The correlation between X and Y can be calculated using the formula r = SQRT(R-squared).The correlation coefficient is a measure of the strength of the linear relationship between two variables and can range from -1 to 1
In this case, the R-squared value is 0.81, so the correlation between X and Y is r = SQRT(0.81) = 0.9 (or -0.9 depending on the direction of the relationship).The correlation between X and Y can be calculated using the formula r = SQRT(R-squared). The correlation coefficient is a measure of the strength of the linear relationship between two variables and can range from -1 to 1, where -1 is a perfectly negative linear relationship, 0 is no linear relationship, and 1 is a perfectly positive linear relationship. In this case, the correlation between X and Y was 0.9, indicating a strong linear relationship between the two variables.
Learn more about correlation here:
https://brainly.com/question/30016867
#SPJ4
the zeros of f(x)=20x^2 - 19x + 3
The quadratic function's zeros are therefore [tex]x = 1[/tex] and [tex]x = 0.2[/tex] . A degree two polynomial in one or so more variables that is a quadratic function.
What ways in which quadratic function be recognized?Three points are used to determine a quadratic function, which has the form [tex]f(x) = ax2 Plus bx + c.[/tex]
[tex]Sqrt(b2 - 4ac) = [-b sqrt(b)][/tex] Where the quadratic function's coefficients are a, b, and c.
Here, [tex]a = 20[/tex] , [tex]b = -19[/tex] , & [tex]c = 3[/tex] . We obtain the quadratic formula by substituting these values: [tex]x = [-(-19) sqrt((-19)2 - 4(20)(3)] / 2(20) (20)[/tex]
When we condense this phrase, we get:
[tex]x = [19 +/- sqrt(361 - 240)] / 40 x = [19 +/- sqrt(121)] / 40\sx = [19 ± 11] / 40[/tex]
Therefore, The zeros of a quadratic equation [tex]f(x) = 20x2 - 19x + 3[/tex] are as follows: [tex]x = (19 Plus 11) / 40 = 1 and x = (19 − 11) / 40 = 0.2.[/tex]
Learn more about quadratic function here:
brainly.com/question/18958913
#SPJ1
Question 11 (1 point)
(06.03 LC)
What is the product of the expression, 5x(x2)?
a
25x2
b
10x
c
5x3
d
5x2
The expressiοn 5x(x²) is equal tο 5 * x¹ * x² (5 * x³ = 5x³). Thus, οptiοn (c) 5x3 is the cοrrect respοnse.
Hοw are prοducts οf expressiοn determined?The cοefficients (the numbers in frοnt οf the variables) οf the expressiοn 5x(x²) can be multiplied, and the expοnents οf the variables can be added, tο determine the prοduct.
The first cοefficient we have is 5 times 1, giving us 5. Sο, using the secοnd x², we have x tο the pοwer οf 2 multiplied by x tο the pοwer οf 1 (frοm the first x). Expοnents are added when variables with the same base are multiplied. Sο, x¹ multiplied by x² results in x³.
Cοmbining all οf the parts, the phrase becοmes:
5x(x²) is equal tο 5 * x¹ * x² (5 * x³ = 5x³).
Thus, οptiοn (c) 5x³ is the cοrrect respοnse.
Learn more about Exponents here:
brainly.com/question/5497425
#SPJ1
Kingsley knows that 1inch is about 2.45 centimeters. He wants to write an equation he can use to convert any given length in inches (i) to centimeters (c)
How should Kingsley write his equation?
A.) c/i = 2.54
B.) c = 2.54i
C.) i = c/2.54
Since Kingsley wanted an equation to convert from inches to centimeters, the correct answer is B) c = 2.54i.
What is equation ?
An equation is a statement that asserts the equality of two expressions, usually separated by an equals sign (=). The expressions on either side of the equals sign may contain one or more variables, which are unknown values that can be determined by solving the equation.
Kingsley wants to convert a given length in inches to centimeters. He knows that 1 inch is about 2.45 centimeters.
Let's call the length in inches "i" and the length in centimeters "c".
