If there is "waste" energy, does the Law of Conservation of Energy still apply? ​

Answers

Answer 1

Explanation:

Yes, the law of conservation of energy still applies even if there is waste energy.

The waste energy are the transformation products of energy from one form to another.

According to the law of conservation of energy "energy is neither created nor destroyed by transformed from one form to another in a system".

But of then times, energy is lost as heat or sound within a system.

If we take into account these waste energy, we can see that energy is indeed conserved. The sum total of the energy generated and those produced will be the same if we factor in other forms in which the energy has been transformed into.

Related Questions

Fluids
A = 2804 cm3 B = 2862 cm2 C = 2916 cm3
Three separate fluids, A, B, and C have been selected at random and each initially fills a 3000 cm3 volume at atmospheric pressure. A gage pressure of 6 x 107 N/m2 is then applied to each fluid. The final volume is given below. Determine which fluids were selected from the given list.
Acetone E = 0.92 GPa Glycerin E = 4.35 GP
Water E = 2.15 GPa Mercury E = 28.5 GPa
Benzene E = 1.05 GPa Sulfuric Acid E = 3.0 GPa
Ethyl Alcohol E = 1.06 GPa Gasoline E = 1.3 GPa
Petrol E = 1.45 GPa Seawater E = 2.34 GPa

Answers

Answer:

Explanation:

Fluid A :

Δ V = Change in volume = (3000 - 2804) x 10⁻⁶ m³ = 196 x 10⁻⁶ m³

volume strain = Δ V / V  = 196 x 10⁻⁶ / 3000 x 10⁻⁶

= .06533

Δ P = increase in pressure = 6 x 10⁷ Pa

E = Δ P / volume strain = 6 x 10⁷ / .06533 = 91.84 x 10⁷ Pa = .92 GPa .

It is Acetone .

Fluid B :

Δ V = Change in volume = (3000 - 2862) x 10⁻⁶ m³ = 138 x 10⁻⁶ m³

volume strain = Δ V / V  = 138 x 10⁻⁶ / 3000 x 10⁻⁶

= .046

Δ P = increase in pressure = 6 x 10⁷ Pa

E = Δ P / volume strain = 6 x 10⁷ / .046 = 130.43  x 10⁷ Pa = 1.3  GPa .

It is Gasoline  .

Fluid C :

Δ V = Change in volume = (3000 - 2916) x 10⁻⁶ m³ = 84 x 10⁻⁶ m³

volume strain = Δ V / V  = 84 x 10⁻⁶ / 3000 x 10⁻⁶

= .028

Δ P = increase in pressure = 6 x 10⁷ Pa

E = Δ P / volume strain = 6 x 10⁷ / .028 = 214.28 x 10⁷ Pa = 2.14  GPa .

It is Water   .

If a cyclist travels 30 km in 2 h, What is her average speed?​

Answers

The avarage speed is 15km/h

Answer:

15km/h

Explanation:

→ Speed = Distance ÷ Time

30 ÷ 2 = 15km/h

Which of the following is a mixture?
a air
biron
Chydrogen
d nickel

Answers

The answer is to this is b

Answer:

it will option option A hope it helps

One of the disadvantages of experimental research is that __________.
A.
it isn’t easily replicated
B.
it doesn’t often reflect reality
C.
the results aren’t generalizable
D.
conditions are not controllable


Please select the best answer from the choices provided

Answers

C I believe that would be it

Answer:

B

Explanation:

An electric range has a constant current of 10 A entering the positive voltage terminal with a voltage of 110 V. The range is operated for two hours, (a) Find the charge in coulombs that passes through the range, (b) Find the power absorbed by the range, (c) If electric energy costs 12 cents per kilowatt-hour, determine the cost of operating the range for two hours.

Answers

Answer:

A. 72000 C

B. 1100 W

C. 26.4 cents.

Explanation:

From the question given above, the following data were obtained:

Current (I) = 10 A

Voltage (V) = 110 V

Time (t) = 2 h

A. Determination of the charge.

We'll begin by converting 2 h to seconds. This can be obtained as follow:

1 h = 3600 s

Therefore,

2 h = 2 h × 3600 s / 1 h

2 h = 7200 s

Thus, 2 h is equivalent to 7200 s.

