Answer:
9/3 = 3x/3
3 = x
The spring stretches 9 inches with 3 kilograms of weight attached to it
Step-by-step explanation:
Substitute y = 9 into the equation y = 3x, or locate the answer on the graph:
y = 3x
9 = 3x.
Divide both sides of the equation by 3
Answer:The spring stretches 9 inches with 3 kilograms of weight attached to it.
Step-by-step explanation:
Substitute y = 9 into the equation y = 3x, or locate the answer on the graph:
y = 3x
9 = 3x.
Divide both sides of the equation by 3:
The spring stretches 9 inches with 3 kilograms of weight attached to it.
Residents of four cities are able to vote in an upcoming regional election. A newspaper recently conducted a survey to gauge support for each of the two candidates. The results of the poll are shown in the two-way frequency table below.
Answer:
3 only
Step-by-step explanation:
Consider the statement, "The two cities with the highest number of respondents, both show more support for candidate A." In the total column, the two highest number of respondents are 471 and 463 which represent Carsonville and Appleton. For Carsonville, the number of respondents who prefer candidate A is 205, which is less than the number of respondents who prefer candidate B, 266. Therefore, this statement is not true.
Consider the statement, "The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas." In the table, the number of people who support candidate B in Carsonville is observed to be 266 and the number of people who support candidate B in New Thomas is 138. Since 266 is not equal to twice 138, this statement is not true.
Consider the statement, "More residents of Center City responded to the poll than the number who responded from New Thomas." In the total column, it can be observed that 350 people responded to the poll in Center City and 318 people responded to the poll in New Thomas. Since, 350 is greater than 318, this statement is true.
Consider the statement, "Overall, more residents support candidate A than candidate B." The bottom row of the table represents the total number of responses for each candidate. The number of people supporting candidate A is 797, which is less than the number of people supporting candidate B, 805. So, this statement is not true.
Therefore, the true statement is III only.
More residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Data given in the table shows the data of elections between two candidates among the different cities.
What is Statistic?
Statistics is the study of mathematics that deals with relations between comprehensive data.
I.The two cities with the highest number of respondents both show more support for candidate A. This statement is false because carsonville is the second highest support for A but it does not show more support for candidate A.
II.The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas. It is false
III. More residents of Center City responded to the pole than the number who responded from New Thomas. It is true.
IV. Overall, more residents support candidate A than candidate B. it is also false.
Thus, more residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Learn more about Statistics here:
https://brainly.com/question/23091366
#SPJ5
The sum of two positive number is 6 times their difference. what is the reciprocal of the ratio of the larger number to the smaller?
let the numbers be a and b, a>b
a+b=6(a-b)
we need to find reciprocal of ratio of larger to smaller , which will be same as ratio of smaller to larger or b/a, let's call it x
divide the equation by a.
1+x=6(1-x)
on solving, x=5/7
If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation? 0.1 1 10
Answer:
1
Step-by-step explanation: diliation is like multiplilcation if you were to do 3*1 =3. simply congruent means all sides and angles are the same.
Given that the image and the preimage of the triangle are congruent, their
dimensions are the same.
The scale factor of dilation of an image of a triangle that is congruent to the pre-image is; 1Reasons:
Let ΔABC represent the preimage, and let ΔA'B'C' represent the image.
Given that the image and the preimage are congruent, we have;
AB ≅ A'B'
BC ≅ B'C'
AC ≅ A'C'
By definition of congruency, we have;
AB = A'B'
BC = B'C'
AC = A'C'
The scale factor of dilation is given as follows;
[tex]\displaystyle Scale \ factor = \mathbf{ \frac{A'B'}{AB}} = \frac{AB}{AB} = 1[/tex]Therefore;
If the image is congruent to the pre-image, the scale factor of dilation is; 1Learn more about dilation transformation here:
https://brainly.com/question/5453159
Simplify the following expression. 3x(4x − 3) A. 12x2 + 13x B. 12x2 + 5x C. 12x2 − 5x D. 12x2 − 9x
Answer:
Multiply using the distributive property.