We want to find an equation that relates i and c. We know that 1 inch is about 2.45 centimeters, so we can write:
1 inch = 2.45 centimeters
To convert from inches to centimeters, we can multiply the length in inches by 2.45. So:
c = 2.45i
This is the equation Kingsley can use to convert any given length in inches to centimeters.
Alternatively, we can rearrange this equation to solve for i:
c = 2.45i
Divide both sides by 2.45:
c/2.45 = i
So the equation for converting from centimeters to inches is:
i = c/2.45
Therefore, since Kingsley wanted an equation to convert from inches to centimeters, the correct answer is B) c = 2.54i.
To learn more about Equation from given link.
https://brainly.com/question/19770987
#SPJ1
Construct triangle PQR in which angle Q = 30 deg , angle R=60^ and PQ + QR + RP = 10cm
We can see here that in order to construct a triangle PQR in which angle Q = 30°, angle R=60° and PQ + QR + RP = 10cm, here is a guide:
Draw a line segment AB = 10 cm.Construct angle 30° at point A and angle 60° at point B.Draw angle bisectors to angles A and B.Make sure these angle bisectors intersect at point P.Draw perpendicular bisector to line segment AP.Let this bisector meet AB at Q.Then draw perpendicular bisector to line segment BP.Let this bisector meet AB at R.Join PQ and PR.PQR is the required triangle.What is a triangle?A triangle is a geometric shape that is defined as a three-sided polygon, where each side is a line segment connecting two of the vertices, or corners, of the triangle. The interior angles of a triangle always add up to 180 degrees.
Triangles can be classified into different types based on their side lengths and angles, such as equilateral triangles with three equal sides and three equal angles, isosceles triangles with two equal sides and two equal angles, and scalene triangles with no equal sides or angles.
Triangles are used in many areas of mathematics and science, including geometry, trigonometry, and physics.
Learn more about triangle on https://brainly.com/question/28470545
#SPJ1
Pls help There is a 20% chance that a customer walking into a store will make a purchase. A computer was used to generate 5 sets of random numbers from 0 to 9, where the numbers 0 and 1 represent a customer who walks in and makes a purchase.
A two column table with title Customer Purchases is shown. The first column is labeled Trial and the second column is labeled Numbers Generated.
What is the experimental probability that at least one of the first three customers that walks into the store will make a purchase?
A) 60%
B) 13%
C) 40%
D) 22%
The experimental probability that at least one of the first three customers that walks into the store will make a purchase is 60%.
What is experimental probability?It is determined by counting the number of times an event occurs in a given experiment and dividing the total number of trials by the number of successful outcomes.
The experimental probability that at least one of the first three customers that walks into the store will make a purchase is calculated by dividing the total number of customers who make a purchase by the total number of customers who enter the store.
In this case, there are 3 trials and 2 customers who make a purchase.
The experimental probability is 3 by 5 which is the total number of trials.
Thus, the experimental probability
=3/5
= 60%.
For more questions related to event
https://brainly.com/question/14350753
#SPJ1
Tell me which brand or which size is a better buy.
Answer:
The answer is brand B
Step-by-step explanation:
You divide $14.88 by 24 which equals 68 cents per item.
Then brand B is 60 cents per item which is the better buy!
select a random integer from -200 to 200. which of the following pairs of events re mutualyle exclusive
The pairs of events of random integers are pairs of events are,
even and odd , negative and positive integers, zero and non-zero integers.
Two events are mutually exclusive if they cannot occur at the same time.
Selecting a random integer from -200 to 200,
Any two events that involve selecting a specific integer are mutually exclusive.
For example,
The events selecting the integer -100
And selecting the integer 50 are mutually exclusive
As they cannot both occur at the same time.
Any pair of events that involve selecting a specific integer are mutually exclusive.
Here are a few examples,
Selecting an even integer and selecting an odd integer.
Selecting a negative integer and selecting a positive integer
Selecting the integer 0 and selecting an integer that is not 0.
But,
Events such as selecting an even integer and selecting an integer between -100 and 100 are not mutually exclusive.
As there are even integers between -100 and 100.
Learn more about integer here
brainly.com/question/30099746
#SPJ4
Find the Z score that has 48.4% of the distributions area to its left.
