If the solenoid is 45.0 cm long and each winding has a radius of 8.0 cm , how many windings are in the solenoid

Answers

Answer 1

Answer:

The number of windings is 1.

Explanation:

The radius of the solenoid = 8.0 cm = 0.08 m

Length of the solenoid = 45.0 cm = 0.45 m

number of turn = ?

circumference of each winding = 2πr = 2 x 3.142 x 0.08 = 0.503 m

The number of windings = (Length of the solenoid)/(circumference of each winding)

==> 0.45/0.503 = 0.89 ≅ 1


Related Questions

In a double-slit experiment the distance between slits is 5.0 mm and the slits are 1.4 m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 450 nm, and the other due to light of wavelength 590 nm. What is the separation in meters on the screen between the m = 5 bright fringes of the two interference patterns?

Answers

Answer:

 Δy = 1 10⁻⁴ m

Explanation:

In double-slit experiments the constructive interference pattern is described by the equation

           d sin θ = m λ

In this case we have two wavelengths, so two separate patterns are observed, let's use trigonometry to find the angle

         tan θ = y / L

as the angles are small,

         tan θ = sin θ / cos θ = sin θ

substituting

         sin θ = y / L

         d y / L = m λ

         y = m λ / d L

let's apply this formula for each wavelength

λ = 450 nm = 450 10⁻⁹ m

m = 5

d = 5.0 mm = 5.0 10⁻³ m

      y₁ = 5 450 10⁻⁹ / (5 10⁻³  1.4)

      y₁ = 3.21 10⁻⁴ m

we repeat the calculation for lam = 590 nm = 590 10⁻⁹ m

      y₂ = 5 590 10⁻⁹ / (5 10⁻³  1.4)

      y₂=  4.21 10⁻⁴ m

the separation of these two lines is

        Δy = y₂ - y₁

        Δy = (4.21 - 3.21) 10⁻⁴ m

        Δy = 1 10⁻⁴ m

Question 2
A) A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released? (1 point)
The spring exerts a restoring force to the right and compresses even further
The spring exerts a restoring force to the left and returns to its equilibrium position
The spring exerts a restoring force to the right and returns to its equilibrium position
The spring exerts a restoring force to the left and stretches beyond its equilibrium position

Answers

1. Which example best describes a restoring force?

B) the force applied to restore a spring to its original length

2. A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released?

C) The spring exerts a restoring force to the left and returns to its equilibrium position.

3. A 2-N force is applied to a spring, and there is displacement of 0.4 m. How much would the spring be displaced if a 5-N force was applied?

D) 1 m

4. Hooke’s law is described mathematically using the formula Fsp=−kx. Which statement is correct about the spring force, Fsp?

D)It is a vector quantity.

5. What happens to the displacement vector when the spring constant has a higher value and the applied force remains constant?

A) It decreases in magnatude.

Radio station WCCO in Minneapolis broadcasts at a frequency of 830 kHz. At a point some distance from the transmitter, the magnetic-field amplitude of the electromagnetic wave from WCCO is 4.82×10-11 T.A) Calculate the wavelength.B) Calculate the wave number.C) Calculate the angular frequency.
D) Calculate the electric-field amplitude.

Answers

Answer:

A

 [tex]\lambda = 361.45 \ m[/tex]

B

[tex]k = 0.01739 \ rad/m[/tex]

C

 [tex]w = 5.22 *10^{6} \ rad/s[/tex]

D

[tex]E = 0.01446 \ N/C[/tex]

Explanation:

From the question we are told that

   The frequency is [tex]f = 83 0 \ kHz = 830 *10^{3} \ Hz[/tex]

    The  magnetic field amplitude is  [tex]B = 4.82*10^{-11} \ T[/tex]

Generally wavelength is mathematically represented as

        [tex]\lambda = \frac{c}{f}[/tex]

where c is the speed of light with value  [tex]c = 3.0*10^{8} \ m/s[/tex]

     =>  [tex]\lambda = \frac{3.0*10^{8}}{ 830 *10^{3}}[/tex]

     =>  [tex]\lambda = 361.45 \ m[/tex]

Generally the wave number is mathematically represented as

        [tex]k = \frac{2 \pi }{\lambda }[/tex]

=>     [tex]k = \frac{2 * 3.142 }{ 361.45 }[/tex]

=>    [tex]k = 0.01739 \ rad/m[/tex]

