In a double-slit experiment using light of wavelength 486 nm, the slit spacing is 0.600 mm and the screen is 2.00 m from the slits. Find the distance along the screen between adjacent bright fringes.

Answers

Answer 1

Answer:

The distance is [tex]y = 0.00162 \ m[/tex]

Explanation:

From the question we are told that

    The wavelength is  [tex]\lambda = 486 \ nm = 486 *10^{-9} \ m[/tex]

   The  slit spacing is  [tex]d = 0.600 \ mm = 0.60 *10^{-3} \ m[/tex]

    The distance of the screen is  [tex]D = 2.0 \ m[/tex]

 Generally the distance along the screen between adjacent bright fringes is mathematically represented as  

        [tex]y = \frac{\lambda * D}{d}[/tex]

substituting values

         [tex]y = \frac{ 486 *10^{-9} * 2}{0.6*10^{-3}}[/tex]

         [tex]y = 0.00162 \ m[/tex]


Related Questions

NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low- mass sail and the energy and momentum of sunlight for propulsion.
Should the sail be absorbing or reflective? Why?
a. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is smaller than for absorbing sail, therefore the radiation pressure is larger for the reflective sail
b. The sail should be absorbing because in this case the momentum transferred to the sail per unit area per unit time is larger than for reflective sail, therefore the radiation pressure is larger for the absorbing sail
c. The sail should be absorbing because in this case the momentum transferred to the sail per unit area per unit time is smaller than for reflective sail, therefore the radiation pressure is larger for the absorbing sail.
d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail

Answers

Answer:

d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.

Explanation:

Let us take the momentum of a photon unit as u

we know that the rate of change of momentum is proportional to the force exerted.

For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that

F = (u - 0)/t = u/t

for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,

F = u

For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to

F = (u - (-u))/t = 2u/t

just as the we did above, it becomes

F = 2u.

From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.

Red and orange stars are found evenly spread throughout the galactic disk, but blue stars are typically found

Answers

Answer:

only in or near star-forming clouds

Explanation:

When in the galactic disk, Red and orange stars are found evenly spread so here Blue stars are hot and therefore massive and therefore short-lived,  that is means they never have time to venture far from the places, where they were born. so correct answer is blue stars are typically found only in or near star-forming clouds

"A satellite requires 88.5 min to orbit Earth once. Assume a circular orbit. 1) What is the circumference of the satellites orbit

Answers

Answer:

 circumference of the satellite orbit  = 4.13 × 10⁷ m

Explanation:

Given that:

the time period T = 88.5 min = 88.5 × 60  = 5310 sec

The mass of the earth [tex]M_e[/tex] = 5.98 × 10²⁴ kg

if  the radius of orbit is r,

Then,

[tex]\dfrac{V^2}{r} = \dfrac{GM_e}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e r}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e }{r}[/tex]

[tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Similarly :

[tex]T = \sqrt{\dfrac{ 2 \pi r} {V} }[/tex]

where; [tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Then:

[tex]T = {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {GM_e }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {6.674\times 10^{-11} \times 5.98 \times 10^{24} }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ 3.991052 \times 10^{14} }}[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {19977617.48}[/tex]

[tex]5310 \times 19977617.48= 2 \pi r^{3/2}}[/tex]

[tex]1.06081149 \times 10^{11}= 2 \pi r^{3/2}}[/tex]

[tex]\dfrac{1.06081149 \times 10^{11}}{2 \pi}= r^{3/2}}[/tex]

[tex]r^{3/2}} = \dfrac{1.06081149 \times 10^{11}}{2 \pi}[/tex]

[tex]r^{3/2}} = 1.68833392 \times 10^{10}[/tex]

[tex]r= (1.68833392 \times 10^{10})^{2/3}}[/tex]

[tex]r= 2565.38^2[/tex]

r = 6579225 m

The  circumference of the satellites  orbit can now be determined by using the formula:

 circumference = 2π r

 circumference = 2π  × 6579225 m

 circumference = 41338489.85 m

 circumference of the satellite orbit  = 4.13 × 10⁷ m

NASA is doing research on the concept of solar sailing. A solar sailing craft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion.
A) Should the sail be absorptive or reflective? Why?
B)The total power output of the sun is 3.90 × 1026 W . How large a sail is necessary to propel a 1.06 × 104 kg spacecraft against the gravitational force of the sun?