Finally, we shall determine the charge. This can be obtained as follow:

Current (I) = 10 A

Time (t) = 7200 s

Charge (Q) =?

Q = It

Q = 10 × 7200

Q = 72000 C

B. Determination of the power.

Current (I) = 10 A

Voltage (V) = 110 V

Power (P) =?

P = IV

P = 10 × 110

P = 1100 W

C. Determination of the cost of operation.

We'll begin by converting 1100 W to KW. This can be obtained as follow:

1000 W = 1 KW

Therefore,

1100 W = 1100 W × 1 KW / 1000 W

1100 W = 1.1 KW

Thus, 1100 W is equivalent to 1.1 KW

Next, we shall determine the energy consumption of the range. This can be obtained as follow:

Power (P) = 1.1 KW

Time (t) = 2 h

Energy (E) =?

E = Pt

E = 1.1 × 2

E = 2.2 KWh

Finally, we shall determine the cost of operation. This can be obtained as follow:

1 KWh cost 12 cents.

Therefore, 2.2 KWh will cost = 2.2 × 12

= 26.4 cents.

Thus, the cost of operating the range for 2 h is 26.4 cents.

Fill in the blank with the correct word below (from the reading_):
helps you track your progress once you have made a lifestyle
change.
Self-monitoring
Healthy food
Regular xxercise
Goals

Answers

Answer:I think it’s self monitoring sorry if wrong

Explanation:

Answer:

It self monitoring

Explanation:

I took the test

Required
Momentum
The magnitude of the momentum of an object is 64 kg*m/s. If the velocity of the
object is doubled, what will be the magnitude of the momentum of the object? *
32 kg*m/s
64 kg*m/s
128 kg*m/s
256 kg*m/s

Answers

Answer:

C) 128 kg*m/s

Explanation:

When you double something you multiply it by 2 most of the time. 64*2=128 or you can add it 64+64=128. Hope this helps.

A circus tightrope walker weighing 800 N is standing in the middle of a 15 meter long cable stretched between two posts. The cable was originally horizontal. The lowest point of the cable is now at his feet and is 30 cm below the horizontal. Assume the cable is massless. What is the tension in the cable

Answers

Answer:

T = 10010 N

Explanation:

To solve this problem we must use the translational equilibrium relation, let's set a reference frame

X axis

       Fₓ-Fₓ = 0

       Fₓ = Fₓ

whereby the horizontal components of the tension in the cable cancel

Y Axis  

        [tex]F_{y} + F_{y} - W =0[/tex]

        2[tex]F_{y}[/tex] = W

let's use trigonometry to find the angles

        tan θ = y / x

        θ = tan⁻¹ (0.30 / 0.50 L)

        θ = tan⁻¹ (0.30 / 0.50 15)

        θ = 2.29º

the components of stress are

         F_{y} = T sin θ

we substitute

       2 T sin θ = W

       T = W / 2sin θ

        T = [tex]\frac{ 800}{ 2sin 2.29}[/tex]

        T = 10010 N

3. What is the SI unit of force? What is this unit equivalent to in terms of fundamental units?
4. Why is force a vector quantity?

Answers

Answer:

force = mass * acceleration

therefore the SI unit is kg*m/s2 or newton's

it's a vector quantity because it has both direction(acceleration) and size (mass)

What energy store is in the torch
BEFORE it gets switched on?​

Answers

Answer:

Chemical energy

Explanation:

The energy in the torch is stored as chemical energy before the torch gets switch on.

The chemical energy energy in the battery of cell will power the cell and allows it to produce light.

Chemical energy is a form of potential energy. The electrolytes within the battery are capable of producing electric current. So the chemical energy is transformed into electrical energy which is used to produce the light of the torch.

A small sphere of reference-grade iron with a specific heat of 447 J/kg K and a mass of 0.515 kg is suddenly immersed in a water-ice mixture. Fine thermocouple wires suspend the sphere, and the temperature is observed to change from 15 to 14C in 6.35 s. The experiment is repeated with a metallic sphere of the same diameter, but of unknown composition with a mass of 1.263 kg. If the same observed temperature change occurs in 4.59 s, what is the specific heat of the unknown material

Answers

Answer:

The specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.