Generally the angular frequency is mathematically represented as

     [tex]w = 2 * \pi * f[/tex]

=>  [tex]w = 2 * 3.142 * 830*10^{3}[/tex]

=>   [tex]w = 5.22 *10^{6} \ rad/s[/tex]

The the electric-field amplitude is mathematically represented as

     [tex]E = B * c[/tex]

=>    [tex]E = 4.82 *10^{-11} * 3.0*10^{8}[/tex]

=>     [tex]E = 0.01446 \ N/C[/tex]

   

This question involves the concepts of wavelength, frequency, wave number, and electric field.

a) The wavelength is "361.44 m".

b) The wave number is "0.0028 m⁻¹".

c) The angular frequency is "5.22 x 10⁶ rad/s".

d) The electric field amplitude is "0.0145 N/C".

a)

The wavelength can be given by the following formula:

[tex]c=f\lambda[/tex]

where,

c = speed of light = 3 x 10⁸ m/s

f = frequency = 830 KHz = 8.3 x 10⁵ Hz

λ = wavelength = ?

Therefore,

[tex]3\ x\ 10^8\ m/s=(8.3\ x\ 10^5\ Hz)\lambda\\\\\lambda=\frac{3\ x\ 10^8\ m/s}{8.3\ x\ 10^5\ Hz}\\\\[/tex]

λ = 361.44 m

b)

The wave number can be given by the following formula:

[tex]wave\ number = \frac{1}{\lambda} = \frac{1}{361.44\ m}[/tex]

wave number = 0.0028 m⁻¹

c)

The angular frequency is given as follows:

[tex]\omega = 2\pi f = (2)(\pi)(8.3\ x\ 10^5\ Hz)[/tex]

ω = 5.22 x 10⁶ rad/s

d)

The electric field amplitude can be given by the following formula:

[tex]\frac{E}{B} = c\\\\c(B)=E\\\\E = (3\ x\ 10^8\ m/s)(4.82\ x\ 10^{-11}\ T)\\[/tex]

E = 0.0145 N/C

Learn more about wavelength and frequency here:

https://brainly.com/question/12924624?referrer=searchResults

"Two waves of the same frequency have amplitudes 1.00 and 2.00. They interfere at a point where their phase difference is 60.0°. What is the resultant amplitude?"

Answers

Answer:

The resultant amplitude of the two waves is 2.65.

Explanation:

Given;

amplitude of the first wave, A₁ = 1

amplitude of the second wave, A₂ = 2

phase difference of the two amplitudes, θ = 60.0°.

The resultant amplitude of two waves after interference is given by;

[tex]A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2Cos \theta} \\\\A = \sqrt{1^2 + 2^2 + 2(1)(2)Cos 60} \\\\A= 2.65[/tex]

Therefore, the resultant amplitude of the two waves is 2.65.

Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits?

Answers

Answer:

The separation of the two slits is 0.456 mm.

Explanation:

Given the wavelength of light = 519 nm

The indifference pattern = 4.6 m

Adjacent bright fringes = 5.2 mm

In the interference, the equation required is Y = mLR/d

Here, d sin theta = mL

L = wavelgnth

For bright bands, m is the  order = 1,2,3,4  

For dark bands,  m = 1.5, 2.5, 3.5, 4.5

R = Distance from slit to screen (The indifference pattern)

Y = Distance from central spot to the nth  order fringe or fringe width

Thus,  here d = mLR/Y

d = 1× 519nm × 4.6 / 5.2mm

d = 0.459 mm

Consider 2 converging lenses of focal lengths 5 mm (objective) and 50 mm.(eyepiece) An object 0.1 mm in size is placed a distance of 5.2 mm from the objective.
1. What is the size and location of the image from the objective? What is the linear magnification of this objective?
2. Treat the image from the objective as an object for the eyepiece. If the eyepiece creates an image at infinity, how far apart are the two lenses?
3. What is the angular magnification of the pair of lenses?

Answers

Answer:

1)   q₁ = 12.987 cm , b)       L = 17.987 cm , c)      m = 179.87

Explanation:

We can solve the geometric optics exercises with the equation of the constructor

         1 / f = 1 / p + 1 / q

where f is the focal length, p and q are the distance to the object and the image respectively.

