If you weigh 685 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 25.0 km

Answers

Answer 1

CHECK COMPLETE QUESTION BELOW

you weigh 685 NN on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 25.0 kmkm ? Take the mass of the sun to be msmsm_s = 1.99×1030 kgkg , the gravitational constant to be GGG = 6.67×10−11 N⋅m2/kg2N⋅m2/kg2 , and the free-fall acceleration at the earth's surface to be ggg = 9.8 m/s2m/s2 .

Answer:

5.94×10^15N

Explanation:

the weight on the surface of a neutron star can be calculated by below expresion

W= Mg

W= weight of the person

m= mass of the person

g=gravity of the neutron star

But we need the mass which can be calculated as

m= W/g

m= 685/9.81

m= 69.83kg

From the gravitational law equation we have

F= GMm/r^2

G= gravitational constant = 6.67x10⁻¹¹

M= mass of the neutron star = 1.99x10³⁰ kg

r = distance between the person and the surface

Then r can be calculated as = 25/2 = 12.5 km , we divide by two because it's the distance between the person and the surface

g=gravity of the neutron star can be calculated as

g=(6.67×10^-11 ×1.99×10^30)/(12.5×10^3)^2

= 8.50×10^13m/s^2

Then from W= mg we can find our weight

W= 8.50×10^13m/s^2 × 69.83

= 5.94×10^15N

Therefore, weight on the surface of a neutron star is 5.94×10^15N


Related Questions

An emf is induced by rotating a 1060 turn, 20.0 cm diameter coil in the Earth's 5.25 ✕ 10−5 T magnetic field. What average emf (in V) is induced, given the plane of the coil is originally perpendicular to the Earth's field and is rotated to be parallel to the field in 10.0 ms? V †

Answers

Answer:

The average emf induced in the coil is 175 mV

Explanation:

Given;

number of turns of the coil, N = 1060 turns

diameter of the coil, d = 20.0 cm = 0.2 m

magnitude of the magnetic field,  B = 5.25 x 10⁻⁵ T

duration of change in field, t = 10 ms = 10 x 10⁻³ s

The average emf induced in the coil is given by;

[tex]E = N\frac{\delta \phi}{dt} \\\\E = N\frac{\delta B}{\delta t}A[/tex]

where;

A is the area of the coil

A = πr²

r is the radius of the coil = 0.2 /2 = 0.1 m

A = π(0.1)² = 0.03142 m²

[tex]E = \frac{NBA}{t} \\\\E = \frac{1060*5.25*10^{-5}*0.03142}{10*10^{-3}} \\\\E = 0.175 \ V\\\\E = 175 \ mV[/tex]

Therefore, the average emf induced in the coil is 175 mV

Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an amplitude of 7.00 cm. Find the amplitude of the resultant wave.

Answers

Answer:

The amplitude of the resultant wave is 12.93 cm.

Explanation:

The amplitude of resultant of two waves, y₁ and y₂, is given as;

Y = y₁ + y₂

Let y₁ = A sin(kx - ωt)

Since the wave is out phase by φ, y₂ is given as;

y₂ = A sin(kx - ωt + φ)

Y = y₁ + y₂ = 2A Cos (φ / 2)sin(kx - ωt + φ/2 )

Given;

phase difference, φ = 45°

Amplitude, A = 7.00 cm

Y = 2(7) Cos (45 /2) sin(kx - ωt + 22.5° )

Y = 12.93 cm

Therefore, the amplitude of the resultant wave is 12.93 cm.

A soccer ball of mass 0.4 kg is moving horizontally with a speed of 20 m/s when it is kicked by a player. The kicking force is so large that the ball flies up at an angle of 30 degrees above the ground. The player however claims (s)he aimed her/his foot at a 40 degree angle above the ground. Calculate the average kicking force magnitude and the final speed of the ball, if you are given that the foot was in contact with the ball for one hundredth of a second.