Answer:
To find the Z-score that has 48.4% of the distribution's area to its left, we can use a standard normal distribution table or a calculator.
Using a standard normal distribution table, we can look for the closest probability value to 0.484. In the table, we find that the closest probability value is 0.4838, which corresponds to a Z-score of approximately 1.96.
Alternatively, we can use a calculator with a built-in normal distribution function. Using the inverse normal distribution function, also known as the quantile function, we can find the Z-score that corresponds to a given probability. For a probability of 0.484, we get:
To find the Z-score that has 48.4% of the distribution's area to its left, we can use a standard normal distribution table or a calculator.
Using a standard normal distribution table, we can look for the closest probability value to 0.484. In the table, we find that the closest probability value is 0.4838, which corresponds to a Z-score of approximately 1.96.
Alternatively, we can use a calculator with a built-in normal distribution function. Using the inverse normal distribution function, also known as the quantile function, we can find the Z-score that corresponds to a given probability. For a probability of 0.484, we get:
To find the Z-score that has 48.4% of the distribution's area to its left, we can use a standard normal distribution table or a calculator.
Using a standard normal distribution table, we can look for the closest probability value to 0.484. In the table, we find that the closest probability value is 0.4838, which corresponds to a Z-score of approximately 1.96.
Alternatively, we can use a calculator with a built-in normal distribution function. Using the inverse normal distribution function, also known as the quantile function, we can find the Z-score that corresponds to a given probability. For a probability of 0.484, we get:
invNorm(0.484)= 1.96
Therefore, the Z-score that has 48.4% of the distribution's area to its left is approximately 1.96.
Samir bought three pounds of strawberries for $12.00. What is the price, in dollars
per ounce of strawberries?
1 pound = 16 ounces
Before you try that problem, answer the question below.
How many ounces of strawberries did Samir buy?
complete the table below.
4775 g968r648 747474874 483892874 23773259635y84b2375789325 7437594365825 4378574937587 49388959365n 98437858746587 32o4iy548569
Answer:
?
Step-by-step explanation:
P, Q, R, S, T and U are different digits.
PQR + STU = 407
Step-by-step explanation:
There are many possible solutions to this problem, but one possible set of values for P, Q, R, S, T, and U is:
P = 2
Q = 5
R = 1
S = 8
T = 9
U = 9
With these values, we have:
PQR = 251
STU = 156
And the sum of PQR and STU is indeed 407.
Venell put together a model train with 25 train cars. Each train car is 80 millimeters long. How many meters long is Venell's model train if there are no gaps between cars? (1 meter = 1,000 millimeters)
Answer: 2 meters
Step-by-step explanation:
The length of one train car is 80 millimeters. Therefore, the length of the entire train is:
25 cars × 80 mm per car = 2000 mm
To convert millimeters to meters, we need to divide by 1000:
2000 mm ÷ 1000 = 2 meters
Therefore, Venell's model train is 2 meters long.
find two positive numbers that satisfy the given requirements. the sum of the first and twice the secind is 100 and the product is a maximum
Answer: The two positive numbers that satisfy the given requirements are 25 and 50.
Step-by-step explanation:
Let's call the two positive numbers x and y. We want to maximize their product while satisfying the condition that "the sum of the first and twice the second is 100", or mathematically:
x + 2y = 100
We can use algebra to solve for one of the variables in terms of the other:
x = 100 - 2y
Now we want to maximize the product xy:
xy = x(100 - 2y) = 100x - 2xy
Substituting x = 100 - 2y:
xy = (100 - 2y)y = 100y - 2y^2
To find the maximum value of this expression, we can take the derivative with respect to y and set it equal to zero:
d(xy)/dy = 100 - 4y = 0
Solving for y gives:
y = 25
Substituting y = 25 into the equation x + 2y = 100, we get:
x + 2(25) = 100
x = 50
Therefore, the two positive numbers that satisfy the given requirements are x = 50 and y = 25, and their product is:
xy = 50(25) = 1250
The dot plots below show the number of students in attendance each day in Mr. Wilson's class and Mr. Watson's class in April. What is the difference of the medians as a multiple of the interquartile range? A. B. C. D.
The difference of the medians as a multiple of the interquartile range is 0.5,So the correct answer is option (A) 0.5.