Explanation:

Let suppose that sphere is cooled down at steady state, then we can estimate the rate of heat transfer ([tex]\dot Q[/tex]), measured in watts, that is, joules per second, by the following formula:

[tex]\dot Q = m\cdot c\cdot \frac{T_{f}-T_{o}}{\Delta t}[/tex] (1)

Where:

[tex]m[/tex] - Mass of the sphere, measured in kilograms.

[tex]c[/tex] - Specific heat of the material, measured in joules per kilogram-degree Celsius.

[tex]T_{o}[/tex], [tex]T_{f}[/tex] - Initial and final temperatures of the sphere, measured in degrees Celsius.

[tex]\Delta t[/tex] - Time, measured in seconds.

In addition, we assume that both spheres experiment the same heat transfer rate, then we have the following identity:

[tex]\frac{m_{I}\cdot c_{I}}{\Delta t_{I}} = \frac{m_{X}\cdot c_{X}}{\Delta t_{X}}[/tex] (2)

Where:

[tex]m_{I}[/tex], [tex]m_{X}[/tex] - Masses of the iron and unknown spheres, measured in kilograms.

[tex]\Delta t_{I}[/tex], [tex]\Delta t_{X}[/tex] - Times of the iron and unknown spheres, measured in seconds.

[tex]c_{I}[/tex], [tex]c_{X}[/tex] - Specific heats of the iron and unknown materials, measured in joules per kilogram-degree Celsius.

[tex]c_{X} = \left(\frac{\Delta t_{X}}{\Delta t_{I}}\right)\cdot \left(\frac{m_{I}}{m_{X}} \right) \cdot c_{I}[/tex]

If we know that [tex]\Delta t_{I} = 6.35\,s[/tex], [tex]\Delta t_{X} = 4.59\,s[/tex], [tex]m_{I} = 0.515\,kg[/tex], [tex]m_{X} = 1.263\,kg[/tex] and [tex]c_{I} = 447\,\frac{J}{kg\cdot ^{\circ}C}[/tex], then the specific heat of the unknown material is:

[tex]c_{X} = \left(\frac{4.59\,s}{6.35\,s} \right)\cdot \left(\frac{0.515\,kg}{1.263\,kg} \right)\cdot \left(447\,\frac{J}{kg\cdot ^{\circ}C} \right)[/tex]

[tex]c_{X} = 131.750\,\frac{J}{kg\cdot ^{\circ}C}[/tex]

Then, the specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.



1. (6x + 8)(5x - 8)
a. 30x2 + 49x + 20
2. (5x + 6(5x - 5)
b. 24x3 + 8x2 + 6x + 4
3. (6x + 3)(6x - 4)
c. 25x2 + 5x - 30
4. (6x + 5)(5x + 5)
d. 30x2 - 8x - 64
e. 36x2 - 6x - 1
5. (4x + 2) (6x2 - x + 2)​

Answers

Answer:

form 1 question??????????

Why does it rain more in West Ferris than in East Ferris? Explain your answer.

Answers

Answer:

This idea helps students explain why more rain forms over West Ferris than East Ferris. ... Therefore, when students explain that water vapor condenses higher in the atmosphere, they are actually explaining that water vapor condenses high in the troposphere, which is relatively low in the atmosphere.

Explanation:

Plz mark me brainliest thank u> have a good day

The pickup truck has a changing velocity because the pickup truck

A.can accelerate faster than the other two vehicles

B.is traveling in the opposite direction from the other two vehicles

C.is traveling on a curve in the road

D.needs a large amount of force to move

please get right i need awnser today

Answers

Answer:

C. Is traveling on a curve in the road

    Hope this helps :3

The pick up truck has a changing velocity because, it is travelling on a curve in the road. A change in direction results in its change in velocity because, velocity is a vector quantity.

What is velocity ?

Velocity is a physical quantity that measures the distance covered by an object per unit time. It is a vector quantity, thus having magnitude as well direction.

