Step-by-step explanation:
mark me as brainlist...........
Answer:
I got to say, the other guy got it good. Thanks dude.
Step-by-step explanation:
Select the correct answer.
Each statement describes a transformation of the graph of y=x. Which statement correctly describes the graph of y= x - 13?
OA. It is the graph of y= x translated 13 units to the right.
OB. It is the graph of y=xwhere the slope is decreased by 13.
It is the graph of y= x translated 13 units to the left.
OD. It is the graph of y= x translated 13 units up.
ОС.
minus sign ironically makes it go to the right
because the function crosses the y axis at -13
It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
The equation y = x - 13 represents a transformation of the graph of y = x. To find the type of transformation, we have to compare the two equations and look for changes.
In the equation y = x - 13, we subtract 13 from the value of x.
This means that the graph of y = x is shifted 13 units downwards,
since every point on the graph has 13 subtracted from its y-coordinate.
Hence, It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ7
The average salary for a certain profession is $87,500. assume that the standard deviation of such salaries is $26,000. Consider a random sample of 63 people in this profession and let xbar represent the mean salary for the sample.a. What is ?
b. What is ?c. Describe the shape of the sampling distributio of ?
d. Find the z-score for the value =80,000.
e. Find P( > 80,000).
Solution :
Given data:
Mean, μ = $87,500
Standard deviation, σ = $26,000
Sample number, n = 63
a). The value of [tex]$\mu_{x}$[/tex] :
[tex]$\mu_x=\mu$[/tex]
= 87,500
b). The value of [tex]$\sigma_x$[/tex] :
[tex]$\sigma_x = \frac{\sigma}{\sqrt n}$[/tex]
[tex]$\sigma_x = \frac{26000}{\sqrt {63}}$[/tex]
= 3275.69
c). The shape of the sampling distribution is that of a normal distribution (bell curve).
d). The value z-score for the value =80,000.
[tex]$z-\text{score} =\frac{\overline x - \mu}{\sigma - \sqrt{n}}$[/tex]
[tex]$z-\text{score} =\frac{80000-87500}{26000 - \sqrt{63}}$[/tex]
= -2.2896
≈ -2.29
e). P(x > 80000) = P(z > -2.2896)
= 0.9890
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,
y'' - 6y' + 9y = 0
If y = C₁ exp(3x) + C₂ x exp(3x), then
y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))
y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))
Substituting these into the DE gives
(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))
… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))
… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))
= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))
… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))
… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)
= 0
so the provided solution does satisfy the DE.
What is the endpoint of a line segment if the midpoint M( – 3, 4) and the other endpoint is E(7, – 2)?
Answers
(– 13, 10)
(10, – 13)
(– 1, 2)
(2, – 1)
9514 1404 393
Answer:
(-13, 10)
Step-by-step explanation:
If M is the midpoint of segment DE, then ...
D = 2M -E
D = 2(-3, 4) -(7, -2) = (2(-3)-7, 2(4)+2) = (-13, 10)
The other end point is (-13, 10).
please help, it’s urgent !!!
D
A
B
C
for more explanation please don't hesitate to just respond
The elevation E, in meters, above sea level at which the boiling point of a certain liquid ist degrees Celsius is given by the function shown below. At what elevation is the boling point 99.5*7 100°?
E() - 1200(100-1) • 580(100 - 1)
At what elevation is the boiling point 99.5?
E (90.5*)=. meters
At what elevation is the boiling point 100"?
E(100*)-meters
Answer:
Given E(t)=1100(100-t)+580(100-t)^2
Put t = 99.5, we get
E(99.5)=1100(100-99.5)+580(100-99.5)^2
E(99.5)=1100(0.5)+580(0.5)^2
E(99.5)=1100(0.5)+580(0.25)
E(99.5)=550+145
E(99.5)=695m
Step-by-step explanation:
It can be concluded that -
E(99.5) = 695
E(100) = 0
What is expression?In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.
Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax.
