Give the domain and range of each relation using set notation
Answer:
See below.
Step-by-step explanation:
First, recall the meanings of the domain and range.
The domain is the span of x-values covered by the graph.
And the range is the span of y-values covered by the graph.
1)
So, we have here an absolute value function.
As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:
[tex]\{x|x\in\textbb{R}\}[/tex]
(You are correct!)
For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:
[tex]\{y|y\leq 7\}[/tex]
2)
We have here an ellipse.
First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:
[tex]-4\leq x\leq 6[/tex]
So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:
[tex]\{x|-4\leq x\leq 6\}[/tex]
For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:
[tex]-5\leq y\leq 1[/tex]
This represents all the y-values between -5 and 1, including -5 and 1.
In set notation, thi is:
[tex]\{y|-5\leq y\leq 1\}[/tex]
if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=
Answer:
3
Step-by-step explanation:
f(x)=3x-3
g(x)=-x^2+4,
f(2) = 3(2) -3 = 6-3 =3
g(-2) = -(-2)^2+4 = -4+4 = 0
f(2)-g(-2)= = 3-0 = 3
The solution system to 3y-2x=-9 and y=-2x+5
Answer:
[tex]\boxed{(3,-1)}[/tex]
Step-by-step explanation:
Hey there!
Well to find the solution the the given system,
3y - 2x = -9
y = -2x + 5
So to find x lets plug in -2x + 5 for y in 3y - 2x = -9.
3(-2x + 5) - 2x = -9
Distribute
-6x + 15 - 2x = -9
-8x + 15 = -9
-15 to both sides
-8x = -24
Divide -8 to both sides
x = 3
Now that we have x which is 3, we can plug in 3 for x in y = -2x + 5.
y = -2(3) + 5
y = -6 + 5
y = -1
So the solution is (3,-1).
Hope this helps :)
Solve for 2 in the diagram below.
120°
32°
T=
Step-by-step explanation:
Hello, there!!!
It's so simple here,
Here,
we have is 1 angle is 120°and other is 3x°.
now,
3x°=120° {because when two st.line intersects eachother then the opposite angle formed are equal}
so, 3x°=120
or, x=120°/3
=40°
Therefore, the value of x is 40°.
Hope it helps....
100 students are interviewed to see which of biology, chemistry or physics they prefer.
59 of the students are girls. 35 of the girls like biology best.
2 of the boys prefer physics.
6 out of the 30 who prefer chemistry are girls.
What percentage of the students prefer biology?
Answer:
50%
Step-by-step explanation:
Girls Boys
total: 59 total: 41
- Chemistry 35 - Physics 2
= 24 = 39
- Chemistry ( 30 - 6 ) 24
= 15
Total boys and girls for Biology = 35 + 15 = 50
% = 50/100*100
= 50%
Hope it helps and also mark it as brainliest!!!!What is the difference? Complete the equation. -1 2/5 - (-4/5) = ?
Answer:
First convert them which will be
-7/5 - (-4/5)
so when you subtract a negative number from negative number they actually subtract ex = -4-(-2) = -2
so its simply 7/5-4/5 then add a negative sign
so
3/5
now add negative sign so
-3/5