Let's apply this equation to our case

1) f = 5mm = 0.5 cm

    p₁ = 5.2 mm = 0.52 cm

    h = 0.1 mm = 0.01 cm

    1 / q₁ = 1 / f- 1 / p

    1 / q₁ = 1 / 0.5 - 1 / 0.52 = 2 - 1.923

    1 / q₁ = 0.077

    q₁ = 12.987 cm

2) in this part they tell us that the eyepiece creates an image at infinity, therefore the object that comes from being at the focal length of the eyepiece

            p₂ = 5 cm

The absolute thing that goes through the two lenses is

           L = q₁ + p₂

           L = 12.987 +5

           L = 17.987 cm

3) This lens configuration forms the so-called microscope, whose expression for the magnifications

           m = -L / f_target 25 cm / f_ocular

           m = - 17.987 / 0.5 25 / 5.0

            m = 179.87

You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.2 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.8 cm .

Required:
What is the magnitude of the charge (in nC) on each bead?

Answers

Answer:

The magnitude of the charge is 54.9 nC.

Explanation:

The charge on each bead can be found using Coulomb's law:

[tex] F_{e} = \frac{k*q_{1}q_{2}}{r^{2}} [/tex]

Where:

q₁ and q₂ are the charges, q₁ = q₂  

r: is the distance of spring stretching = 4.8x10⁻² m

[tex]F_{e}[/tex]: is the electrostatic force

[tex] F_{e} = \frac{k*q^{2}}{r^{2}} \rightarrow q = \sqrt{\frac{F_{e}}{k}}*r [/tex]    

Now, we need to find [tex]F_{e}[/tex]. To do that we have that Fe is equal to the spring force ([tex]F_{k}[/tex]):

[tex] F_{e} = F_{k} = -kx [/tex]

Where:

k is the spring constant

x is the distance of the spring = 4.8 - 4.0 = 0.8 cm

The spring constant can be found by equaling the sping force and the weight force:

[tex] F_{k} = -W [/tex]

[tex] -k*x = -m*g [/tex]

where x is 5.2 - 4.0 = 1.2 cm, m = 1.8 g and g = 9.81 m/s²

[tex] k = \frac{mg}{x} = \frac{1.8 \cdot 10^{-3} kg*9.81 m/s^{2}}{1.2 \cdot 10^{-2} m} = 1.47 N/m [/tex]      

Now, we can find the electrostatic force:

[tex] F_{e} = F_{k} = -kx = -1.47 N/m*0.8 \cdot 10^{-2} m = -0.0118 N [/tex]

And with the magnitude of the electrostatic force we can find the charge:

[tex]q = \sqrt{\frac{F_{e}}{k}}*r = \sqrt{\frac{0.0118 N}{9 \cdot 10^{9} Nm^{2}/C^{2}}}*4.8 \cdot 10^{-2} m = 54.9 \cdot 10^{-9} C = 54.9 nC[/tex]

Therefore, the magnitude of the charge is 54.9 nC.

I hope it helps you!  

The magnitude of the charge (in nC) on each bead is equal to 55.21 nC.

Given the following data:

Original length = 4.0 cm to m = 0.04 mMass = 1.8 grams to kg = 0.0018New length = 5.2 cm to m = 0.052.Final length = 4.8 cm to m = 0.048 m.

Extension, e = [tex]0.052 - 0.048[/tex] = 0.012 m

Scientific data:

Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]Coulomb's constant = [tex]8.99 \times 10^9\; Nm^2/C^2[/tex]

To calculate the magnitude of the charge (in nC) on each bead, we would apply Coulomb's law:

First of all, we would determine the spring constant of this lightweight spring by using this formula:

[tex]W = mg = Ke \\\\K=\frac{mg}{e} \\\\K=\frac{0.0018 \times 9.8}{0.012} \\\\K=\frac{0.01764}{0.012}[/tex]

Spring constant, K = 1.47 N/m.

For the electrostatic force:

[tex]F = ke\\\\F = 1.47 \times 0.08[/tex]

F = 0.01176 Newton.

Coulomb's law of electrostatic force.

Mathematically, the charge in an electric field is given by this formula:

[tex]q = \sqrt{\frac{F}{k} } \times r[/tex]

Substituting the given parameters into the formula, we have;

[tex]q = \sqrt{\frac{0.01176 }{8.99 \times 10^9} } \times 0.048\\\\q=\sqrt{1.3228 \times 10^{-12}} \times 0.048\\\\q=1.1502 \times 10^{-6} \times 0.048\\\\q= 5.521 \times 10^{-8}\;C[/tex]

Note: 1 nC = [tex]1 \times 10^{-9}\;C[/tex]

Charge, q = 55.21 nC.