D is the best answer.
Step-by-step explanation:
The simplified form of expression 3x (4x - 3) is 12x² - 9x.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
3x (4x - 3).
Simplify the expression by solving bracket term,
3x × (4x) - 3 x (3x)
12x² - 9x
The given expression can be simplified as 12x² - 9x.
Hence, option (D) is correct.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
Suppose that Y1, Y2,..., Yn denote a random sample of size n from a Poisson distribution with mean λ. Consider λˆ 1 = (Y1 + Y2)/2 and λˆ 2 = Y . Derive the efficiency of λˆ 1 relative to λˆ 2.
Answer:
The answer is "[tex]\bold{\frac{2}{n}}[/tex]".
Step-by-step explanation:
considering [tex]Y_1, Y_2,........, Y_n[/tex] signify a random Poisson distribution of the sample size of n which means is λ.
[tex]E(Y_i)= \lambda \ \ \ \ \ and \ \ \ \ \ Var(Y_i)= \lambda[/tex]
Let assume that,
[tex]\hat \lambda_i = \frac{Y_1+Y_2}{2}[/tex]
multiply the above value by Var on both sides:
[tex]Var (\hat \lambda_1 )= Var(\frac{Y_1+Y_2}{2} )[/tex]
[tex]=\frac{1}{4}(Var (Y_1)+Var (Y_2))\\\\=\frac{1}{4}(\lambda+\lambda)\\\\=\frac{1}{4}( 2\lambda)\\\\=\frac{\lambda}{2}\\[/tex]
now consider [tex]\hat \lambda_2[/tex] = [tex]\bar Y[/tex]
[tex]Var (\hat \lambda_2 )= Var(\bar Y )[/tex]
[tex]=Var \{ \frac{\sum Y_i}{n}\}[/tex]
[tex]=\frac{1}{n^2}\{\sum_{i}^{}Var(Y_i)\}\\\\=\frac{1}{n^2}\{ n \lambda \}\\\\=\frac{\lambda }{n}\\[/tex]
For calculating the efficiency divides the [tex]\hat \lambda_1 \ \ \ and \ \ \ \hat \lambda_2[/tex] value:
Formula:
[tex]\bold{Efficiency = \frac{Var(\lambda_2)}{Var(\lambda_1)}}[/tex]
[tex]=\frac{\frac{\lambda}{n}}{\frac{\lambda}{2}}\\\\= \frac{\lambda}{n} \times \frac {2} {\lambda}\\\\ \boxed{= \frac{2}{n}}[/tex]
i need help asap please
Answer:
[tex]x = -\frac{3}{2}[/tex] or [tex]x = 1[/tex]
Step-by-step explanation:
Using the zero product property, first step is to set the given equation, [tex] 2x^2 + x - 1 = 2 [/tex] , to zero. Then factorise the left side.
Thus,
[tex] 2x^2 + x - 1 = 2 [/tex]
Subtract 2 from both sides
[tex] 2x^2 + x - 1 - 2 = 2 - 2 [/tex]
[tex] 2x^2 + x - 3 = 0 [/tex]
Factorise the left side
[tex] 2x^2 + 3x - 2x - 3 = 0 [/tex]
[tex] x(2x + 3) - 1(2x + 3) = 0 [/tex]
[tex] (x - 1)(2x + 3) = 0 [/tex]
Find the solution
[tex] x - 1 = 0 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex] x = 1 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex]2x = -3[/tex]
[tex]x = -\frac{3}{2}[/tex]
The answer is: [tex] x = 1 [/tex] or [tex]x = -\frac{3}{2}[/tex]
Find the value of x.
A. 3
B. 9
C. 0
D. 12
Answer:
x=3
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x(x)
Divide each side by x
3x(x+1)/x = 4x(x)/x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x
3x+3-3x= 4x-3x
3 =x
Answer:
x = 3
Step-by-step explanation:
0 is a rediculas answer 9 and 12 are to big.