Given is the function as follows -
E(t) = 1100(100 - t) + 580(100 - t)²
The given function is -
E(t) = 1100(100 - t) + 580(100 - t)²
At → E(99.5)
E(99.5) = 1100(100 - t) + 580(100 - t)²
E(99.5) = 1100(100 - 99.5) + 580(100 - 99.5)²
E(99.5) = 1100(0.5) + 580(0.5)²
E(99.5) = 550 + 145
E(99.5) = 695
At → E(100)
E(100) = 1100(100 - t) + 580(100 - t)²
E(100) = 1100(100 - 100) + 580(100 - 100)²
E(100) = 0
Therefore, it can be concluded that -
E(99.5) = 695
E(100) = 0
To solve more questions on expressions, visit the link below -
brainly.com/question/1041084
#SPJ2
a+b=60000
[tex]\frac{a}{b}=\frac{4}{1}[/tex]
a=?
b=?
Answer: a = 25.67
Step-by-step explanation:
14x-(-5x+6-3x-4)=4(5x)+10
ayudaaa pora doy corona
Answer:
x = 10
General Formulas and Concepts:
Pre-Algebra
Distributive Property
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
14x - (-5x + 6 - 3x - 4) = 4(5x) + 10
Step 2: Solve for x
[Distributive Property] Distribute negative: 14x + 5x - 6 + 3x - 4 = 4(5x) + 10Combine like terms: 22x - 10 = 4(5x) + 10Multiply: 22x - 10 = 20x + 10[Subtraction Property of Equality] Subtract 20x on both sides: 2x - 10 = 10[Addition Property of Equality] Add 10 on both sides: 2x = 20[Division Property of Equality] Divide 2 on both sides: x = 10Solve 60 ÷ 5(1 + 1(1 + 1))
Answer:
Creo que es 36
Step-by-step explanation
:D
Answer:
36
Step-by-step explanation:
HELP ANYONE PLZZZ ?
1sr.
z(x)=x+1
If you input a 3 into z(x), what do you get for the output?
2nd.
n(x)=2/x
n(x) will give you an output for any number you use as an input except which of the following?
A. 0
B .3
C. 5
D. Trick question- you can get an output for every number you use as an input .
9514 1404 393
Answer:
4A. 0Step-by-step explanation:
1. Input 3 for x and do the arithmetic.
z(x) = x+1
z(3) = 3+1 = 4 . . . . . the output is 4
__
2. The expression for n(x) has x in the denominator. The expression will be undefined when the denominator is zero, so x=0 cannot be used.
I need the answer to this
Answer:
[tex]A)\:x<12[/tex]
[tex]5(x+5)<85\\5x+25<85\\5x<85-25\\5x<60\\x<12[/tex]
OAmalOHopeO
Answer:
x < 12.................................
use the figure to find y
Answer:
y = 3
Step-by-step explanation:
6sin(30) = 3
Express the set shown below in roster form. {x | x is a natural number less than -2}
Given:
The set is:
[tex]\{x|x\text{ is a natural number less than }-2\}[/tex]
To find:
The raster form of the given set.
Solution:
We know that, natural numbers are all positive integers.
Natural numbers: 1, 2, 3, 4,... .
The given set is:
[tex]\{x|x\text{ is a natural number less than }-2\}[/tex]
Here, x is a natural number and it is less than -2, which is not possible.
Since all natural numbers are greater than or equal to 1, therefore the given set has no element.
[tex]\{x|x\text{ is a natural number less than }-2=\phi[/tex]
Therefore, the roaster form of the given set is [tex]\phi[/tex] or [tex]\{\ \}[/tex].
work out the equasion 39+(−13)
Answer:
39-13=26
Step-by-step explanation:
plus(minus)=minus
Robin will choose a movie from the Red Box when all movies are in stock. If she
randomly chooses a Romance, Comedy, or Action, what is the probability she will
choose a Romance?
Romance - 24
Action - 32
Comedy - 25
Science Fiction - 5
Horror - 6
Answer:
32
Step-by-step explanation:
Hi, help with question 18 please. thanks
Answer:
See Below.