Read more on electric field here: https://brainly.com/question/14372859

3. What conclusion can you make about the electric field strength between two parallel plates? Explain your answer referencing Photo 2.

Answers

Answer:

From the relation above we can conclude that the  as the distance between the two plate increases the electric field strength decreases

Explanation:

I cannot  find any attached photo, but we can proceed anyways theoretically.

The electric field strength (E) at any point in an electric field is the force experienced by a unit positive charge (Q) at that point

i.e

[tex]E=\frac{F}{Q}[/tex]

But the force F

[tex]F= \frac{kQ1Q2}{r^2}[/tex]

But the electric field intensity due to a point charge Q at a distance r meters away is given by

[tex]E= \frac{\frac{kQ1Q2}{r^2}}{Q} \\\\\E= \frac{Q1}{4\pi er^2 }[/tex]

From the relation above we can conclude that the  as the distance between the two plate increases the electric field strength decreases

A stone is dropped from the bridge, it takes 4s to reach the water. what's the height of the bridge?​

Answers

Is there any other type of information?

Explanation:

Using Equations of Motion :

[tex]s = ut + \frac{1}{2} g {t}^{2} [/tex]

Height = 0 * 4 + 4.9 * 16

Height = 78.4 m

A body of mass 5.0 kg is suspended by a spring which stretches 10 cm when the mass is attached. It is then displaced downward an additional 5.0 cm and released. Its position as a function of time is approximately what? Group of answer choices

Answers

Answer:

0.05cos10t

Explanation:

X(t) = Acos(wt+φ)

The oscillation angular frequency can be calculated using below formula

w = √(k/M)

Where K is the spring constant

But we were given body mass of 5.0 kg

We know acceleration due to gravity as 9.8m)s^2

The lenghth of spring which stretches =10 cm

Then we can calculate the value of K

k = (5.0kg*9.8 m/s^2)/0.10 m

K= 490 N/m

Then if we substitute these values into the formula above we have

w = √(k/M)

w = √(490/5)

= 9.90 rad/s=10rads/s(approximately)

Its position as a function of time can be calculated using the below expresion

X(t) = Acos(wt+φ)

We were given amplitude of 5 cm , if we convert to metre = 0.05m

w=10rads/s

Then if we substitute we have

X(t)=0.05cos(10×t)

X(t)= 0.05cos10t

Therefore,Its position as a function of time=

X(t)= 0.05cos10t

A mass m = 0.6 kg is released from rest at the top edge of a hemispherical bowl with radius = 1.1 meters. The mass then slides without friction down the inner surface toward the bottom of the bowl. At a certain point of its path the mass achieves a speed v = 3.57 m/s. At this point, what angle \theta\:θ ( in degrees) does the mass make with the top of the bowl?

Answers

Answer:

The  angle is  [tex]\theta = 36.24 ^o[/tex]

Explanation:

From the question we are told that

    The  mass is  [tex]m = 0.6 \ kg[/tex]

     The radius is  [tex]r = 1.1 \ m[/tex]

     The speed is  [tex]v = 3.57 \ m /s[/tex]

According to  the law of energy conservation

  The  potential energy of the mass at the top is equal to the kinetic energy at the bottom i.e

      [tex]m * g * h = \frac{1}{2} * m * v^2[/tex]

 =>    [tex]h = \frac{1}{2 g } * v^2[/tex]

Here h is the vertical distance traveled by the mass  which is also mathematically represented as

      [tex]h = r * sin (\theta )[/tex]

So

     [tex]\theta = sin ^{-1} [ \frac{1}{2* g* r } * v^2][/tex]

substituting values

     [tex]\theta = sin ^{-1} [ \frac{1}{2* 9.8* 1.1 } * (3.57)^2][/tex]

     [tex]\theta = 36.24 ^o[/tex]

g Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.

Answers

Answer:

No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.

Explanation:

If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)

For a body under this type of equilibrium,

ΣF = 0   ...1

where ΣF is the resultant force (total effective force due to all the forces acting on the body)

For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as

ΣF = ma   ...2

where m is the mass of the body

a is the acceleration of the body

Substituting equation 2 into equation 1, we have

0 = ma

therefore,

a = 0

this means that if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.