Answers

Answer:

A = 6.8 km²

Explanation:

A) The sail should be reflective. This is so that, it can produce the maximum radiation pressure.

B) let's begin with the formula used to calculate the average solar sail in orbit around the sun. Thus;

F_rad = 2IA/c

I is given by the formula;

I = P/(4πr²)

Thus;

F_rad = (2A/c) × (P/(4πr²)) = PA/2cπr²

Where;

A is the area of the sail

r is the distance of the sail from the sun

c is the speed of light = 3 × 10^(8) m/s

P is total power output of the sun = 3.90 × 10^(26) W

Now,F_rad = F_g

Where F_g is gravitational force.

Thus;

PA/2cπr² = G•m•M_sun/r²

r² will cancel out to givw;

PA/2cπ = G•m•M_sun

Making A the subject, we have;

A = (2•c•π•G•m•M_sun)/P

Now, m = 1.06 × 10⁴ kg and M_sun has a standard value of 1.99 × 10^(30) kg

G is gravitational constant and has a value of 6.67 × 10^(-11) Nm²/kg²

Thus;

A = (2 × 3 × 10^(8) × π × 6.67 × 10^(-11) × 1.06 × 10^(4) × 1.99 × 10^(30))/(3.90 × 10^(26))

A = 6.8 × 10^(6) m² = 6.8 km²

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye

Answers

Answer:

30.93 cm

Explanation:

Given that:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses

The power of the old pair of lens p = 2.25 diopters

The focal point length = 1/p

The focal point length =  1/2.25

The focal point length = 0.444 m

The focal point length = 44.4 cm

The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens

The near point of the person from the glass = 83 cm

Let consider s' to be the image on the same sides of the lens,

∴ s' = -83 cm

We known that:

the focal length of a mirror image 1/f =1/u +1/v

Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.

Then:

1/f = 1/s + 1/s'

1/s = 1/f - 1/s'

1/s = (s' -f)/fs'

s = fs'/(s'-f)

s =( 44.4× -83)/(-83 - 44.4)

s = - 3685.2 / - 127.4

s = 28.93 cm

Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm

= 30.93 cm

Two protons moving with same speed in same direction repel each other but what about two protons moving with different speed in the same direction?

Answers

Answer:In the case of two proton beams the protons repel one another because they have the same sign of electrical charge. There is also an attractive magnetic force between the protons, but in the proton frame of reference this force must be zero! Clearly then the attractive magnetic force that reduces the net force between protons in the two beams as seen in our frame of reference is relativistic. In particular the apparent magnetic forces or fields are relativistic modifications of the electrical forces or fields. As such modifications, they cannot be stronger than the electrical forces and fields that produce them. This follows from the fact that switching frames of reference can reduce forces, but it can’t turn what is attractive in one frame into a repulsive force in another frame.

In the case of wires the net charges in two wires are zero everywhere along the wires. That makes the net electrical forces between the wires very nearly zero. Yet the relativistic magnetic forces and fields will be of the same sort as in the case of two beams of charges of a single sign. This is true even in the frame of reference of what we think as the moving charges, that is, the electrons. In the frame of reference moving at the drift velocity of these current-carrying electrons, it is the protons or positively charged ions that are moving in the other direction. Consequently in any frame of reference for current-carrying wires in parallel, the net electrical force will be essentially zero, and there will be a net attractive magnetic force

Explanation:                                                                              

Explanation:

Particles with similar charges (both positive or both negative) will always repel each other, regardless of their speed or direction.