What is median?The median is a measure of central tendency that represents the middle value in a data set when the values are arranged in numerical order.
For example, consider the data set {3, 5, 2, 6, 1, 4}. When the values are ordered from smallest to largest, we get {1, 2, 3, 4, 5, 6}. The median in this case is the middle value, which is 3.
We can first find the medians and interquartile ranges of the two dot plots.
For Mr. Wilson's class:
Median = 12
Q1 = 10
Q3 = 14
IQR = Q3 - Q1 = 14 - 10 = 4
For Mr. Watson's class:
Median = 10
Q1 = 8
Q3 = 12
IQR = Q3 - Q1 = 12 - 8 = 4
The difference of the medians is |12 - 10| = 2. Therefore, the difference of the medians as a multiple of the interquartile range is:
$$\frac{2}{4} = \boxed{0.5}$$
To know more about interquartile range visit:
https://brainly.com/question/29204101
#SPJ1
.2 In the diagram below, given that XY = 3cm, XZY = 30° and YZ = x, is it possible to solve for x using the theorem of Pythagoras? Motivate your answer. Show Calculations
Sin 30 =3/x
1/2=3/x
x=6
Mr. Nkalle invested an amount of N$20,900 divided in two different schemes A and B at the simple interest
rate of 9% p.a. and 8% p.a, respectively. If the total amount of simple interest earned in 2 years is N$3508,
what was the amount invested in Scheme B?
Answer:
Let's assume that Mr. Nkalle invested an amount of x in Scheme A and (20900 - x) in Scheme B.
The simple interest earned on Scheme A in 2 years would be:
SI(A) = (x * 9 * 2)/100 = 0.18x
The simple interest earned on Scheme B in 2 years would be:
SI(B) = [(20900 - x) * 8 * 2]/100 = (3344 - 0.16x)
The total simple interest earned in 2 years is given as N$3508:
SI(A) + SI(B) = 0.18x + (3344 - 0.16x) = 3508
0.02x = 164
x = 8200
Therefore, Mr. Nkalle invested N$8200 in Scheme A and N$12700 (20900 - 8200) in Scheme B. So the amount invested in Scheme B was N$12700.
se spherical coordinates to evaluate the triple integral where is the region bounded by the spheres and .
The value of the triple integral[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex] by using spherical coordinates [tex]2\pi(e^{-1}-e^{-9})[/tex].
Given that the triple integral is-
[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]
E is the region bounded by the spheres which are,
[tex]x^2+y^2+z^2=1\\\\x^2+y^2+z^2=9[/tex]
In spherical coordinates we have,
x = r cosθ sin ∅
y = r sinθ sin∅
z = r cos∅
dV = r²sin∅ dr dθ d∅
E contains two spheres of radius 1 and 3 () respectively, the bounds will be like this,
1 ≤ r ≤ 3
0 ≤ θ ≤ 2π
0 ≤ ∅ ≤ π
Then
[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]
[tex]\int\int\int _{E} \frac{e^{-r^2}}{r}r^2Sin\phi drd\phi d\theta\\\\2\pi \int_{0}^{\pi} \int_1^3 re^{-r^2} dr d\phi\\\\2\pi \int_1^3 re^{-r^2} dr\\\\2\pi(e^{-1}-e^{-9})[/tex]
The complete question is-
Use spherical coordinates to evaluate the triple integral ∭ee−(x2 y2 z2)x2 y2 z2−−−−−−−−−−√dv, where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=9.
learn more about triple integral,
https://brainly.com/question/30404807
#SPJ4
What was your recommended intake of carbohydrates (grams), and how far were you from it? Show the mathActual Intake Recommended Intake Percentage159.00 115-166 100%
The actual intake of carbohydrates is 138% as compare to recommended intake.
Recommended intake of carbohydrates or any other nutrient are,
Based on the information provided,
Consumed 159 grams of carbohydrates,
Recommended intake is between 115 and 166 grams.