The cylinder is displaced 0.17 m downward from its equilibrium position and is released at time t = 0. Determine the displacement y and the velocity v when t = 3.1 s. The displacement and velocity are positive if downward, negative if upward. What is the magnitude of the maximum acceleration?

Answers

Complete Question

The image of this question  is shown on the first uploaded image

Answer:

a

   [tex]d =0.161 \ m[/tex]

b

  [tex]v = - 0.054 \ m/s[/tex]

c

  [tex]a = 6.12 \ m/s^2[/tex]

Explanation:

From the question we are told that

      The maximum  displacement is  A =  0.17  m  

      The  time considered is  [tex]t = 3.1 \ s[/tex]

     The spring constant is  [tex]k = 137 \ N \cdot m[/tex]

      The mass is  [tex]m = 3.8 \ kg[/tex]

Generally given that the motion which the cylinder is undergoing is a simple harmonic motion , then the displacement is mathematically represented as

             [tex]d = A cos (w t )[/tex]

Where [tex]w[/tex] is the angular frequency which is mathematically evaluated as

        [tex]w = \sqrt{\frac{k}{m} }[/tex]

substituting values

       [tex]w = \sqrt{\frac{137}{ 3.8} }[/tex]

        [tex]w =6[/tex]

So the displacement is at  t

      [tex]d = 0.17 cos (6 * 3.1 )[/tex]

       [tex]d =0.161 \ m[/tex]

Generally the velocity of a  SHM(simple harmonic motion) is mathematically represented as

         [tex]v = - Asin (wt)[/tex]

substituting values

         [tex]v = - 0.17 sin ( 6 * 3.1 )[/tex]

          [tex]v = - 0.054 \ m/s[/tex]

Generally the maximum acceleration is  mathematically represented as

         [tex]a = w^2 * A[/tex]

substituting values

         [tex]a_{max} = 6^2 * (0.17)[/tex]

substituting values

         [tex]a = 6^2 * (0.17)[/tex]

        [tex]a = 6.12 \ m/s^2[/tex]

10. How far does a transverse pulse travel in 1.23 ms on a string with a density of 5.47 × 10−3 kg/m under tension of 47.8 ????? How far will this pulse travel in the same time if the tension is doubled?

Answers

Answer: Tension = 47.8N, Δx = 11.5×[tex]10^{-6}[/tex] m.

              Tension = 95.6N, Δx = 15.4×[tex]10^{-5}[/tex] m

Explanation: A speed of wave on a string under a tension force can be calculated as:

[tex]|v| = \sqrt{\frac{F_{T}}{\mu} }[/tex]

[tex]F_{T}[/tex] is tension force (N)

μ is linear density (kg/m)

Determining velocity:

[tex]|v| = \sqrt{\frac{47.8}{5.47.10^{-3}} }[/tex]

[tex]|v| = \sqrt{0.00874 }[/tex]

[tex]|v| =[/tex] 0.0935 m/s

The displacement a pulse traveled in 1.23ms:

[tex]\Delta x = |v|.t[/tex]

[tex]\Delta x = 9.35.10^{-2}*1.23.10^{-3}[/tex]

Δx = 11.5×[tex]10^{-6}[/tex]

With tension of 47.8N, a pulse will travel Δx = 11.5×[tex]10^{-6}[/tex]  m.

Doubling Tension:

[tex]|v| = \sqrt{\frac{2*47.8}{5.47.10^{-3}} }[/tex]

[tex]|v| = \sqrt{2.0.00874 }[/tex]

[tex]|v| = \sqrt{0.01568}[/tex]

|v| = 0.1252 m/s

Displacement for same time:

[tex]\Delta x = |v|.t[/tex]

[tex]\Delta x = 12.52.10^{-2}*1.23.10^{-3}[/tex]

[tex]\Delta x =[/tex] 15.4×[tex]10^{-5}[/tex]

With doubled tension, it travels [tex]\Delta x =[/tex] 15.4×[tex]10^{-5}[/tex] m

A brick weighs 50.0 N, and measures 30.0 cm × 10.0 cm × 4.00 cm. What is the maximum pressure it can exert on a horizontal surface due to its weight?