Answers

Answer:

v_{f} = 74 m/s, F = 230 N

Explanation:

We can work on this exercise using the relationship between momentum and moment

        I = ∫ F dt = Δp

bold indicates vectors

we can write this equations in its components

X axis

       Fₓ t = m ( -v_{xo})

Y axis  

        t = m (v_{yf} - v_{yo})

in this case with the ball it travels horizontally v_{yo} = 0

Let's use trigonometry to write the final velocities and the force

        sin 30 = v_{yf} / vf

        cos 30 = v_{xf} / vf

        v_{yf} = vf sin 30

        v_{xf} = vf cos 30

         sin40 = F_{y} / F

         F_{y} = F sin 40

         cos 40 = Fₓ / F

         Fₓ = F cos 40

let's substitute

      F cos 40 t = m ( cos 30 - vₓ₀)

      F sin 40 t = m (v_{f} sin 30-0)

we have two equations and two unknowns, so the system can be solved

        F cos 40 0.1 = 0.4 (v_{f} cos 30 - 20)

        F sin 40 0.1 = 0.4 v_{f} sin 30

we clear fen the second equation and subtitles in the first

         F = 4 sin30 /sin40     v_{f}

         F = 3.111 v_{f}

        (3,111 v_{f}) cos 40 = 4 v_{f} cos 30 - 80

        v_{f} (3,111 cos 40 -4 cos30) = - 80

        v_{f} (- 1.0812) = - 80

        v_{f} = 73.99

        v_{f} = 74 m/s

now we can calculate the force

          F = 3.111 73.99

          F = 230 N

Rank these electromagnetic waves on the basis of their speed (in vacuum). Rank from fastest to slowest.

a. Yellow light
b. FM radio wave
c. Green light
d. X-ray
e. AM radio wave
f. Infrared wave

Answers

Answer:

From fastest speed to slowest speed, the electromagnetic waves are ranked as(up to down):

d. X-ray

c. Green light

a. Yellow light

f. Infrared wave

b. FM radio wave

e. AM radio wave

Explanation:

Electromagnetic waves are waves produced as a result of vibrations between an electric field and a magnetic field. The waves have three properties and these properties are frequency, speed and wavelength, which are related by the relationship below

V = Fλ

where:\

V = speed (velocity)

F = frequency

λ = wavelength.

From the relationship above, it is seen that the speed of a wave is directly proportional to its frequency. The higher the frequency, the higher the speed. Therefore, from the list given, the waves with  the highest to lowest frequencies/ from left to right are:

X-ray (3×10¹⁹ Hz to 3×10¹⁶Hz), Green light (5.66×10¹⁴Hz), Yellow light (5.17×10¹⁴Hz), Infrared wave (3×10¹¹Hz), FM radio wave (10.8×10⁸Hz to 8.8×10⁷Hz), AM radio wave (1.72 × 10⁶Hz to 5.5×10⁵Hz).

This corresponds to the speed from highest to lowest from left to right.

Which of the following describes wavelength?
A.
the height of a wave
B.
the distance between crests of adjacent waves
C.
the distance a wave travels in a given amount of time
D.
the number of waves that pass a point in a given amount of time

Answers

D. The number of wave that pass a point in a given amount of time

Monochromatic light of wavelength, λ is traveling in air. The light then strikes a thin film having an index of refraction n1 that is coating a material having an index of refraction n2. If n1 is larger than n2, what minimum film thickness will result in minimum reflection of this light?

Answers

Answer:

tmin= lambda/2

Explanation:

See attached file pls

The four wheels of a car are connected to the car's body by spring assemblies that let the wheels move up and down over bumps and dips in the road. When a 68 kg (about 150 lb) person sits on the left front fender of a small car, this corner of the car dips by about 1.2 cm (about 1/2 in).