Calculate the percentage of actual intake compared to the recommended intake, use the following formula,
Percentage = (Actual Intake / Recommended Intake) x 100%
Substituting the values in the formula we have,
⇒Percentage = (159 / 115) x 100%
⇒Percentage ≈ 138.3%
Therefore, the actual intake of carbohydrates is about 138% of the recommended intake, indicating that consumption of more carbohydrates than recommended.
learn more about carbohydrates here
brainly.com/question/10052351
#SPJ4
Which expressions are equivalent to 8(3/4y - 2) + 6(-1/2x + 4) + 1
Answer:
8(3/4y - 2) + 6(-1/2x + 4) + 1 can be simplified as:
6(-1/2x) = -3x
8(3/4y) = 6y
8(-2) = -16
6(4) = 24
1 remains as 1.
So the expression becomes:
6y - 3x - 16 + 24 + 1
which simplifies to:
6y - 3x + 9
Therefore, the expressions that are equivalent to 8(3/4y - 2) + 6(-1/2x + 4) + 1 are:
6y - 3x + 9
Help i need this question solved
Answer: D. Square
Step-by-step explanation:
The shape created by the cross section of the cut through a square pyramid is a square.
To see why, imagine the pyramid sitting on a table with its square base flat against the surface. The cut goes through the vertex, which is the point at the top of the pyramid. Since the cut is perpendicular to the base, it divides the pyramid into two smaller pyramids with congruent, but not identical, bases. Each of these smaller pyramids has a triangular base that is an isosceles right triangle. The two triangles share a common hypotenuse, which is the line of the cut.
The cross section of the cut is the shape formed where the two triangles meet along the hypotenuse. Since both triangles are congruent and the hypotenuse is the same for both, the cross section is a square. The sides of the square are equal to the base of the original pyramid, which is one of the legs of the isosceles right triangles formed by the cut. Therefore, the answer is D, a square.
Find the closed formula for each of the following sequences by relating them to a well known sequence. Assume the first term given is a1.
(a) 2, 5, 10, 17, 26, . . .
(b) 0, 2, 5, 9, 14, 20, . . .
(c) 8, 12, 17, 23, 30, . . .
(d) 1, 5, 23, 119, 719, . . .
The final closed formula answers for each part,
(a) an = n^2 + 1
(b) an = n(n + 1)(n + 2)/6
(c) an = 2n + 6
(d) an = n! + (n-1)! + ... + 2! + 1!
(a) The given sequence can be seen as the sequence of partial sums of the sequence of odd numbers: 1, 3, 5, 7, 9, . . . . That is, the nth term of the given sequence is the sum of the first n odd numbers, which is n^2. Therefore, the closed formula for the given sequence is an = n^2 + 1.
(b) The given sequence can be seen as the sequence of partial sums of the sequence of triangular numbers: 1, 3, 6, 10, 15, . . . . That is, the nth term of the given sequence is the sum of the first n triangular numbers, which is n(n + 1)(n + 2)/6. Therefore, the closed formula for the given sequence is an = n(n + 1)(n + 2)/6.
(c) The given sequence can be seen as the sequence of differences between consecutive squares: 1, 5, 9, 16, 21, . . . . That is, the nth term of the given sequence is the difference between the (n+1)th square and the nth square, which is (n + 1)^2 - n^2 = 2n + 1. Therefore, the closed formula for the given sequence is an = 2n + 6.
(d) The given sequence can be seen as the sequence of partial sums of the sequence defined recursively by a1 = 1 and an+1 = an(n + 1) for n ≥ 1. That is, the nth term of the given sequence is the sum of the first n terms of the recursive sequence. It can be shown that the nth term of the recursive sequence is n! (n factorial), and therefore the nth term of the given sequence is the sum of the first n factorials. That is, an = 1 + 1! + 2! + ... + (n-1)! + n!. Therefore, the closed formula for the given sequence is an = n! + (n-1)! + ... + 2! + 1!.
Learn more about closed formula here
brainly.com/question/29029062
#SPJ4
Solve please geometry, solve for x
Answer: The answer is D
Step-by-step explanation:
Pythagorean theorem: a²+b²=c²
x²+x²=14²
2x²=196
Evaluate...
x=7√2
are the ratios 2:1 and 20:10 equivalent
Yes, there is an analogous ratio between 2:1 and 20:10.