Answers

Answer:

Pressure, P = 1250 Pa

Explanation:

Given that,

Weight of a brick, F = 50 N

Dimension of the brick is 30.0 cm × 10.0 cm × 4.00 cm

We need to find the maximum pressure it can exert on a horizontal surface due to its weight. Pressure is equal to the force acting per unit area. Pressure exerted is inversely proportional to the area of cross section. So, we need to minimize area. Taking to smaller dimensions.

A = 40 cm × 10 cm = 400 cm² = 0.04 m²

So,

Pressure,

[tex]P=\dfrac{50\ N}{0.04\ m^2}\\\\P=1250\ Pa[/tex]

So, the maximum pressure of 1250 Pa it can exert on a horizontal surface.

The maximum pressure it can exert on a horizontal surface due to its weight will be 1250 Pascal.

What is pressure?

The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure. It is denoted by P.

The given data in the problem is;

W is the weight of a brick = 50 N

The dimension of the brick = 30.0 cm × 10.0 cm × 4.00 cm

A is the area,

The area is found as;

A=40 cm × 10 cm = 400 cm² = 0.04 m²

The pressure is the ratio of the force and area

[tex]\rm P = \frac{F}{A} \\\\ \rm P = \frac{50}{0.04} \\\\ \rm P =1250 \ Pascal[/tex]

Hence the maximum pressure it can exert on a horizontal surface due to its weight will be 1250 Pascal.

To learn more about the pressure refer to the link;

https://brainly.com/question/356585

A square coil of wire with 15 turns and an area of 0.40 m2 is placed parallel to a magnetic field of 0.75 T. The coil is flipped so its plane is perpendicular to the magnetic field in 0.050 s. What is the magnitude of the average induced emf

Answers

Answer:

The magnitude of the average induced emf is 90V

Explanation:

Given;

area of the square coil, A = 0.4 m²

number of turns, N = 15 turns

magnitude of the magnetic field, B = 0.75 T

time of change of magnetic field, t = 0.05 s

The magnitude of the average induced emf is given by;

E = -NAB/t

E = -(15 x 0.4 x 0.75) / 0.05

E = -90 V

|E| = 90 V

Therefore, the magnitude of the average induced emf is 90V

please help !!!!!!!!!!

Answers

Answer:

Lighthouse 1 during the day will be warmer, lighthouse 2 during the night will be warmer.

Explanation:

As the paragraph stated land absorbs heat and heats up faster than water. So during the day the lighthouse farthest away from the water will be hotter. But then the converse is true also land losses heat faster than water at night. So the water retains the heat from the day better making the lighthouse by the water warmer at night.

An isolated system consists of two masses. The first, m1, has a mass of 1.90 kg, and is initially traveling to the east with a speed of 6.71 m/s. The second, m2, has a mass of 2.94 kg, and is initially traveling to the west with an unknown initial speed. The two masses collide head-on in a completely inelastic collision that stops them both. Calculate the initial kinetic energy of m2.

Answers

Answer:

m1v1=m2v2, v2=4.3m/s KE=(0.5)(2.94)(4.3)=6.2J

The Bohr model pictures a hydrogen atom in its ground state as a proton and an electron separated by the distance a0 = 0.529 × 10−10 m. The electric potential created by the electron at the position of the proton is

Answers

Answer:

E = -8.23 ​​10⁻¹⁷ N / C

Explanation:

In the Bohr model, the electric potential for the ground state corresponding to the Bohr orbit is

         E = k q₁ q₂ / r²

in this case

q₁ is the charge of the proton and q₂ the charge of the electron

         E = - k e² / a₀²

let's calculate

         E = - 9 10⁹ (1.6 10⁻¹⁹)² / (0.529 10⁻¹⁰)²

         E = -8.23 ​​10⁻¹⁷ N / C

n ultraviolet light beam having a wavelength of 130 nm is incident on a molybdenum surface with a work function of 4.2 eV. How fast does the electron move away from the metal

Answers

Answer:

The speed of the electron is 1.371 x 10 m/s.

Explanation:

Given;

wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m

the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J

The energy of the incident light is given by;

E = hf

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

f = c / λ

[tex]E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{130*10^{-9}} \\\\E = 15.291*10^{-19} \ J[/tex]

Photo electric effect equation is given by;

E = W₀ + K.E

Where;

K.E is the kinetic energy of the emitted electron

K.E = E - W₀

K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J

K.E = 8.563 x 10⁻¹⁹ J

Kinetic energy of the emitted electron is given by;

K.E = ¹/₂mv²

where;

m is mass of the electron = 9.11 x 10⁻³¹ kg

v is the speed of the electron

[tex]v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2*8.563*10^{-19}}{9.11*10^{-31}}}\\\\v = 1.371 *10^{6} \ m/s[/tex]

Therefore, the speed of the electron is 1.371 x 10 m/s.