The lines are supposed to have a simular length:
3(3) + 4 = 13
4(3) + 3 = 15
These are the best answers that fit.
Please help me with this question
Answer:
0 ≤ x ≤ 10
Step-by-step explanation:
The domain of f(x) is the set of values of x for which the function is defined. Here, the square root function is only defined for non-negative arguments, so we require ...
-x^2 +10x ≥ 0
x(10 -x) ≥ 0
The two factors in this product will both be positive only for values ...
0 ≤ x ≤ 10 . . . . the domain of f(x)
Quadrilateral RSTV is dilated with respect to the origin by a scale factor of 1.5 to produce quadrilateral R'S'T'V' . Vertex R is located at (6, -9). Which ordered pair represents R' after the dilation?
Answer:
(9, -13.5)
Step-by-step explanation:
It's given in the question that a quadrilateral RSTV is dilated with a scale factor of 1.5 with respect to the origin to form R'S'T'V'.
Rule for dilation is,
(x, y) → (kx, ky)
where 'k' is the scale factor.
If vertex R of the quadrilateral is (6, -9),
By the given rule of dilation,
R(6, 9) → R'[(1.5 × 6), -(1.5 × 9)]
→ R'(9, -13.5)
Therefore, Option given in bottom right (9, -13.5) will be the answer.
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]
Kent Co. manufactures a product that sells for $60.00. Fixed costs are $285,000 and variable costs are $35.00 per unit. Kent can buy a new production machine that will increase fixed costs by $15,900 per year, but will decrease variable costs by $4.50 per unit. What effect would the purchase of the new machine have on Kent's break-even point in units?
0riginal break even point:
285000/ 60/35 = $166,250
New break even point = new fixed costs / ( selling price - variable cost/ selling price)
New break even point = 285,000 + 15,900. / ( 60-( 35-4.50)/60
300,900 / 60-30.50/60 = $612,000
The new break even point increases.
How many pepperoni pizzas did they buy if they bought 6 cheese pizzas
Answer:
Question is incomplete but use below
Step-by-step explanation:
you can do total = (price of cheese pizza) ( amount of cheese pizzas bought)+(price of pepperoni pizza) ( amount of pepperoni pizzas bought)
What is the volume of a sphere, to the nearest cubic inch, if the radius equals 5 inches? Use π = 3.14.
Answer:
V = 523 in^3
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
V = 4/3 ( 3.14) * 5^3
V = 523.33333repeating
Rounding to the nearest inch^3
V = 523 in^3
Answer:
[tex] 523.6 {in}^{3} [/tex]
Step-by-step explanation:
[tex]v = \frac{4}{3} \pi {r}^{3} \\ = \frac{4}{3} \pi \times 5 \times 5 \times 5 \\ = 523.6 {in}^{3} [/tex]
Find the sum. 1. -7+(-5)
O-12
O-2
0 2
0 12
Answer:
-12
Step-by-step explanation:
-7+(-5)=
-7-5=
-12
Translate the expression from algebra to words: 6+r
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Evaluate the expresión 6c-d when c=2 and d=10 I need help?
Answer:
the answer is 18
Step-by-step explanation:
8 is the answer
PLEASE HELP ASAP WILL GIVE BRAINLIEST
evaluate -99 + 3^2•5
Answer:
= - 54
Step-by-step explanation:
- 99 + 3^2•5
- 99 + 9 × 5
- 99 + 45
= - 54
PLEASE HELP!!
Solve for y
a) 8
b) 12
c) 3V7
d) 4V7
Answer:
C. [tex] y = 3\sqrt{7} [/tex]
Step-by-step explanation:
Based on the right triangle altitude theorem, the altitude, y, in the diagram above, equals the geometric mean of 9 and 7.
This implies => [tex] y = \sqrt{9*7} [/tex]
Thus, solve for y.