If a convex lens were made out of very thin clear plastic filled with air, and were then placed underwater where n = 1.33 and where the lens would have an effective index of refraction n = 1, the lens would act in the same way
a. as a flat refracting surface between water and air as seen from the water side.
b. as a concave mirror in air.
c. as a concave lens in air.
d. as the glasses worn by a farsighted person.
e. as a convex lens in air.

Answers

Answer:

D. A convex lens in air

Explanation:

This is because the air tight plastic under water will reflect light rays in the same manner as a convex lens

We've seen that for thermal radiation, the energy is of the form AVT4, where A is a universal constant, V is volume, and T is temperature. 1) The heat capacity CV also is proportional to a power of T, Tx. What is x

Answers

Answer:

this raise the temperature is x = 3

Explanation:

Heat capacity is the relationship between heat and temperature change

          C = Q / ΔT

if the heat in the system is given by the change in energy and we carry this differential formulas

          [tex]c_{v}[/tex] = dE / dT

In this problem we are told that the energy of thermal radiation is

        E = A V T⁴

Let's look for the specific heat

        c_{v} = AV 4 T³

the power to which this raise the temperature is x = 3

21.-Una esquiadora olímpica que baja a 25m/s por una pendiente a 20o encuentra una región de nieve húmeda de coeficiente de fricción μr =0.55. ¿Cuánto desciende antes de detenerse?

Answers

Answer:

y = 12.82 m

Explanation:

We can solve this exercise using the energy work theorem

          W = ΔEm

friction force work is

          W = fr . s = fr s cos θ

the friction force opposes the movement, therefore the angle is 180º

           W = - fr s

we write Newton's second law, where we use a reference frame with one axis parallel to the plane and the other perpendicular

           N -Wy = 0

           N = mg cos θ

the friction force remains

            fr = μ N

            fr = μ mg cos θ

             

work gives

           W = - μ mg s cos θ

initial energy

           Em₀ = ½ m v²

the final energy is zero, because it stops

we substitute

          - μ m g s cos θ = 0 - ½ m v²

          s = ½ v² / (μ g cos θ)

         

let's calculate

          s = ½ 20² / (0.55 9.8 cos 20)

          s = 39.49 m

this is the distance it travels along the plane, to find the vertical distance let's use trigonometry

            sin 20 = y / s

           y = s sin 20

           y = 37.49 sin 20

           y = 12.82 m

An electric heater draws 13 amperes of current when connected to 120 volts. If the price of electricity is $0.10/kWh, what would be the approximate cost of running the heater for 8 hours?
(A) $0.19
(B) $0.29
(C) $0.75
(D) $1.25
(E) $1.55

Answers

Answer:

C $0.75 my friend I wish it is right answer


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

A small glass bead charged to 5.0 nC is in the plane that bisects a thin, uniformly charged, 10-cm-long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 910 N. What is the total charge on the rod?

Answers

Answer:

Explanation:

Let B= bead

Q = rod

the electric field at the glass bead pocation is

(Gauss theorem)

E = Q / (2 π d L εo)

the force is

F = q E = q Q / (2 π d L εo)

then

Q = 2 π d L εo F / q

Q = 2*3.14*4x10^-2*10^-1*8.85x10^-12*910x10^-4 / 5x10^-9 = 2.87x10^-8 C = 40.5 nC

A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 6 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t)

Answers

Answer:I don’t know

Explanation:

A tank whose bottom is a mirror is filled with water to a depth of 19.6 cm. A small fish floats motionless a distance of 6.40 cm under the surface of the water.
A) What is the apparent depth of the fish when viewed at normal incidence?
B) What is the apparent depth of the image of the fish when viewed at normal incidence?

Answers

Answer:

A. 4.82 cm

B. 24.66 cm

Explanation:

The depth of water = 19.6 cm

Distance of fish  = 6.40 cm

Index of refraction of water = 1.33

(A). Now use the below formula to compute the apparent depth.

[tex]d_{app} = \frac{n_{air}}{n_{water}} \times d_{real} \\= \frac{1}{1.33} \times 6.40 \\= 4.82 cm.[/tex]

(B). the depth of the fish in the mirror.