If we treat the spring assembly as a single spring, what is the approximate spring constant?

k= ____________

Answers

Answer:

The approximate  spring constant is  [tex]k = 55533.33 \ N/m[/tex]

Explanation:

From the question we are told that

   The  mass of the person is  [tex]m = 68 \ kg[/tex]

     The  dip of the car is  [tex]x = 1.2 \ cm = 0.012 \ m[/tex]

Generally according to hooks law  

        [tex]F = k * x[/tex]

here the force F is the weight of the person which is mathematically represented as

         [tex]F = m * g[/tex]

=>    [tex]m * g = k * x[/tex]

=>     [tex]k = \frac{m * g }{x }[/tex]

=>    [tex]k = \frac{68 * 9.8}{ 0.012}[/tex]

=>   [tex]k = 55533.33 \ N/m[/tex]

The location of a particle is measured with an uncertainty of 0.15 nm. One tries to simultaneously measure the velocity of this particle. What is the minimum uncertainty in the velocity measurement. The mass of the particle is 1.770×10-27 kg

Answers

Answer:

198 ms-1

Explanation:

According to the Heisenberg uncertainty principle; it is not possible to simultaneously measure the momentum and position of a particle with precision.

The uncertainty associated with each measurement is given by;

∆x∆p≥h/4π

Where;

∆x = uncertainty in the measurement of position

∆p = uncertainty in the measurement of momentum

h= Plank's constant

But ∆p= mΔv

And;

m= 1.770×10^-27 kg

∆x = 0.15 nm

Making ∆v the subject of the formula;

∆v≥h/m∆x4π

∆v≥ 6.6 ×10^-34/1.770×10^-27 × 1.5×10^-10 ×4×3.142

∆v≥198 ms-1

Q9 A physics book slides off a horizontal tabletop with a speed of 1.10 m/s. It strikes the floor in 0.350s. ignore air resistance. Find (a) the height of the tabletop above the floor; (b) the horizontal distance from the edge of the table to the point where the book strikes the floor; (c) the horizontal and vertical components of the book's velocity, and the magnitude and direction of its velocity, just before the book reaches the floor.

Answers

Answer:

(a) 0.613 m

(b) 0.385 m

(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s

v = 3.68 m/s², θ = 72.6° below the horizontal

Explanation:

(a)  Take down to be positive.

Given in the y direction:

v₀ = 0 m/s

a = 10 m/s²

t = 0.350 s

Find: Δy

Δy = v₀ t + ½ at²

Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²

Δy = 0.613 m

(b) Given in the x direction:

v₀ = 1.10 m/s

a = 0 m/s²

t = 0.350 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²

Δx = 0.385 m

(c) Find: vₓ and vᵧ

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (0.350 s) + 1.10 m/s

vₓ = 1.10 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (10 m/s²) (0.350 s) + 0 m/s

vᵧ = 3.50 m/s

The magnitude is:

v² = vₓ² + vᵧ²

v = 3.68 m/s²

The direction is:

θ = atan(vᵧ / vₓ)

θ = 72.6° below the horizontal

What is the emf of this cell under standard conditions? Express your answer using three significant figures.

Answers

Complete Question

A voltaic cell utilizes the following reaction and operates at 298 K:

3Ce4+(aq)+Cr(s)→3Ce3+(aq)+Cr3+(aq).

What is the emf of this cell under standard conditions? Express your answer using three significant figures.

Answer:

The value is [tex]E^o_{cell} = 2.35 V[/tex]

Explanation:

From the question we are told that

   The ionic equation is  

               [tex]3 Ce^{4 +} _{(aq)} + Cr _{(s)} \to 3 Ce^{3+} _{(aq)} + Cr^{3r} _{(aq)}[/tex]

Now under standard conditions the reduction  half reaction  is

      [tex]Ce^{4+} + e \to Ce^{3+} ; \ \ E^o_r = 1.61 V[/tex]

And the oxidation half reaction is

      [tex]Cr^{3+} + 3e^{-} \to Cr ; \ \ \ E^o_o = - 0.74 V[/tex]

The emf of this cell under standard conditions  is mathematically represented as

     [tex]E^o_{cell} = E^o _r - E^o _o[/tex]

substituting values

     [tex]E^o_{cell} = 1.61 - (- 0.74)[/tex]

    [tex]E^o_{cell} = 2.35 V[/tex]

     

The magnitude of the Poynting vector of a planar electromagnetic wave has an average value of 0.724 W/m2. What is the maximum value of the magnetic field in the wave

Answers

Answer:

7.78x10^-8T

Explanation:

The Pointing Vector S is

S = (1/μ0) E × B

at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,

S = (1/μ0) E B

where S, E and B are magnitudes. The average value of the Pointing Vector is

<S> = [1/(2 μ0)] E0 B0

where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)

Also at any instant,

E = c B

where E and B are magnitudes, so it must also be true at the instant of peak values

E0 = c B0

Substituting for E0,

<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²

Solve for B0.

Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)

= 7.79 x10 ^-8 T

A roller coaster starts from rest at its highest point and then descends on its (frictionless) track. Its speed is 26 m/s when it reaches ground level. What was its speed when its height was half that of its starting point?

Answers

Answer:

The velocity is  [tex]v_h = 19.2 \ m/s[/tex]

Explanation:

From the question we are told that

   The speed of the roller coaster at ground level  is [tex]v = 26 \ m/s[/tex]

 

Generally we can define the roller coaster speed at ground level using the an equation of motion as

     [tex]v^2 = u^2 + 2 g s[/tex]

 u is  zero given that the roller coaster started from rest

      So

            [tex]26^2 = 0 + 2 * g * s[/tex]

So  

           [tex]s = \frac{26^2}{ 2 * g }[/tex]

=>       [tex]s = 37.6 \ m[/tex]

Now the displacement half way is mathematically represented as

       

    [tex]s_{h} = \frac{37.6}{2}[/tex]

     [tex]s_{h} = 18.8 \ m[/tex]

So

      [tex]v_h ^2 = u^2 + 2 * g * s_h[/tex]

Where  [tex]v_h[/tex] is the velocity at the half way point

=>  [tex]v_h = \sqrt{ 0 + 2 * 9.8 * 18.8 }[/tex]

=>   [tex]v_h = 19.2 \ m/s[/tex]

Consider a wire of a circular cross-section with a radius of R = 3.17 mm. The magnitude of the current density is modeled as J = cr2 = 9.00 ✕ 106 A/m4 r2. What is the current (in A) through the inner section of the wire from the center to r = 0.5R?

Answers

Answer:

The current is  [tex]I = 8.9 *10^{-5} \ A[/tex]

Explanation:

From the question we are told that

     The  radius is [tex]r = 3.17 \ mm = 3.17 *10^{-3} \ m[/tex]

      The current density is  [tex]J = c\cdot r^2 = 9.00*10^{6} \ A/m^4 \cdot r^2[/tex]

      The distance we are considering is  [tex]r = 0.5 R = 0.001585[/tex]

Generally current density is mathematically represented as

          [tex]J = \frac{I}{A }[/tex]

Where A is the cross-sectional area represented as

         [tex]A = \pi r^2[/tex]

=>      [tex]J = \frac{I}{\pi r^2 }[/tex]

=>    [tex]I = J * (\pi r^2 )[/tex]

Now the change in current per unit length is mathematically evaluated as

        [tex]dI = 2 J * \pi r dr[/tex]

Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows

         [tex]I = 2\pi \int\limits^{0.5 R}_{0} {( 9.0*10^6A/m^4) * r^2 * r} \, dr[/tex]

         [tex]I = 2\pi * 9.0*10^{6} \int\limits^{0.001585}_{0} {r^3} \, dr[/tex]

        [tex]I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.[/tex]

        [tex]I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ][/tex]

substituting values

        [tex]I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ][/tex]

        [tex]I = 8.9 *10^{-5} \ A[/tex]

A student is hammering a nail into a board. Where should he hold the hammer and why?

Answers

Answer:

At the end of the handle farthest from the head of the hammer.

Explanation:

The force of the hammer is greatest the longer the radius is on a which would be the length of the handle. Simple mechanical advantage.

The accommodation limits for a nearsighted person's eyes are 20.0 cm and 82.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly

Answers

Answer;

26.45cm

See attached file for explanation

hat a 15 kg body is pulled along a horizontal fictional table by a force of 4N what is the acceleration of the body ​

Answers

Answer:

Acceleration of the body is:

[tex]a=0.27\,\,m/s^2[/tex]

Explanation:

Use Newton's second Law to solve for the acceleration:

[tex]F=m\,\,a\\a=\frac{F}{m} \\a=\frac{4\,N}{15\,\,kg} \\a=0.27\,\,m/s^2[/tex]

A sinusoidal voltage Δv = (100 V) sin (170t) is applied to a series RLC circuit with L = 40 mH, C = 130 μF, and R = 50 Ω.