Step-by-step explanation:
We are given the equation:
[tex]\displaystyle y^2 = 1 + \sin x[/tex]
And we want to prove that:
[tex]\displaystyle 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right) ^2 + y^2 = 1[/tex]
Find the first derivative by taking the derivative of both sides with respect to x:
[tex]\displaystyle 2y \frac{dy}{dx} = \cos x[/tex]
Divide both sides by 2y:
[tex]\displaystyle \frac{dy}{dx} = \frac{\cos x}{2y}[/tex]Find the second derivative using the quotient rule:
[tex]\displaystyle \begin{aligned} \frac{d^2y}{dx^2} &= \frac{(\cos x)'(2y) - (\cos x)(2y)'}{(2y)^2}\\ \\ &= \frac{-2y\sin x-2\cos x \dfrac{dy}{dx}}{4y^2} \\ \\ &= -\frac{y\sin x + \cos x\left(\dfrac{\cos x}{2y}\right)}{2y^2} \\ \\ &= -\frac{2y^2\sin x+\cos ^2 x}{4y^3}\end{aligned}[/tex]
Substitute:
[tex]\displaystyle 2y\left(-\frac{2y^2\sin x+\cos ^2 x}{4y^3}\right) + 2\left(\frac{\cos x}{2y}\right)^2 +y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x-\cos ^2x}{2y^2} + \frac{\cos ^2 x}{2y^2} + y^2 = 1[/tex]
Combine fractions:
[tex]\displaystyle \frac{\left(-2y^2\sin x -\cos^2 x\right)+\left(\cos ^2 x\right)}{2y^2} + y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x }{2y^2} + y^2 = 1[/tex]
Cancel:
[tex]\displaystyle -\sin x + y^2 = 1[/tex]
Substitute:
[tex]-\sin x + \left( 1 + \sin x\right) =1[/tex]
Simplify. Hence:
[tex]1\stackrel{\checkmark}{=}1[/tex]
Q.E.D.
❤❤❤❤❤❤I WILL MARK AS BRAINLIEST IF RIGHT PLEASE HELP ME PLEASE BE CORRECT BEFORE ANSWERING PLEASE AND THANK YOU.
TELL ME WHERE TO PUT EACH POINT OF THE TRIANGLE TY
Answer:
Please look at the picture
Step-by-step explanation:
Please look at the picture I have drawn it for you
The function ƒ(x) = (x − 1)^2 + 5 is not one-to-one. Find a portion of the domain where the function is one-to-one and find an inverse function.
The restricted domain for ƒ is ?
Answer:
f(x)=(x-1)^2+5 with domain x>1 and range y>5 has inverse g(x)=sqrt(x-5)+1 with domain x>5 and range y>1.
Step-by-step explanation:
The function is a parabola when graphed. It is in vertex form f(x)=a(x-h)^2+k where (h,k) is vertex and a tells us if it's reflected or not or if it's stretched. The thing we need to notice is the vertex because if we cut the graph with a vertical line here the curve will be one to one. So the vertex is (1,5). Let's restrict the domain so x >1.
* if x>1, then x-1>0.
* Also since the parabola opens up, then y>5.
So let's solve y=(x-1)^2+5 for x.
Subtract 5 on both sides:
y-5=(x-1)^2
Take square root of both sides:
Plus/minus sqrt(y-5)=x-1
We want x-1>0:
Sqrt(y-5)=x-1
Add 1 on both sides:
Sqrt(y-5)+1=x
Swap x and y:
Sqrt(x-5)+1=y
x>5
y>1
Let X be an exponential r.v. with mean 6 and Y be an uniform r.v. over [4, 10] independent of X. Find the variance of 2X+3Y.
Var[2X + 3Y] = 2² Var[X] + 2 Cov[X, Y] + 3² Var[Y]
but since X and Y are given to be independent, the covariance term vanishes and you're left with
Var[2X + 3Y] = 4 Var[X] + 9 Var[Y]
X follows an exponential distribution with parameter λ = 1/6, so its mean is 1/λ = 6 and its variance is 1/λ² = 36.
Y is uniformly distributed over [a, b] = [4, 10], so its mean is (a + b)/2 = 7 and its variance is (b - a)²/12 = 3.
So you have
Var[2X + 3Y] = 4 × 36 + 9 × 3 = 171
Subtract the second equation from the first.