[tex] y = \sqrt{9} * \sqrt{7} [/tex]
[tex] y = 3\sqrt{7} [/tex]
The answer is C. [tex] y = 3\sqrt{7} [/tex]
Show that the set of functions from the positive integers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable. [Hint: First set up a one-to-one correspondence between the set of real numbers between 0 and 1 and a subset of these functions. Do this by associating to the real number 0.d1d2 . . . dn . . . the function f with f(n).
Answer:
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its off functions
Step-by-step explanation:
set = {0,1,2,3,4,5,6,7,8,9}
setting up a one-to-one correspondence between the set of real numbers between 0 and 1
The function : F(n)= {0,1} is equivalent to the subset (sf) of (n) , this condition is met if n belongs to the subset (sf) when f(n) = 1
hence The power set of (n) is uncountable and is equivalent to the set of real numbers given
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its offfunctions
Complete parts (a) through (c) below.
(a) Determine the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
(b) Determine the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 level of significance based on a sample size of n = 20.
(c) Determine the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Answer:
(a) 1.341
(b) -2.539
(c) -2.160 and 2.160
Step-by-step explanation:
(a) We have to find the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 15 and the level of significance for a right-tailed test is 0.10, i.e. P = 10%
Now, looking in the t table with P = 10% and [tex]\nu[/tex] = 15, we get the critical value of 1.341.
(b) We have to find the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 based on a sample size of n = 20.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 20 - 1 = 19 and the level of significance for a left-tailed test is 0.01, i.e. P = 1%
Now, looking in the t table with P = 1% and [tex]\nu[/tex] = 19, we get the critical value of 2.539. But since it is a left-tailed test, so the critical value will be -2.539.
(c) We have to find the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 14 - 1 = 13 and the level of significance for a two-tailed test is [tex]\frac{0.05}{2}[/tex] is 0.025, i.e. P = 2.5%.
Now, looking in the t table with P = 2.5% and [tex]\nu[/tex] = 13, we get the critical value of -2.160 and 2.160 for a two-tailed test.
Please help me understand this question!
Answer:
C
Step-by-step explanation:
The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.
We start here:
we are given: $120 - 0.2($120)
= 120 - (0.2)(120) (factoring out 120)
= 120 (1 - 0.2)
= 120 (0.8)
= 0.8 (120) (answer c)
What is the correct answer and how can this be solved?
Answer:
[tex]$\mathbf{\frac{1}{19} }[/tex]
Step-by-step explanation:
[tex]$$\bullet \Nth \ Term;\\$$$\frac{n+2}{2n^{2} +3n-2}[/tex]
[tex]$$\bullet U_{10} \ Term;\\\\$$\boxed{\frac{(10+2) }{2*10^{2} +3*10-2}= \frac{1}{19} }[/tex]
Answer:
[tex]\boxed{\displaystyle \frac{1}{19}}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{n+2}{2n^2 +3n-2}[/tex]
Replace n with 10 to find the 10th term.
[tex]\displaystyle \frac{10+2}{2(10)^2 +3(10)-2}[/tex]
Evaluate.
[tex]\displaystyle \frac{12}{2(100) +30-2}[/tex]
[tex]\displaystyle \frac{12}{200 +30-2}[/tex]
[tex]\displaystyle \frac{12}{228}[/tex]
Simplify.
[tex]\displaystyle \frac{1}{19}[/tex]
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
Write three fractions that are equivalent to 3 over 11 , but written in higher terms. One of them must
include one or more variables.
Answer:
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Step-by-step explanation:
Equivalent fractions are set of fractions in which when simplified, they have the same answer.