Required:
a. What is the impedance of the circuit?
b. What is the maximum current in the circuit?

Answers

Answer:

See attached file

Explanation:

A battery establishes a voltage V on a parallel-plate capacitor. After the battery is disconnected, the distance between the plates is doubled without loss of charge. Accordingly:_____.
a. stay same
b. increases
c. decreases
d. the capacitance decreases and the voltage between the plates increases.

Answers

Answer:

d.

Explanation:

Since, the capacitance( decreases )

therefore voltage between the plates(increases ).

Hence, option d is correct.

C =εA/d.

d is doubled, therefore  C decrease ( inverse relation).

D) The capacitance decreases and the voltage between the plates increases.

Battery

A battery establishes a voltage V on a parallel-plate capacitor. After the battery is disconnected, the distance between the plates is doubled without loss of charge. Accordingly, the capacitance decreases and the voltage between the plates increases.

The capacitance - (decreases)

The voltage between the plates- (increases ).

Thus, the correct answer is D.

Learn more about "Battery":

https://brainly.com/question/15648781?referrer=searchResults

A bungee cord with a spring constant of 800 StartFraction N over m EndFraction stretches 6 meters at its greatest displacement. How much elastic potential energy does the bungee cord have? The bungee cord has J of elastic potential energy.

Answers

Explanation:

EE = ½ kx²

EE = ½ (800 N/m) (6 m)²

EE = 14,400 J

Answer:

14,400 J

Explanation:

Its the answer

A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 6 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t)

Answers

Answer:I don’t know

Explanation:

For exercise, an athlete lifts a barbell that weighs 400 N from the ground to a height of 2.0 m in a time of 1.6 s. Assume the efficiency of the human body is 25%, and that he lifts the barbell at a constant speed. Show all work and include proper unit for your final answer.
a) In applying the energy equation (ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W) to the system consisting of the earth, the barbell, and the athlete,
1. Which terms (if any) are positive?
2. Which terms (if any) are negative?
3. Which terms (if any) are zero?
b) Determine the energy output by the athlete in SI unit.
c) Determine his metabolic power in SI unit.
d) Another day he performs the same task in 1.2 s.
1. Is the metabolic energy that he expends more, less, or the same?
2. Is his metabolic power more, less, or the same?

Answers

Answer:

Explanation:

(ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W)

ΔK is increase in kinetic energy . As the athelete is lifting the barbell at constant speed change in kinetic energy is zero .

ΔK = 0

ΔUg  is change in potential energy . It will be positive as weight is being lifted so its potential energy is increasing .

ΔUg = positive

ΔUs is change in the potential energy of sportsperson . It is zero since there is no change in the height of athlete .

ΔUs = 0

ΔEth is change in the energy of earth . Here earth is doing negative work . It is so because it is exerting force downwards and displacement is upwards . Hence it is doing negative work . Hence

ΔEth = negative .

b )

work done by athlete

= 400 x 2 = 800 J

energy output = 800 J

c )

It is 25% of metabolic energy output of his body

so metalic energy output of body

= 4x 800 J .

3200 J

power = energy output / time

= 3200 / 1.6

= 2000 W .

d )

1 ) Since he is doing same amount of work , his metabolic energy output is same as that in earlier case .

2 ) Since he is doing the same exercise in less time so his power is increased . Hence in the second day his power is more .

A) Applying the energy equation

The positive terms is :   ΔUg The negative terms is :  ΔEth The zero term are :  ΔK  and ΔUs

B) The energy output by the athlete is ; 800 Joules

C) The metabolic power is : 2000 w

D) When he performs the task in 1.2 s

The metabolic energy he expends is : the same His metabolic power is :  more

Given data :

Weight of barbell = 400 N

Height = 2.0 m

Time = 1.6 secs

efficiency of the human body = 25%

Speed = constant

A) From the energy equation the ΔK is zero because the athlete is lifting the barbell at a constant speed. ΔUg is positive because as the weight is lifted its  potential energy increases.  ΔEth ( change in energy of earth ) is negative because it exerts a force in opposite direction to displacement