The rate of change in velocity is called acceleration of the object. Like velocity, acceleration also is a vector quantity. Thus, a change in magnitude or direction or change in both for velocity make the object to accelerate.

Here, all the three vehicles  are travelling with the same velocity. But, the truck is moving to a curve on the road. The curvature in the path will make a change in its velocity.

Find more on velocity:

https://brainly.com/question/16379705

#SPJ6

The image related with this question is attached below:

The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.

Answers

Answer:

5766.7 K

Explanation:

We are given that

Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]

Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]

Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]

We have to find the temperature at the surface of the Sun.

We know that

Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]

Where [tex]K_{sc}=1350 W/m^2[/tex]

[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]

Using the formula

[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]

T=5766.7 K

Hence, the temperature at the surface of the sun=5766.7 K

A particle with charge Q and mass M has instantaneous speed uy when it is at a position where the electric potential is V. At a later time, the particle has moved a distance R away to a position where the electric potential is V2 ) Which of the following equations can be used to find the speed uz of the particle at the new position?
a. 1/2M(μ2^2-μ1^2)=Q (v1-v2)
b. 1/2M(μ2^2-μ1^2)^2=Q(v1-v2)
c. 1/2Mμ2^2=Qv1
d. 1/2Mμ2^2=1/4πx0 (Q^2/R)

Answers

Answer:

A

Explanation:

Ke = 1/2 MV^2

25 points!


A 6 kg object accelerates from 5 m•s to 25 m•s in 30 seconds. What was the net force acting on the
object? Give your answer in Newtons to one significant figure and without a unit.

(Show Work)

Answers

Answer:

6N

Explanation:

Given parameters:

Mass of object  = 6kg

Initial velocity  = 5m/s

Final velocity  = 25m/s

Time  = 30s

Unknown:

Net force acting on the object  = ?

Solution:

From Newton's second law of motion:

   Force  = mass x acceleration

Acceleration is the rate of change of velocity with time

  Acceleration  = [tex]\frac{Final velocity - Initial velocity }{time}[/tex]  

  Force  = mass x  [tex]\frac{Final velocity - Initial velocity }{time}[/tex]  

So;

 Force  = 6 x [tex]\frac{25 - 5}{30}[/tex]    = 6N


Does changing the height of point C affect the speed of the coaster car at point D?​

Answers

Without friction, NO.

The speed at D depends only on the difference in height between A and D. Whatever happens between them doesn't matter.

The speed of the coaster car at point D will be affected if  the height of point C is changed.

Potencial Energy:

It is the enrgy in a body due to the position of differnt part of the object or system.

As we increase the the hight of the car the potetial enrgy increase, the gravitational acceleration on car will be more due to the high of the point C.

Therefore, the speed of the coaster car at point D will be affected if  the height of point C is changed.

To know more about  speed of the coaster car,

https://brainly.com/question/9178285

How much force is needed to accelerate a 65 kg rider AND her 215 kg motor scooter 8 m/s?? (treat
the masses as like terms)

Answers

Answer:

Force = 2240 Newton.

Explanation:

Given the following data;

Mass A= 65kg

Mass B = 215kg

Acceleration = 8m/s²

To find the force;

Force is given by the multiplication of mass and acceleration.

Mathematically, Force is;

[tex] F = ma[/tex]

Where;

F represents force.

m represents the mass of an object.

a represents acceleration.

First of all, we would have to find the total mass.

Total mass = Mass A + Mass B

Total mass = 65 + 215

Total mass = 280kg

Substituting into the equation, we have

[tex] Force = 280 * 8 [/tex]

Force = 2240 Newton.

A sinusoidal wave is traveling on a string with speed 19.3 cm/s. The displacement of the particles of the string at x = 6.0 cm is found to vary with time according to the equation y = (2.6 cm) sin[1.8 - (5.8 s-1)t]. The linear density of the string is 5.0 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form

Answers

Answer:

Explanation:

equation of wave is given by the following equation

y = (2.6 cm) sin[1.8 - (5.8 s-1)t].