[tex]d_{real} = 19.6 cm + (19.6 cm – 6.40 cm) = 32.8 cm[/tex]

Now find the depth of reflection of the fish in the bottom of the tank.

[tex]d_{app} = \frac{n_{air}}{n_{water}} \times d_{real} \\d_{app} = \frac{1}{1.33} \times 32.8 = 24.66\\[/tex]

An interference pattern is produced by light with a wavelength 590 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.580 mm .


Required:

a. If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima?

b. What would be the angular position of the second-order, two-slit, interference maxima in this case?

Answers

Answer:

a. 0.058°

b.  0.117°

Explanation:

a. The angular position of the first-order is:

[tex] d*sin(\theta) = m\lambda [/tex]

[tex] \theta = arcsin(\frac{m \lambda}{d}) = arcsin(\frac{1* 590 \cdot 10^{-9} m}{0.580 \cdot 10^{-3} m}) = 0.058 ^{\circ} [/tex]

Hence, the angular position of the first-order, two-slit, interference maxima is 0.058°.

b. The angular position of the second-order is:

[tex] \theta = arcsin(\frac{m \lambda}{d}) = arcsin(\frac{2* 590 \cdot 10^{-9} m}{0.580 \cdot 10^{-3} m}) = 0.12 ^{\circ} [/tex]

Therefore, the angular position of the second-order, two-slit, interference maxima is 0.117°.

I hope it helps you!

(a) Determine the capacitance of a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.


pF

(b) Determine the maximum potential difference that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.
kV

Answers

Explanation:

(a) Given that,

Area of a parallel plate capacitor, [tex]A=1.8\ cm^2=1.8\times 10^{-4}\ m^2[/tex]

The separation between the plates of a capacitor, [tex]d=0.01\ mm = 10^{-5}\ m[/tex]

The dielectric constant of, k = 2.1

When a dielectric constant is inserted between parallel plate capacitor, the capacitance is given by :

[tex]C=\dfrac{k\epsilon_o A}{d}[/tex]

Putting all the values we get :

[tex]C=\dfrac{2.1\times 8.85\times 10^{-12}\times 1.8\times 10^{-4}}{0.01\times 10^{-3}}\\\\C=3.345\times 10^{-10}\ F\\\\C=334.5\ pF[/tex]

(b) We know that the Teflon has dielectric strength of 60 MV/m, [tex]E=60\times 10^6\ V/m[/tex]

The voltage difference between the plates at this critical voltage is given by :

[tex]V=Ed\\\\V=60\times 10^6\times 0.01\times 10^{-3} \\\\V=600\ V[/tex]

or

V = 0.6 kV

We have that the Capacitance and potential difference is mathematically given as

[tex]Vmax=\frac{Q}{334.68pF}[/tex]C=334.68pF



Capacitance &potential difference

Question Parameters:

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.

a)

Generally the equation for the Capacitance  is mathematically given as

[tex]C=\frac{ke_0A}{d}\\\\Therefore\\\\C=\frac{2.1*1.80e-4*8.85e12}{0.01e-3}\\\\[/tex]

C=334.68pF

b)

Generally the equation for the Capacitance  is mathematically given as

[tex]Vmax=\frac{Q}{C}[/tex]

Where

Q is the charge on the plates, and hence not given

Therefore, maximum potential difference is

[tex]Vmax=\frac{Q}{334.68pF}[/tex]

For more information on potential difference visit

https://brainly.com/question/14883923

Two 1.0 nF capacitors are connected in series to a 1.5 V battery. Calculate the total energy stored by the capacitors.

Answers

Answer:

1.125×10⁻⁹ J

Explanation:

Applying,

E = 1/2CV²................... Equation 1

Where E = Energy stored in the capacitor, C = capacitance of the capacitor, V = Voltage of the battery.