B)  Determine the energy output of the athlete

weight of barbell * Height  = 400 * 2 = 800 J

C) Determine the metabolic power

Metabolic power = energy output / Time

where ; energy output = 4 * 800 = 3200

∴ Metabolic power = 3200 / 1.6

                                = 2000 w

D) When performs same task at 1.2 s

The metabolic energy he expends is  the same  and His metabolic power is  more

Hence we can conclude that the answers to your questions are as listed above

Learn more : https://brainly.com/question/17807740

Two objects, one of mass m and the other of mass 2m, are dropped from the top of a building. When they hit the ground:_______.
a) the heavier one will have four times the kinetic energy of the lighter one.
b) the heavier one will have twice the kinetic energy of the lighter one.
c) the heavier one will have times the kinetic energy of the lighter one.
d) both of them will have the same kinetic energy.

Answers

Answer:

b) the heavier one will have twice the kinetic energy of the lighter one.

Explanation:

The kinetic energy of object with mass, m

K.E₁ = ¹/₂mv²

where;

m is mass of the object

v is the velocity of the object

Since, the two objects are falling under same acceleration due to gravity, their velocity will be increasing at the same rate

The kinetic energy of object with mass, 2m

K.E₂ = ¹/₂(2m)v²

K.E₂ = 2(¹/₂mv²)

BUT K.E₁ = ¹/₂mv²

K.E₂ = 2(K.E₁)

Therefore, the heavier one will have twice the kinetic energy of the lighter one.

b) the heavier one will have twice the kinetic energy of the lighter one.

A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the peak current in this circuit is 0.8484 A, what is the impedance of this circuit?
A) 200 Ω
B) 141 Ω
C) 20.4 Ω
D) 120 Ω
E) 100 Ω

Answers

Answer:A  200

Explanation:

Vp=1.41*Vrms

Vp=169.7 v

Z=Vp/Ip

Z=169.7/.8484

Z=200.03 ohm

Suppose you observed the equation for a traveling wave to be y(x, t) = A cos(kx − ????t), where its amplitude of oscillations was 0.15 m, its wavelength was two meters, and the period was 2/15 s. If a point on the wave at a specific time has a displacement of 0.12 m, what is the transverse speed of that point?

Answers

Answer:

15m/s

Explanation:

The equation for a traveling wave as expressed as y(x, t) = A cos(kx − [tex]\omega[/tex]t) where An is the amplitude f oscillation, [tex]\omega[/tex] is the angular velocity and x is the horizontal displacement and y is the vertical displacement.

From the formula; [tex]k =\frac{2\pi x}{\lambda} \ and \ \omega = 2 \pi f[/tex] where;

[tex]\lambda \ is\ the \ wavelength \ and\ f \ is\ the\ frequency[/tex]

Before we can get the transverse speed, we need to get the frequency and the wavelength.

frequency = 1/period

Given period = 2/15 s

Frequency = [tex]\frac{1}{(2/15)}[/tex]

frequency = 1 * 15/2

frequency f = 15/2 Hertz

Given wavelength [tex]\lambda[/tex] = 2m

Transverse speed [tex]v = f \lambda[/tex]

[tex]v = 15/2 * 2\\\\v = 30/2\\\\v = 15m/s[/tex]

Hence, the transverse speed at that point is  15m/s

Helium-neon laser light (λ = 6.33 × 10−7 m) is sent through a 0.30 mm-wide single slit. What is the width of the central maximum on a screen 1.0 m from the slit?

Answers

Answer:

The width is [tex]w_c = 0.00422 \ m[/tex]

Explanation:

From the question we are told that

   The  wavelength is  [tex]\lambda = 6.33*10^{-7} \ m[/tex]

    The  width of the slit is  [tex]d = 0.3\ mm = 0.3 *10^{-3} \ m[/tex]

    The distance of the screen is  [tex]D = 1.0 \ m[/tex]

     

Generally the central maximum is mathematically represented as

      [tex]w_c = 2 * y[/tex]

Here  y is the width of the first order maxima which is mathematically represented as

      [tex]y = \frac{\lambda * D}{d}[/tex]

substituting values

      [tex]y = \frac{6.33*10^{-7} * 1.0}{ 0.30}[/tex]

       [tex]y = 0.00211 \ m[/tex]

So  

    [tex]w_c = 2 *0.00211[/tex]

     [tex]w_c = 0.00422 \ m[/tex]

A rope, under a tension of 153 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by . where at one end of the rope, is in meters, and is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c) the mass of the rope? (d) If the rope oscillates in a third-harmonic standing wave pattern, what will be the period of oscillation?