Comparing it with standard form of wave

y = A sin ( ωt - kx )

we get

ω = 5.8

2πn = 5.8

n = .92 per second

kx = 1.8

k x 6 = 1.8

k = 0.3

[tex]\frac{2\pi}{\lambda}[/tex] = 0.3

λ = 20.9 cm

state four law of photoelectric effect​

Answers

Answer:

LAW 1 :  For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation.  

---------------------------------------------

LAW 2: For a given metal, there exists a certain frequency below which the photoelectric emission does not take place. This frequency is called threshold frequency.

-----------------------------------------------

LAW 3: For a frequency greater than the threshold frequency, the kinetic energy of photoelectrons is dependent upon frequency or wavelength but not on the intensity of light.

-----------------------------------------------

LAW 4: Photoelectric emission is an instantaneous process. The time lag between incidence of radiations and emission of electron is 10^-9 seconds.

Explanation:

Answer:

LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation. ... LAW 4: Photoelectric emission is an instantaneous process.

A car enters a 105-m radius flat curve on a rainy day when the coefficient of static friction between its tires and the road is 0.4. What is
the maximum speed which the car can travel around the curve without sliding

Answers

Static friction (magnitude Fs) keeps the car on the road, and is the only force acting on it parallel to the road. By Newton's second law,

Fs = m a = W a / g

(a = centripetal acceleration, m = mass, g = acceleration due to gravity)

We have

a = v ² / R

(v = tangential speed, R = radius of the curve)

so that

Fs = W v ² / (g R)

Solving for v gives

v = √(Fs g R / W)

Perpendicular to the road, the car is in equilibrium, so Newton's second law gives

N - W = 0

(N = normal force, W = weight)

so that

N = W

We're given a coefficient of static friction µ = 0.4, so

Fs = µ N = 0.4 W

Substitute this into the equation for v. The factors of W cancel, so we get

v = √((0.4 W) g R / W) = √(0.4 g R) = √(0.4 (9.80 m/s²) (105 m)) ≈ 20.3 m/s

As a laudably skeptical physics student, you want to test Coulomb's law. For this purpose, you set up a measurement in which a proton and an electron are situated 865 nm from each other and you study the forces that the particles exert on each other. As expected, the predictions of Coulomb's law are well confirmed. You find that the forces are attractive and the magnitude of each force is:______

Answers

Answer:

force F = 1.66 × [tex]10^{-13}[/tex] N

Explanation:

given data

proton and an electron = 865 nm

solution

we get here force that is express as

force F = k q1 q2 ÷ r²      ......................1

put here value and we get

force F = 9 × [tex]10^{9}[/tex] × [tex]\frac{1.6\times (10^{-19})^{2}}{865 \times (10^{-9})^{2}}[/tex]    

force F = 1.66 × [tex]10^{-13}[/tex] N

What do you think about the attached scenario?

Answers

It’s blank I can’t even see it, 10/10

2.19 The drag characteristics of a blimp traveling at 4 m/s are to be studied by experiments in a water tunnel. The prototype is 20 m in diameter and 110 m long. The model is one-twentieth scale. What velocity must the model have for dynamic similarity

Answers

Answer:

[tex]Vm=0.894m/s[/tex]

Explanation:

From the question we are told that

Velocity if travel [tex]v=4m/s[/tex]

Diameter of  prototype [tex]d_1=20m[/tex] and [tex]d_2=110m[/tex]

Scale ratio=[tex]\frac{1}{20}[/tex]

Generally Velocity of of the model using Froud's model is mathematically given as

[tex]Fm=Fp[/tex]

[tex]\frac{Vm}{\sqrt{Lmg}} =\frac{Vp}{\sqrt{Lpg}}[/tex]

[tex]Vm=Vp*\frac{Vp}{\sqrt{Lpg} }[/tex]

[tex]Vm=4*\frac{1}{\sqrt{20}}[/tex]

[tex]Vm=0.894m/s[/tex]

Two spherical objects are separated by a distance that is 1.08 x 10-3 m. The objects are initially electrically neutral and are very small compared to the distance between them. Each object acquires the same negative charge due to the addition of electrons. As a result, each object experiences an electrostatic force that has a magnitude of 3.89 x 10-21 N. How many electrons did it take to produce the charge on one of the objects

Answers

Answer:

the charge on the object is 71.043×10^-20 C and the number of electron is 4.44

Explanation:

from coulumbs law, The force that is acting over both charge can be computed as

F=( kq1q2)/r^2..............eqn(1)

Where

F=electrostatic force= 3.89 x 10-21 N

k= column constant= 9 x 10^9 Nm^2/C^2

q1 and q2= magnitude of the charges

r= distance between the charges= 1.08 x 10-3 m.