Given; C = 1.0 nF,  = 1.0×10⁻⁹ F, V = 1.5 V

Substitute into equation 1

E = 1/2(1.0×10⁻⁹×1.5²)

E = 1.125×10⁻⁹ J

Hence the energy stored by the capacitor is 1.125×10⁻⁹ J

If a diode at 300°K with a constant bias current of 100μA has a forward voltage of 700mV across it, what will the voltage drop across this same diode be if the bias current is increased to 1mA? g

Answers

Answer:

the voltage drop across this same diode will be 760 mV

Explanation:

Given that:

Temperature T = 300°K

current [tex]I_1[/tex] = 100 μA

current [tex]I_2[/tex] = 1 mA

forward voltage [tex]V_r[/tex] = 700 mV = 0.7 V

To objective is to find the voltage drop across this same diode  if the bias current is increased to 1mA.

Using the formula:

[tex]I = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

where;

[tex]V_r[/tex] = 0.7

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_2 = I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix}[/tex]

[tex]\dfrac{I_1}{I_2} = \dfrac{ I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

[tex]\dfrac{100 \ \mu A}{1 \ mA} = \dfrac{ \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

Suppose n = 1

[tex]V_T = \dfrac{T}{11600} \\ \\ V_T = \dfrac{300}{11600} \\ \\ V_T = 25. 86 \ mV[/tex]

Then;

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { nV_T} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { 25.86} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 5.699 \times 10^{12}[/tex]

[tex]{e^\dfrac{V_r'}{nv_T}} = 5.7 \times 10^{12}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =log_{e ^{5.7 \times 10^{12}}}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =29.37[/tex]

[tex]V_r'=29.37 \times nV_T[/tex]

[tex]V_r'=29.37 \times 25.86[/tex]

[tex]V_r'=759.5 \ mV[/tex]

[tex]Vr' \simeq[/tex] 760 mV

Thus, the voltage drop across this same diode will be 760 mV

Complete each of the statements

A. Lines of force are lines used to represent ________ an ________ electric field


B. The intensity of an electric field is the coefficient between the _________ that in the field exerts on a test ___________ located at that point and the value of said charge

C. The electric field is uniform if at any point in the field its _________ and ________ is the same

D. The van der graff generator is a _________ machine which has two __________ that are driven by a _________ that generates a rotation

Answers

Answer:

A:  magnitude and direction

B: Force that the field exerts on a test charge

C: its magnitude and direction is the same.

D: electrostatic machine

two rollers that are driven by a motor that generates a rotation

Explanation:

an electron travels at 0.3037 times the speed of light through a magnetic field and feels a force of 1.2498 pN. What is the magnetic field in teslas

Answers

Answer:

Explanation:

Charge on an electron (q) = 1.6 * 10 ^ -19 C

Velocity of electron (v) = 0.3037 * 300,000,000 = 91,110,000 m/sec

We know that, Force exerted on moving particle moving through a magnetic field :

[tex]F= q * v * B ( q,v\ and\ B\ are\ mutually\ perpendicular)[/tex]

1.2498 * 10 ^ -12 = 1.6 * 10^ -19 * 91110000 * B

B =  0.08573 T

A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. the loop is connected in series with a resistor of 265 ohms. The magnetic field is now increased at a constant rate by a factor of 2.30 in 29.0 s.

Calculate the magnitude of induced emf in the loop while the magnetic field is increasing.

With the magnetic field held constant a ts its new value of 1.61 T, calculate the magnitude of its induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 3.90s.

Answers

Answer:

(a) The magnitude of induced emf in the loop while the magnetic field is increasing is 9.5 mV

(b) The magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Explanation:

Given;

radius of the circular loop, r = 31.0 cm = 0.31 m

initial magnetic field, B₁ = 0.7 T

final magnetic field, B₂ = 2.3B₁ = 2.3 X 0.7 T = 1.61 T

duration of change in the field, t = 29

(a) The magnitude of induced emf in the loop while the magnetic field is increasing.