Answers

Complete question is;

A rope, under a tension of 153 N and fixed at both ends, oscillates in a second harmonic standing wave pattern. The displacement of the rope is given by

y = (0.15 m) sin[πx/3] sin[12π t].

where x = 0 at one end of the rope, x is in meters, and t is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c)the mass of the rope? (d) If the rope oscillates in a third - harmonic standing wave pattern, what will be the period of oscillation?

Answer:

A) Length of rope = 4 m

B) v = 24 m/s

C) m = 1.0625 kg

D) T = 0.11 s

Explanation:

We are given;

T = 153 N

y = (0.15 m) sin[πx/3] sin[12πt]

Comparing this displacement equation with general waveform equation, we have;

k = 2π/λ = π/2 rad/m

ω = 2πf = 12π rad/s

Since, 2π/λ = π/2

Thus,wavelength; λ = 4 m

Since, 2πf = 12π

Frequency;f = 6 Hz

A) We are told the rope oscillates in a second-harmonic standing wave pattern. So, we will use the equation;

λ = 2L/n

Since second harmonic, n = 2 and λ = L = 4 m

Length of rope = 4 m

B) speed is given by the equation;

v = fλ = 6 × 4

v = 24 m/s

C) To calculate the mass, we will use;

v = √T/μ

Where μ = mass(m)/4

Thus;

v = √(T/(m/4))

Making m the subject;

m = 4T/v²

m = (4 × 153)/24²

m = 1.0625 kg

D) Now, the rope oscillates in a third harmonic.

So n = 3.

Using the formula f = 1/T = nv/2L

T = 2L/nv

T = (2 × 4)/(3 × 24)

T = 0.11 s

Krishna and Seldon now try a homework problem. A policeman sitting in his unmarked police car sees an approaching motorcyclist go through a red light two blocks away. He turns on his siren at a frequency of 1000 Hz as the motorcyclist heads directly toward him at 61 mph (27.27 m/s). What frequency does the motorcyclist hear? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz What frequency does the motorcyclist hear when stopped with the police car approaching at 61 mph (27.27 m/s)? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz

Answers

Answer:

Explanation:

We shall apply formula of Doppler's effect

Here source is fixed and observer is approaching the source

f = f₀ x [(V + v ) / V ]

f₀ is original and f is apparent frequency , V is velocity of sound and v is velocity of motorcyclist .

f = 1000 x [(331 + 27.27 ) / 331 ]

= 1082 .4 Hz

This is the frequency heard by motorcyclist .

When police car is approaching him when he is stopped

f = f₀ x [V /(V - v ) ]

v is velocity of police car .

= 1000  x 331 / (331 - 27.27)

= 1090 Hz  

At what frequency should a 200-turn, flat coil of cross sectional area of 300 cm2 be rotated in a uniform 30-mT magnetic field to have a maximum value of the induced emf equal to 8.0 V

Answers

Answer:

The frequency of the coil is 7.07 Hz

Explanation:

Given;

number of turns of the coil, 200 turn

cross sectional area of the coil, A = 300 cm² = 0.03 m²

magnitude of the magnetic field, B = 30 mT = 0.03 T

Maximum value of the induced emf, E = 8 V

The maximum induced emf in the coil is given by;

E = NBAω

Where;

ω is angular frequency = 2πf

E = NBA(2πf)

f = E / 2πNBA

f = (8) / (2π x 200 x 0.03 x 0.03)

f = 7.07 Hz

Therefore, the frequency of the coil is 7.07 Hz

A 384 Hz tuning fork produces standing waves with a wavelength of 0.90 m inside a resonance tube. The speed of sound at experimental conditions is