What ratio is similar to 2 to 1?We just cancel by a common factor. So 4:2=2:1 . The simplest representation of the ratio 4 to 2 is the ratio 2 to 1. Also, since each pair of numbers has the same relationship to one another, the ratios are equivalent.
By dividing the terms of each ratio by their greatest common factor, we may simplify both ratios to explain why.
As the greatest common factor for the ratio 2:1 is 1, additional simplification is not necessary.
The greatest common factor for the ratio 20:10 is 10. When we multiply both terms by 10, we get:
20 ÷ 10 : 10 ÷ 10
= 2 : 1
As a result, both ratios have the same reduced form, 2:1, making them equal.
To know more about ratio visit:-
https://brainly.com/question/13419413
#SPJ1
Will tracks the high and low tempters in his town for five days during a cold spell in January his results are shown in the table below
Days when change in temperature more than 10° F are Option B)Tuesday and E) Friday.
Define change in temperaturecalculating the difference by deducting the end temperature from the initial temperature. The temperature difference is therefore 75 degrees Celsius - 50 degrees Celsius = 25 if something begins at 50 degrees Celsius and ends at 75 degrees Celsius.
Change in temperature on Monday from High to low
=15-10=5°F
Change in temperature on Tuesday from High to low
=8-(-4)=12°F
Change in temperature on Wednesday from High to low
=-2-(-5)=3°F
Change in temperature on Thursday from High to low
=-3-(-7)=4°F
Change in temperature on Friday from High to low
=-1-(-12)=11° F
Days when change in temperature more than 10° F are Tuesday and Friday.
To know more about Celsius, visit:
https://brainly.com/question/1373930
#SPJ1
The Complete question is attached below:
Write a sine function that has a midline of, y=5, an amplitude of 4 and a period of 2.
Answer:
y = 4 sin(π x) + 5
Step-by-step explanation:
A sine function with a midline of y=5, an amplitude of 4, and a period of 2 can be written in the following form:
y = A sin(2π/ x) +
where A is the amplitude, is the period, is the vertical shift (midline), and x is the independent variable (usually time).
Substituting the given values, we get:
y = 4 sin(2π/2 x) + 5
Simplifying this expression, we get:
y = 4 sin(π x) + 5
Therefore, the sine function with the desired characteristics is:
y = 4 sin(π x) + 5
Create a trigonometric function that models the ocean tide..
Explain why you chose your function type. Show work for any values not already outlined above.
Answer:
One possible function that models the ocean tide is:
h(t) = A sin(ωt + φ) + B
where:
h(t) represents the height of the tide (in meters) at time t (in hours)
A is the amplitude of the tide (in meters)
ω is the angular frequency of the tide (in radians per hour)
φ is the phase shift of the tide (in radians)
B is the mean sea level (in meters)
This function is a sinusoidal function, which is a common type of function used to model periodic phenomena. The sine function has a natural connection to circles and periodic motion, making it a good choice for modeling the regular rise and fall of ocean tides.
The amplitude A represents the maximum height of the tide above the mean sea level, while B represents the mean sea level. The angular frequency ω determines the rate at which the tide oscillates, with one full cycle (i.e., a high tide and a low tide) occurring every 12 hours. The phase shift φ determines the starting point of the tide cycle, with a value of zero indicating that the tide is at its highest point at time t=0.
To determine specific values for A, ω, φ, and B, we would need to gather data on the tide height at various times and locations. However, typical values for these parameters might be:
1. A = 2 meters (representing a relatively large tidal range)
2. ω = π/6 radians per hour (corresponding to a 12-hour period)
3. φ = 0 radians (assuming that high tide occurs at t=0)
4. B = 0 meters (assuming a mean sea level of zero)
Using these values, we can write the equation for the tide as:
h(t) = 2 sin(π/6 t)
We can evaluate this equation for various values of t to get the height of the tide at different times. For example, at t=0 (the start of the cycle), we have:
h(0) = 2 sin(0) = 0
indicating that the tide is at its lowest point. At t=6 (halfway through the cycle), we have:
h(6) = 2 sin(π/2) = 2
indicating that the tide is at its highest point. We can also graph the function to visualize the rise and fall of the tide over time:
Tide Graph
Overall, this function provides a simple and effective way to model the ocean tide using trigonometric functions.