Since both charges are experiencing the same force, eqn(1) can be written as

F=( kq^2)/r^2.

We can make q subject of the formula

q= √(Fr^2)/k

= √[(3.89 x 10^-21× (1.08 x 10^-3)^2]/8.99 x 10^9

q= 71.043×10^-20 C

Hence, the charge is 71.043×10^-20 C

From quantization law, the number of electron can be computed as

N=q/e

Where

N= number of electron

q= charges

=1.6×10^-19C

N=71.043×10^-20/1.6×10^-19

=4.44

Hence, the charge on the object is 71.043×10^-20 C and the number of electron is 4.44

While investigating Kirchhoff's Laws, you begin observing a blackbody, such as a star, from Earth using advanced technology that can analyze spectra. While pointing it at the star with nothing between you and the star, you observe a full spectrum. You come back and repeat this same experiment a year later using the same star, except this time you observe an absorption spectrum. What is the most likely explanation for this

Answers

Answer:

the second time there is a gas between you and the star,

Explanation:

When you observe the star for the first time you do not have a given between you and the star, therefore you observe the emission spectrum of the same that is formed by lines of different intensity and position that indicate the type and percentage of the atoms that make up the star.

 When you observe the same phenomenon for the second time there is a gas between you and the star, this gas absorbs the wavelengths of the star that has the same energies and the atomisms and molecular gas, therefore these lines are not observed by seeing a series of dark bands,

The information obtained from the two spectra is the same, the type of atoms that make up the star

calculate ine gravitational potential energy of the ball using pe=m×g×h.(use g=9.8 n/kg)


A 4.0-kilogram ball held 1.5 meters above the floor has ________ joules of potential energy​

Answers

Answer:

58.8J

Explanation:

Given parameters;

Mass of ball  = 4kg

Height above the floor  = 1.5m

g  = 9.8n/kg

Unknown:

Potential energy  = ?

Solution:

The potential energy of a body is the energy due to the position of the body.

It is mathematically expressed as:

  Potential energy = mass x acceleration due to gravity x height

  Potential energy  = 4 x 9.8 x 1.5  = 58.8J

How could a change in straight line motion due to unbalanced forces be predicted from an understanding of inertia?

Answers

Answer:

If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.

Explanation:

The principle of inertia or Newton's first law states that every body remains static or with constant velocity if there is no net force acting on it.

Based on this principle, if we have a net force, the velocity of the body changes by having an unbalanced force acting.

If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.

An RC car is carrying a tiny slingshot with a spring constant of 85 N/m at 0.2 m off the ground at 5.6 m/s. The sling shot is pulled back 3.5 cm from a relaxed state and shoots a 25 g steel pellet in the same direction the car is moving. What is the velocity of the steel pellet relative to the ground as it leaves the sling shot

Answers

Answer:

The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.

Explanation:

Let suppose that RC car-slingshot-steelpellet is a conservative system, that is, that non-conservative forces (i.e. friction, air viscosity) can be neglected. The velocity of the steel pellet can be found by means of the Principle of Energy Conservation and under the consideration that change in gravitational potential energy is negligible and that the RC car travels at constant velocity:

[tex]\frac{1}{2}\cdot (m_{C}+m_{P})\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{C}\cdot v_{o}^{2} + \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]

[tex]\frac{1}{2}\cdot m_{P}\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]

[tex]m_{P}\cdot v_{o}^{2} + k\cdot x^{2} = m_{P}\cdot v^{2}[/tex]

[tex]v^{2} = v_{o}^{2} + \frac{k}{m_{P}}\cdot x^{2}[/tex]

[tex]v = \sqrt{v_{o}^{2}+\frac{k}{m_{P}}\cdot x^{2} }[/tex] (1)

Where:

[tex]v_{o}[/tex] - Initial velocity of the steel pellet, measured in meters per second.