You simultaneously shine two light beams, each of intensity I0, on an ideal polarizer. One beam is unpolarized, and the other beam is polarized at an angle of exactly 30.0∘ to the polarizing axis of the polarizer. Find the intensity of the light that emerges from the polarizer. Express your answer in term of I0 .

Answers

Answer:

The emerging intensity is equal to 0.75[tex]I_{o}[/tex]

Explanation:

The initial intensity of the light = [tex]I_{o}[/tex]

The angle of polarization β = 30°

We know that the polarized light intensity is related to the initial light intensity by

[tex]I[/tex] = [tex]I_{0} cos^{2}\beta[/tex]

where [tex]I[/tex] is the emerging polarized light intensity

inserting values gives

[tex]I[/tex] = [tex]I_{0} cos^{2}[/tex] 30°

[tex]cos^{2}[/tex] 30° = [tex](cos 30)^{2}[/tex] = [tex](\frac{\sqrt{3} }{2} )^{2}[/tex] = 0.75

[tex]I[/tex] = 0.75[tex]I_{o}[/tex]

The resistor used in the procedures has a manufacturer's stated tolerance (percent error) of 5%. Did you results from Data Table agree with the manufacturer's statement? Explain.
Resistor Measured Resistance
100 99.1

Answers

Answer:

     e% = 0.99%   this value is within the 5% tolerance given by the manufacturer

Explanation:

Modern manufacturing methods establish a tolerance in order to guarantee homogeneous characteristics in their products, in the case of resistors the tolerance or error is given by

          e% = | R_nominal - R_measured | / R_nominal 100

where R_nominal is the one written in the resistance in your barcode, R_measured is the real value read with a multimeter and e% is the tolerance also written in the resistors

let's apply this formula to our case

R_nominal = 10 kΩ = 10000 Ω

R_measured = 100 99 Ω

        e% = | 10000 - 10099.1 | / 10000 100

        e% = 0.99%

this value is within the 5% tolerance given by the manufacturer

If mirror M2 in a Michelson interferometer is moved through 0.233 mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?

Answers

Answer:

The wavelength is  [tex]\lambda = 589 nm[/tex]

Explanation:

From the question we are told that

    The  distance of the mirror shift  is  [tex]k = 0.233 \ mm = 0.233*10^{-3} \ m[/tex]

      The number of fringe shift is  n =  792

       

Generally the wavelength producing this fringes is mathematically represented as

               [tex]\lambda = \frac{ 2 * k }{ n }[/tex]

substituting values

              [tex]\lambda = \frac{ 2 * 0.233*10^{-3} }{ 792 }[/tex]

             [tex]\lambda = 5.885 *10^{-7} \ m[/tex]

            [tex]\lambda = 589 nm[/tex]

The rectangular plate is tilted about its lower edge by a cable tensioned at a constant 600 N. Determine and plot the moment of this tension about the lower edge AB of the plate for the range 0 ≤ θ ≤ 90°

Answers

Answer:

Explanation:

From the figure , it is clear that moment of tension is balanced by moment of weight of plate about the line AB which is acting as axis . If W be the weight of plate ,

moment of tension about AB = moment of weight W about line AB

= W x 2.5 cosθ

moment of tension about AB = 2.5 W cosθ

here only variable  is cosθ which changes when θ changes

So, moment of tension about AB varies according to cosθ.

When θ = 0

moment of tension about AB = 2.5 W x cos 0 = 2.5 W . It is the maximum value of moment of tension .

When θ = 90°

moment of tension about AB = 2.5 W cos 90 = 0

moment of tension about AB = 0

So graph of moment of tension about AB will vary according to graph of

cosθ . It has been shown in the file attached .