Answers

Answer:

v = 345.6m/s

Explanation:

v = 384 x 0.9 = 345.6

v = 345.6m/s

There is a river in front of you that flows due South at 3.0m/s. You launch a toy boat across the river with the front of the boat pointed due East. When you tested the boat on a still pond, the boat moved at 4.0m/s. Now as it moves to the opposite bank, it travels at some speed relative to you, sitting in your chair. What is this speed

Answers

Answer:

5.0 m/s

Explanation:

If the river moves towards the south at 3m/s and the both moves towards the east at 4.0m/s, the speed of the boat relative to me will be the resulting displacement of both velocities of the river and that of the boat. This can be gotten using pythagoras theorem.

Let Vr be the relative speed. According to the theorem;

[tex]V_r^2 = V_s^2 + V_e^2\\\\V_r^2 = 3.0^2 + 4.0^2\\\\V_r^2 = 9+16\\\\V_r^2 = \sqrt{25}\\ \\V_r = 5.0m/s[/tex]

Hence this relative speed is 5.0 m/s

Other Questions
Please answer question now The Federal Reserve S role as a lender of last resort involves lending to which of the following financially troubled institutions? a. U.S. state governments when they run short on b. U.S. banks that cannot borrow elsewhere c. Governments in developing during currency crises. The two points on the coordinate plane represent Jane's house and her friend's house. Find the distance between the houses. Question 3 options: A) units B) units C) units D) units A resistance heater having 20.7 kW power is used to heat a room having 16 m X 16.5 m X 12.3 m size from 13.5 to 21 oC at sea level. The room is sealed once the heater is turned on. Calculate the amount of time needed for this heating to occur in min. (Write your answer in 3 significant digits. Assume constant specific heats at room temperature.) What will help a participant ask good questions during a discussion?o listening closelyO sharing your ideasO getting confusedgiving an opinion PLEASE help me with this question! No nonsense answers please. This is really urgent. For what values of x is the value of the function f(x)=x +3x+2 equal to zero? Simplify(3x + 14) + (19x - 35) A copper-nickel alloy of composition 50 wt% Ni-50 wt% Cu is slowly heated from a temperature of 1200C (2190 F). (a) At what temperature does the first liquid phase form? (b) What is the composition of this liquid phase? (c) At what temperature does complete melting of the alloy occur? (d) What is the composition of the last solid remaining prior to complete melting? The grades on the last art exam had a mean of 75%. Assume the population of grades on art exams is known to be distributed normally, with a standard deviation of 7%. Using the empirical rule, approximately what percent of students earn a score between 75% and 82%? 68% 16% 32% 34% A process that automatically groups people with similar buying intentions, preferences, and behaviors and predicts future purchases is called _____. Team members support one another when they view differences as being Say that you purchase a house for $150,000 by getting a mortgage for $135,000 and paying a $15,000 down payment. If you get a 15-year mortgage with a 6 percent interest rate, what are the monthly payments Given g(x) = -x - 2, find g(3). Your academic calendar has been distracted by the global pandemic, such that, you are to teach your class from the house. Outline specific hardware and software and the various teaching and learning tools you will deploy to enable you continue to teach your pupils from home. Discuss four (4) ways you will use to reach all pupils who are living at a Consider the thermocouple and convection conditions of Example 1, but now allow for radiation exchange with the walls of a duct that encloses the gas stream. If the duct walls are at 400 and the emissivity of the thermocouple bead is 0.9, calculate the steady-state temperature of the junction A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. If at a particular instant and at a certain point in space the electric field is in the +x-direction and has a magnitude of 4.00 V/m, what is the magnitude of the magnetic field of the wave at this same point in space and instant in time? Modernity has largely led to the collapse of strong marital ties and subsequently affected the choice of mates. Critically provide a four (4)- point coherent and logical underpinnings to prove the truth or otherwise of this statement. Which of the following not an enzymemediated process1) G1 and G2 phases of meiosis2) S-phase of mitosis3) Pachytene of meiosis-I4) None of the above Why is it difficult for Nigerian universities to get rid of cultism