[tex]v[/tex] - Final velocity of the steel pellet, measured in meters per second.

[tex]k[/tex] - Spring constant, measured in newtons per meter.

[tex]m_{P}[/tex] - Mass of the steel pellet, measured in kilograms.

[tex]m_{C}[/tex] - Mass of the RC car, measured in kilograms.

[tex]x[/tex] - Initial deformation of the spring, measured in meters.

If we know that [tex]v_{o} = 5.6\,\frac{m}{s}[/tex], [tex]k = 85\,\frac{N}{m}[/tex], [tex]m_{P} = 0.025\,kg[/tex] and [tex]x = 0.035\,m[/tex], then the velocity of the steel pellet relative to the ground when it leaves the sling shot is:

[tex]v = \sqrt{\left(5.6\,\frac{m}{s} \right)^{2}+\frac{\left(85\,\frac{N}{m} \right)\cdot (0.035\,m)^{2}}{0.025\,kg} }[/tex]

[tex]v \approx 5.960\,\frac{m}{s}[/tex]

The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.

Other Questions
Read the following passage:He came home the same way, the front door slamming open, his hat on the floor and the voice suddenly become raucous shouting, Isnt anybody here?Using context clues, which is the best definition of raucous?Rowdy, disorderlyHave something withheldTo give upSassy, disrespectful ) Write a program to calculate the time to run 5 miles, 10 miles, half marathon, and full marathon if you can run at a constant speed. The distance of a half marathon is 13.1 miles and that of a full marathon is 26.2 miles. Report the time in the format of hours and minutes. Your program will prompt for your running speed (mph) as an integer. What idea had Americans believed that they should own all the land from the Atlantic to the Pacific? :) How much is 2000mg in grams? which of the following was the us government allowed to do under the articles of confederation HELP PLEAASE I WILL GIVE BRAINLIEST PLSSSSSS I WILL GIVE BRAINLIEST (Please help) Based on the equation you wrote in part 1, complete the table below (equation is f = 1000t)Number of tigers | Area (Square feet)1 :2 :3 :4 : Please help me I really need it Conor and Jake's lunch cost 13.00. They left a 15% tip. How much did they leave? What are your New Years resolutions? Complete the sentences using the verb phrases in parentheses. Conjugate each first verb in the yo form of the present tense. Change the reflexive pronoun to me and write it in the proper place. You may use either of the patterns found in the model. Be sure to capitalize the first word of each sentence. Do not write the pronoun yo. Modelo: (querer + divertirse) Quiero divertirme ms. / Me quiero divertir ms. 2) How many amendments are included in the Bill ofRights?Just the 1st35The first 10All 27 amendments are included. Racecourse and discourse have the same root, course, which means "movement along a path."Based on this information, what is the most likely definition of discourse?extended discussion on a subjectfragmented conversationmajor field of studyscattered bits of information Unlike developed countries, developing countries have:A. Higher literacy ratesB. Higher per capita GDPC. Lower life expectanciesD. Lower unemployment ratesPLEASE HELP!!! Yekutia has the resources to manufacture 320 motorcycles or 570 lawn-mowers per year. The country of Bezanitia, has the capability of producing 230 motorcycles or 410 lawn-mowers per year. Which country has the largest opportunity cost to produce one more motorcycle and what is the opportunity cost to that country? question is in the pic re write this problem as an addition problem then solve? 8-9 = Allows ingestion and breaks down food so that nutrients can be absorbed??? Edward runs 30 miles in 5 days. Martha runs 28 miles in 4 days. Who runs more miles per day? 1. What is 8 turbo jets raised to the power of 4?* A front wheel drive vehicle with four wheel disc brakes is pulling to the left. Tech A says an external kink or internal restriction in the LF brake line will result in this condition. Tech B says to use a compression fitting to repair a section of brake line. Who is correct? Tech A Tech A Tech B Tech B Both Both Neither