8x + 3y = 14
(4x + 3y = 8)
-
O A. 6y = 22
O B. 4x = 6
O c. -6y = 6
D. 12x = 22
Please help
Answer:
B
Step-by-step explanation:
Subtracting second equation from first, term by term , gives
(8x - 4x) + (3y - 3y) = (14 - 8) , that is
4x + 0 = 6, so
4x = 6 → B
Two workers finished a job in 12 days. How long would it take each worker to do the job by himself if one of the workers needs 10 more days to finish the job than the other worker
Two workers finished a job in 7.5 days.
How long would it take each worker to do the job by himself if one of the workers needs 8 more days to finish the job than the other worker?
let t = time required by one worker to complete the job alone
then
(t+8) = time required by the other worker (shirker)
let the completed job = 1
A typical shared work equation
7.5%2Ft + 7.5%2F%28%28t%2B8%29%29 = 1
multiply by t(t+8), cancel the denominators, and you have
7.5(t+8) + 7.5t = t(t+8)
7.5t + 60 + 7.5t = t^2 + 8t
15t + 60 = t^2 + 8t
form a quadratic equation on the right
0 = t^2 + 8t - 15t - 60
t^2 - 7t - 60 = 0
Factor easily to
(t-12) (t+5) = 0
the positive solution is all we want here
t = 12 days, the first guy working alone
then
the shirker would struggle thru the job in 20 days.
Answer:7 + 17 = 24÷2 (since there are 2 workers) =12. Also, ½(7) + ½17 = 3.5 + 8.5 = 12. So, we know that the faster worker will take 7 days and the slower worker will take 17 days. Hope this helps! jul15
Step-by-step explanation:
Can you find a strategy for splitting any number so that you always get the largest product?
9514 1404 393
Answer:
split the number into equal pieces
Step-by-step explanation:
Assuming "splitting any number" means identifying parts that have the number as their sum, the maximum product of the parts will be found where the parts all have equal values.
We have to assume that the number being split is positive and all of the parts are positive.
2 partsIf we divide number n into parts x and (n -x), their product is the quadratic function x(n -x). The graph of this function opens downward and has zeros at x=0 and x=n. The vertex (maximum product) is halfway between the zeros, at x = (0 + n)/2 = n/2.
3 partsSimilarly, we can look at how to divide a (positive) number into 3 parts that have the largest product. Let's assume that one part is x. Then the other two parts will have a maximum product when they are equal. Their values will be (n-x)/2, and their product will be ((n -x)/2)^2. Then the product of the three numbers is ...
p = x(x^2 -2nx +n^2)/4 = (x^3 -2nx^2 +xn^2)/4
This will be maximized where its derivative is zero:
p' = (1/4)(3x^2 -4nx +n^2) = 0
(3x -n)(x -n) = 0 . . . . . . . . . . . . . factor
x = n/3 or n
We know that x=n will give a minimum product (0), so the maximum product is obtained when x = n/3.
more partsA similar development can prove by induction that the parts must all be equal.
Answer:hi
Step-by-step explanation:
Find the lateral area of this square based pyramid. 10in 5in (in the image)
Answer:
100 in²
Step-by-step explanation:
4 triangles, each of them has area = 10*5/2
so total area = (10*5/2)*4
= (10*5*2)
= 100 in²
Answered by GAUTHMATH
The lateral surface area of the pyramid is 100 in²
What is surface area?The space occupied by any two-dimensional figure in a plane is called the area. The area of the outer surface of any body is called the surface area.
The pyramid has four triangular faces and one rectangular base we need to calculate the lateral surface area so we will calculate the area of the four triangles and sum up all the triangles.
4 triangles, each of them has an area = 10 x ( 5/2 )
So total area = (10 x 5/2) x 4
Total area = (10 x 5 x 2)
Total area = 100 in²
Therefore the lateral surface area of the pyramid is 100 in²
To know more about a surface area follow
https://brainly.com/question/25292087
#SPJ2
The lengths of the three sides of a triangle are 3, 15, and 16. Classify it as acute, obtuse, or right.
Answer:
Obtuse Scalene Triangle
Step-by-step explanation:
Sum of the squares of the smaller 2 sides < longest side squared = Obtuse Scalene Triangle
Would you favor spending more federal tax money on the arts? Of a random sample of n1 = 222 women, r1 = 51 responded yes. Another random sample of n2 = 174 men showed that r2 = 49 responded yes. Does this information indicate a difference (either way) between the population proportion of women and the population proportion of men who favor spending more federal tax dollars on the arts? Use ???? = 0.05.