(please mark my answer as brainliest)
What quadratic function is represented by the graph?
A. f(x) = −2x²+x+6
B. f(x) = 2x²x+6
C. f(x) = 2x²+x+6
D. f(x) = − 2x² - x - 6
Answer:
Answer: C. f(x) = 2x²+x+6
For the functions f(x)=−7x+3 and g(x)=3x2−4x−1, find (f⋅g)(x) and (f⋅g)(1).
Answer:
Find f(g(x)) f(x)=7x-8 , g(x)=3x-2. f(x)=7x−8 f ( x ) = 7 x - 8 , g(x)=3x−2 g ( x ) = 3 x - 2. Step 1. Set up the composite result function. f(g(x)) f ( g ...
please mark me as a brainalist
Jenny took the car, the bus, and the train to get home in time.
What form of punctuation is missing?
O A. No punctuation is missing.
OB.
A period
OC.
A comma
OD. A semicolon
Last three times I have tried to take a picture of my question. Nothing comes up that resembles any of it. I don’t know what’s wrong with this app but it’s not helping.
According to the question. A. No punctuation is missing.
What is punctuation ?Punctuation is the use of symbols to indicate the structure and organization of written language. It is used to help make the meaning of sentences clearer and to make them easier to read and understand. Punctuation marks can also be used to indicate pauses in speech, to create emphasis, and to indicate the speaker’s attitude. There are many different types of punctuation marks, each with its own purpose. The most commonly used punctuation marks are the period, comma, question mark, exclamation mark, quotation marks, and the apostrophe.
Quotation marks are used to enclose quoted material, while the apostrophe is used to indicate possession or to replace missing letters in a word or phrase. By using punctuation correctly, writers can ensure that their messages are correctly understood by their readers.
To learn more about punctuation
https://brainly.com/question/30321693
#SPJ1
A line passes through points (5,3) and (-5,-2). Another line passes through points (-6,4) and (2,-4). Find the coordinates (ordered pairs) of the intersection of the two lines.
Step 1: Find the slope of each line
Step 2: Find the y-intercept of each line
Step 3: Write each line in slope-intercept form (y = mx + b)
Step 4: Solve for the system. Find the point of intersection for the system
Please help I will mark brainliest!!!
The point of intersection of the two lines is (-3.4, -1.2).
How to find the slope of each line?Step 1: The slope of a line passing through two points (x1,y1) and (x2,y2) can be found using the formula:
m = (y2-y1)/(x2-x1)
Using this formula, we can find the slope of the first line:
m1 = (−2−3)/(-5 -5) = −5/(-10) = 1/2
And the slope of the second line:
m2 = (−4−4)/(2 -(-6)) = -8/4 = -2
Step 2: Find the y-intercept of each line
The y-intercept of a line in slope-intercept form (y = mx + b) is the value of y when x=0. We can use one of the two given points on each line to find the y-intercept:
For the first line passing through points (5,3) and (−5,−2):
y = mx + b
3 = (1/2)(5) + b
b = 3 - 5/2
b = 1/2
So the first line can be written as y = 1/2x + 1/2
For the second line passing through points (−6,4) and (2,−4):
y = mx + b
4 = (-2)(−6) + b
b = 4 - 12
b = -8
So the second line can be written as y = -2x - 8
Step 3: Each line in slope-intercept form (y = mx + b):
First line: y = 1/2x + 1/2
Second line: y = -2x - 8
Step 4: To find the point of intersection of the two lines, we need to solve the system of equations. We can solve for x by setting the two right-hand sides equal to each other:
1/2x + 1/2 = -2x - 8
(x + 1)/2 = -2x - 8
x + 1 = -4x - 16
5x = -16 - 1
5x = -17
x = -17/5
x = -3.4
Now that we know x, we can find y by substituting x=10 into one of the two equations:
y = -2x - 8
y = -2(-3.4) - 8
y = - 1.2
Thus, the point of intersection of the two lines is (-3.4, -1.2).
Learn more about equation of a line on:
https://brainly.com/question/18831322
#SPJ1