[tex]E = A*\frac{\delta B}{\delta t} \\\\[/tex]

[tex]E = A*\frac{B_2 -B_1}{\delta t}[/tex]

Where;

A is the area of the circular loop

A = πr²

A = π(0.31)² = 0.302 m²

[tex]E = A*\frac{B_2 -B_1}{\delta t} \\\\E = 0.302*\frac{1.61-0.7}{29} \\\\E = 0.0095 \ V\\\\E = 9.5 \ mV[/tex]

(b) the magnitude of the induced voltage at a constant magnetic field

E = A x B/t

E = (0.302 x 1.61) / 3.9

E = 0.1247 V

E = 124.7 mV

Therefore, the magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Without actually calculating any logarithms, determine which of the following intervals the sound intensity level of a sound with intensity 3.66×10^−4W/m^2 falls within?

a. 30 and 40
b. 40 and 50
c. 50 and 60
d. 60 and 70
e. 70 and 80
f. 80 and 90
g. 90 and 100

Answers

Answer:

f. 80 and 90

Explanation:

1 x 10⁻¹² W/m² sound intensity falls within 0 sound level

1 x 10⁻¹¹ W/m² sound intensity falls within 10 sound level

1 x 10⁻¹⁰ W/m² sound intensity falls within 20 sound level

1 x 10⁻⁹ W/m² sound intensity falls within 30 sound level

1 x 10⁻⁸ W/m² sound intensity falls within 40 sound level

1 x 10⁻⁷ W/m² sound intensity falls within 50 sound level

1 x 10⁻⁶ W/m² sound intensity falls within 60 sound level

1 x 10⁻⁵ W/m² sound intensity falls within 70 sound level

1 x 10⁻⁴ W/m² sound intensity falls within 80 sound level

1 x 10⁻³ W/m² sound intensity falls within 90 sound level

Given sound intensity (3.66 x 10⁻⁴ W/m²) falls with 1 x 10⁻⁴ W/m² of intensity which is within 80 and 90 sound level.

f. 80 and 90

A person is being pulled by gravity with a force of 500 N. What is the force with which the person pulls Earth?
1,000 N
O100 N
500 N
0 250 N

Answers

Answer:

The correct answer is 500 N

Explanation:

This is an exercise in Newton's third law or law of action and reaction

The Earth exerts a force on the person, which we call a weight of 500 N directed downwards, we can call this action and the person exerts a force on the Earth of equal magnitude 500N and in the opposite direction, that is directed upwards.

Which force we call action does not matter, the analysis and conclusions are the same

The correct answer is 500N

In the lab , you have an electric field with a strength of 1,860 N/C. If the force on a particle with an unknown charge is 0.02796 N, what is the value of the charge on this particle.

Answers

Answer:

The charge is  [tex]q = 1.50 *10^{-5} \ C[/tex]

Explanation:

From the question we are told that

   The electric field strength is  [tex]E = 1860 \ N/C[/tex]

    The force is  [tex]F = 0.02796 \ N[/tex]

Generally the charge on this particle is mathematically represented as

     [tex]q = \frac{F}{E}[/tex]

=>   [tex]q = \frac{0.02796}{ 1860}[/tex]

=>   [tex]q = 1.50 *10^{-5} \ C[/tex]

A) Hooke's law is described mathematically using the formula Fsp = -ku. Which statement is correct about the spring force, Fsp?
A.It is a vector quantity
B.It is the force doing the push or pull,
C.It is always a positive force.
D.It is larger than the applied force.

Answers

1. Which example best describes a restoring force?

B) the force applied to restore a spring to its original length

2. A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released?

C) The spring exerts a restoring force to the left and returns to its equilibrium position.

3. A 2-N force is applied to a spring, and there is displacement of 0.4 m. How much would the spring be displaced if a 5-N force was applied?

D) 1 m

4. Hooke’s law is described mathematically using the formula Fsp=−kx. Which statement is correct about the spring force, Fsp?

D)It is a vector quantity.

5. What happens to the displacement vector when the spring constant has a higher value and the applied force remains constant?