Answer:
The p-value of the test is 0.242 > 0.05, which means that this information does not indicate a difference between the population proportion of women and the population proportion of men who favor spending more federal tax dollars on the arts.
Step-by-step explanation:
Before solving this question, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Women:
51 out of 222, so:
[tex]p_1 = \frac{51}{222} = 0.2297[/tex]
[tex]s_1 = \sqrt{\frac{0.2297*0.7703}{222}} = 0.0282[/tex]
Men:
49 out of 174, so:
[tex]p_2 = \frac{49}{174} = 0.2816[/tex]
[tex]s_2 = \sqrt{\frac{0.2816*0.7184}{174}} = 0.0341[/tex]
Does this information indicate a difference (either way) between the population proportion of women and the population proportion of men who favor spending more federal tax dollars on the arts?
Either way, so a two tailed test to see if the difference of proportions is different of 0.
At the null hypothesis, we test if it is not different of 0, so:
[tex]H_0: p_1 - p_2 = 0[/tex]
At the alternative hypothesis, we test if it is different of 0, so:
[tex]H_1: p_1 - p_2 \neq 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the samples:
[tex]X = p_1 - p_2 = 0.2297 - 0.2816 = -0.0519[/tex]
[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.0282^2+0.0341^2} = 0.0442[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{-0.0519 - 0}{0.0442}[/tex]
[tex]z = -1.17[/tex]
P-value of the test and decision:
The p-value of the test is the probability of the differences being of at least 0.0519, either way, which is P(|z| > 1.17), that is, 2 multiplied by the p-value of z = -1.17.
Looking at the z-table, z = -1.17 has a p-value of 0.121.
0.121*2 = 0.242
The p-value of the test is 0.242 > 0.05, which means that this information does not indicate a difference between the population proportion of women and the population proportion of men who favor spending more federal tax dollars on the arts.
How many tens are in 6 hundreds
Answer:
60
Step-by-step explanation:
10 x 6 = 60
Hope this helped! :)
What numbers are to the right of 0 on the number line?
Answer:
Positive numbers.
Step-by-step explanation:
Numbers after zero are positive numbers, which can be any number (whole or decimal/fraction). But numbers before zero are negative numbers which can be also whole or decimal fraction.
Example for numbers to the right of 0: 7, 6.5, 8/10
A bank records deposits as positive numbers and withdrawals as negative numbers.
Mike withdrew $60 from his bank account 3 times.
what is the change in mikes account balance after all 3 withdrawals?
Please help!!! Find the domain of the function y = 2 cot(5∕8x).
A) All real numbers except odd integer multiples of 8π∕5
B) All real numbers except 0 and integer multiples of 8π∕5
C) All real numbers except 0 and integer multiples of 4π∕5
D) All real numbers except odd integer multiples of 4π∕5
Answer:
B) All real numbers except 0 and integer multiples of 8π∕5
Step-by-step explanation:
Cotangent function:
The cotangent function is given by:
[tex]y = \cot{ax} = \frac{\cos{ax}}{\sin{ax}}[/tex]
Domain:
All real values except those at which:
[tex]\sin{ax} = 0[/tex]
The sine is 0 for 0 and all integer multiples of [tex]\frac{1}{a}[/tex]
In this question:
[tex]a = \frac{5}{8}[/tex], so the values outside the domain are 0 and the integer multiples of [tex]\frac{8}{5}[/tex]. Then the correct answer is given by option b.
Simplify to the extent possible
(logx16)(log2x)
Answer:
[tex]{ \tt{ = ( log_{x}16)( log_{2}x) }}[/tex]
Change base x to base 2:
[tex]{ \tt{ = (\frac{ log_{2}16}{ log_{2}x } )( log_{2}x)}} \\ \\ { \tt{ = log_{2}(16) }} \\ = { \tt{ log_{2}(2) }} {}^{4} \\ = { \tt{4 log_{2}(2) }} \\ = { \tt{4}}[/tex]