Given: [tex]\frac{3}{11}[/tex]
i. multiply the numerator and denominator of [tex]\frac{3}{11}[/tex] by 2,
= [tex]\frac{3*2}{11*2}[/tex] = [tex]\frac{6}{22}[/tex]
i. multiply both the numerator and denominator of [tex]\frac{6}{22}[/tex] by 4,
= [tex]\frac{6*4}{22*4}[/tex]= [tex]\frac{24}{88}[/tex]
ii. multiply the numerator and denominator of [tex]\frac{24}{88}[/tex] by 6,
= [tex]\frac{24*6}{88*6}[/tex] = [tex]\frac{144}{528}[/tex]
So that;
[tex]\frac{3}{11}[/tex] = [tex]\frac{6}{22}[/tex] = [tex]\frac{24}{88}[/tex] = [tex]\frac{144}{528}[/tex].
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Suppose that the height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. After 9 hours of burning, a candle has a height of 25.4 centimeters. After 23 hours of burning, its height is 19.8 centimeters. What is the height of the candle after 22 hours?
Answer:
Suppose that the height (in centimeters) of a candle is a linear function of
the amount of time (in hours) it has been burning.
After 11 hours of burning, a candle has a height of 23.4 centimeters.
After 30 hours of burning, its height is 12 centimeters.
What is the height of the candle after 13 hours?
:
Assign the given values as follows:
x1 = 11; y1 = 23.4
x2 = 30; y2 = 12
:
Find the slope using: m = %28y2-y1%29%2F%28x2-x1%29
m = %2812-23.4%29%2F%2830-11%29 = %28-11.4%29%2F19
:
Find the equation using the point/slope formula: y - y1 = m(x - x1)
y - 23.4 = -11.4%2F19(x - 11)
y - 23.4 = -11.4%2F19x + 125.4%2F19
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 444.6%2F19
y = -11.4%2F19x + 570%2F19
y = -11.4%2F19x + 30, is the equation
:
What is the height of the candle after 13 hours?
x = 13
y = -11.4%2F19(13) + 30
y = -148.2%2F19 + 30
y = -7.8 + 30
y = 22.2 cm after 13 hrs
The one-sample z ‑statistic for Thomas' statistical test has a value of −1.73346 , and Thomas calculates a P-value of 0.0830 . Should Thomas conclude that telephone surveys provide adequate coverage with respect to p ? Why or why not? Select all correct statements about his decision and conclusion.
Answer:
Thomas should not reject the null hypothesis.
Step-by-step explanation:
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value. Here in this question the test value is -1.73346 and p-value is 0.0830. The p value is greater than the test value therefore the null hypothesis should be accepted.
Given the graph, find an equation for the parabola.
Answer:
[tex]\Large \boxed{\sf \bf \ \ y=\dfrac{1}{16}(a-3)^2-2 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
When the parabola equation is like
[tex]y=a(x-h)^2+k[/tex]
The vertex is the point (h,k) and the focus is the point (h, k+1/(4a))
As the vertex is (3,-2) we can say that h = 3 and k = -2.
We need to find a.
The focus is (3,2) so we can say.
[tex]2=-2+\dfrac{1}{4a}\\\\\text{*** We add 2. ***}\\\\\dfrac{1}{4a}=2+2=4\\\\\text{*** We multiply by 4a. ***}\\\\16a=1\\\\\text{*** We divide by 16. ***}\\\\a=\dfrac{1}{16}[/tex]
So an equation for the parabola is.
[tex]\large \boxed{\sf y=\dfrac{1}{16}(a-3)^2-2 }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
how many meters are in 250 centimeters
Answer:
2.5 meters
Step-by-step explanation:
THE PRICE OF AN ITEM FROM $10 TO $17. WHAT WAS THE PERCENT INCREASE IN THE PRICE OF THE ITEM?
Answer:
70%
Step-by-step explanation:
The method to find out percentage increase is by subtracting the original price from the increased price and making it into a fractional form with the denominator as 10 (out of 100%). So it results to this.
(original price - increased price) / 10
(17 - 10) / 10 = 7/10
7/10 can be converted from its fractional form to 70% i.e.its percentage.
Hope this helps and please mark as the brainliest.