A) It decreases in magnatude.

Hope this Helps!! Sorry its late

The block moves up an incline with constant speed. What is the total work WtotalWtotalW_total done on the block by all forces as the block moves a distance LLL

Answers

Answer:

External force    W₁ = F L

Friction force    W₂ = - fr L

weight component   W₃ = - mg sin θ L

Y Axis   Force      W=0

Explanation:

When the block rises up the plane with constant velocity, it implies that the sum of the forces is zero.

For these exercises it is indicated to create a reference system with the x axis parallel to the plane and the y axis perpendicular

let's write the equations of translational equilibrium in given exercise

X axis

        F - fr -Wₓ = 0

        F = fr + Wₓ

the components of the weight can be found using trigonometry

         Wₓ = W sin θ

         [tex]W_{y}[/tex] = W cos θ

let's look for the work of these three forces

          W = F x cos θ

External force

          W₁ = F L

since the displacement and the force have the same direction

Friction force

          W₂ = - fr L

since the friction force is in the opposite direction to the displacement

For the weight component

          W₃ = - mg sin θ L

because the weight component is contrary to displacement

Y Axis  

          N- Wy = 0

in this case the forces are perpendicular to the displacement, the angle is 90º and the cosine 90 = 0

therefore work is worth zero

At a department store, you adjust the mirrors in the dressing room so that they are parallel and 6.2 ft apart. You stand 1.8 ft from one mirror and face it. You see an infinite number of reflections of your front and back.(a) How far from you is the first "front" image? ft (b) How far from you is the first "back" image? ft

Answers

Answer:

a) 3.6 ft

b) 12.4 ft

Explanation:

Distance between mirrors = 6.2 ft

difference from from the mirror you face = 1.8 ft

a) you stand 1.8 ft in front of the mirror you face.

According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,

your distance from your first "front" image = 1.8 ft + 1.8 ft = 3.6 ft

b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.

the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,

the first image of your back will be 4.4 ft into the back mirror,

therefore your distance from your first "back" image = 8 + 4.4 = 12.4 ft

The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the ground. To maximize the potential difference between one end of the fluorescent tube and the other, how should the tube be held?a. The tube should be held horizontally, parallel to the ground b. The potential difference between the ends of the tube does not depend on the tube's orientation. c. The tube should be held vertically perpendicular to the ground

Answers

Answer:

b) True. potencial diferencie does not depend on orientation

Explanation:

In this exercise we are asked to show which statements are true.

The expression the potential with respect to earth or the electric field with respect to earth refers to the potential or electric charge of the planet that is assumed to be very large and does not change in value during work.

It does not refer to the height of the system.

We can now review the claims

a) False. Potential not to be refers to height

b) True. Does not depend on orientation

c) False The potential does not refer to the altitude but to the Earth's charge

Peer assessment is a unique educational model. Think back to how you felt about peer assessment at the beginning of the term, and compare that to your feeling now. How have your feeling changed? Are you more comfortable with peer assessment? Have you learned something new while assessing your peer's work?​

Answers

Answer:

In the beginning, I was not familiar to assess assessments of the other students. Ifelt a little bit weird that is it possible to check assignments while having an instructor.I was also a bit frustrated, to be honest, that why do we have to assess thoseassessments. It was kind of extra burden for me. But after few weeks assessingmore assignments, my feeling had changed because I was learning lots of thingsthat were changing my perspectives. I was gaining extra knowledge from my peersin the form of assessments. Yes, I am comfortable with assessing assessments,because I got to learn many vocabularies and making structures of the sentencecorrectly by improving grammatically as I am not a native English speaker. Thus, inthis way, I was learning something new in each and every assessment.

550 J of heat is added to the gas in an isothermal process. As the gas expands, pushing against the piston, how much work does it do

Answers

Answer:

The work done by the system is 550 J

Explanation:

Given;

heat added to the system, Q = 550 J

Apply the first law of thermodynamics;

ΔU = Q - W

Where;

ΔU is change in internal energy

Q is the heat added to the system

W is the work done by the system

During an isothermal process, the temperature of the system is constant for the entire process. During this process, the change in the internal energy is zero.

0 = Q - W

W = Q

W = 550 J

Therefore, the work done by the system is 550 J

Other Questions
in the diagram, POS,QOT and UOR are straight lines. Find the value of y. After the Constitutional Convention in Philadelphia and the ratification of the Constitution, two coalitions forming the rudiments of future political parties emerged: Profits from a sole proprietorship are reported as taxable income and Question 5 options: can be reported as a deduction. are subject to a self-employment tax of approximately 15%. can be deferred to the next tax year. can't be taxed again in a future tax year. what is current capital , future human capital and human capital ? is there a difference? The HR department at Trevor Communications oversees the recruitment and training of employees at the firm.As the firm grows and recruits more employees,overseeing individual training programs has been come too much for HR staff to handle.Which of the following applications should the HR department use to help with employee training?A) A customer relationship management systemB) A management information systemC) A learning management systemD) A decision support systemE) An executive decision-making system Unable to borrow from other banks, University Bank is forced to turn to the Federal Reserve for needed funds. The interest rate that the Federal Reserve will charge University Bank is called the After the war, why did some southerners argue that the war was not about slavery? An annuity provides for 30 annual payments. The first payment of 100 is made immediately and the remaining payments increase by 8 percent per annum. Interest is calculated at 13.4 percent per annum. Calculate the present value of this annuity. Why does Captain Miller get frustrated with her role in meeting with Iraqi civilians who have had family killed in the war? A. She knows that the women would rather be speaking with male soldiers. B. She wants to be in more direct battles with the enemies. C. She thinks using female soldiers only for this purpose is sexist. D. She only wants to provide medical care to U.S. military personnel Firms that compete in the global marketplace typically face two types of competitive pressures, namely, the pressures for _______ and _______. a. global integration; local responsiveness b. politically sensitivity; market leadership c. cost reductions; marginal costs d. price reductions; cost reductions 1- how does geography affect urbanization 2- how does geography affect cultural exchange To the nearest tenth, what is the value of P(C|Y)? 0.4 0.5 0.7 0.8 Which conclusion can be drawn from the experimental observation that a single strand of DNA contains 2100 dA residues and 1800 dT residues? The data set {3, 7, 5, 4, 1} consists of the lengths, in minutes, of a sample of speeches at an awards banquet. Use a formula to find the standard deviation of the sample, and label it with the correct variable. g Use the References to access important values if needed for this question. A researcher took 2.592 g of a certain compound containing only carbon and hydrogen and burned it completely in pure oxygen. All the carbon was changed to 7.851 g of CO2, and all the hydrogen was changed to 4.018 g of H2O . What is the empirical formula of the original compound need help will give 5 stars. please can someone help me solve this.. please help!! A practice, favored by unions, which contractually binds employers to hire only workers who are already members of the union is called a(n): Which observation led Mendel to the idea that traits were controlled by more than a single factor? Crossing two purple-flowered pea plants always resulted in a purple-flowered pea plant. Crossing two white-flowered pea plants always resulted in a white-flowered pea plant. A trait that was not seen in the first generation may later reappear in the second generation. A trait that was not seen in the first generation was completely gone and never reappeared. PLEASE HELP, WILL GIVE BRAINLIEST IF CORRECT!!!! (08.06 MC) Mike and his friends bought cheese wafers for $2 per packet and chocolate wafers for $1 per packet at a carnival. They spent a total of $25 to buy a total of 20 packets of wafers of the two varieties. Part A: Write a system of equations that can be solved to find the number of packets of cheese wafers and the number of packets of chocolate wafers that Mike and his friends bought at the carnival. Define the variables used in the equations. (5 points) Part B: How many packets of chocolate wafers and cheese wafers did they buy? Explain how you got the answer and why you selected a particular method to get the answer. (5 points)