Sammy is 5 feet and 5.3 inches tall. What is Sammy's height in inches? ​

Answers

Answer:

[tex]\boxed{\sf 65.3 \ inches}[/tex]

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

65.3 Inches.
12 (1 Foot) X 5= 60 + 5.3 = 65.3

A 1.2-m length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x= 5.0m on x-axis.

a. 1.6 nt in the negative z direction
b. 1.6 nt in the positive z direction
c. 2.4 T in the positive z direction
d. 2.4 nt in the negative z direction
e. None of the above

Answers

Answer:

None of the above

Explanation:

The formula of the magnetic field of a point next to a wire with current is:

B = 2×10^(-7) × ( I /d)

I is the intensity of the current.

d is the distance between the wire and the point.

● B = 2*10^(-7) × (20/5) = 8 ×10^(-7) T

If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this?

Answers

Answer:

Maximum altitude to see(L) =  1.47 × 10⁶ m (Approx)

Explanation:

Given:

wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m

Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m

Separation distance (D) = 5.4 cm = 0.054 m

Find:

Maximum altitude to see(L)

Computation:

Resolving power = 1.22(λ / d)

D / L = 1.22(λ / d)

0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]

0.054 / L = 1.22 [0.03 × 10⁻⁶]

L = 0.054 / 1.22 [0.03 × 10⁻⁶]

L = 0.054 / [0.0366 × 10⁻⁶]

L = 1.47 × 10⁶

Maximum altitude to see(L) =  1.47 × 10⁶ m (Approx)

A father and his young son get on a teeter-totter. The son sits 2 m fromthe center, but the father has to sit closer to balance. Where does the father have to sit to balance the teeter-totter if he weighs 4 times as much as his son?

Answers

Answer:

The distance of the father from the center is  [tex]d_f = \frac{1}{2} \ m[/tex]

Explanation:

From the question we are told that

    The distance of the son from the center is  [tex]d_s = 2 \ m[/tex]

 

Let the mass of the son be  [tex]m_s[/tex]

     then the mass of the father is  [tex]m_f = 4m_s[/tex]

Now for the teeter-totter to be balanced the torque due to the weight of the father must be equal to the torque due to the weight the son, this is mathematically represented as

         [tex]\tau_s = \tau_f[/tex]

Where  [tex]\tau_s[/tex] is the torque of the son which is mathematically represented as

        [tex]\tau_ s = m_s * d_s * g[/tex]

while [tex]\tau_f[/tex] is the torque of the father which is mathematically represented as

        [tex]\tau_f = m_f * d_f * g[/tex]

=>    [tex]\tau_f = 4 m_s * d_f * g[/tex]

 So

         [tex]4 m_s * d_f * g = m_s * d_s * g[/tex]

substituting values

        [tex]4 * d_f * = 2[/tex]

 =>    [tex]d_f = \frac{1}{2} \ m[/tex]      

Two protons, A and B, are next to an infinite plane of positive charge. Proton B is twice as far from the plane as proton A. Which proton has the larg

Answers

Answer:

They both have the same acceleration

how does a system naturally change over time

Answers

Answer:

The movement of energy and matter in a system differs from one system to another. On the other hand, in open system both the matter and energy move into and out of the system. Therefore, matter and energy in a system naturally change over time will decrease in entropy.

Explanation:

Answer:

Decrease in entropy

Explanation:

Various systems which exist in nature possess energy and matter that move through these system continuously. The movement of energy and matter in a system differs from one system to another.

In a closed system for example, only energy flows in and out of the system while matter does not enter or leave the system.

On the other hand, in open system both the matter and energy move into and out of the system.

Other Questions
Your friend wears earbuds while driving to school each day. Is this safe? Is it legal? Explain why or why not. Calculate the concentration of H3O+ in a solution that contains 5.5 10-5 M OH- at 25C. Identify the solution as acidic, basic, or neutral. Need help with the question below. If sin+cos = 1 , find sin.cos. Why did ancient people first come to the Ameicans? A. To plant and harvest crops B. To hunt animals for food C. To seek religious freedom D. To find trading partners Find the length of UXA. 6.03B. 76.11C. 7.96D. 76.53 Those were the Rommely women ...They were all slender, frail creatures with wondering eyes and soft fluttery voices. But they were made out of thin visible steel. Explain the truth/falsity of this passage. This is a tree grows in brooklyn btw Ahmad has some files.He gaveof the files and had 14 files left.5How many files did he have at first? Following are the notations for the three sums of squares. State the name of each sum of squares and the source of variation each sum of squares represents. a. SSE b. SSTR c. SST How many vehicles have been driven less than 200 thousand kilometers? Use the set of ordered pairs to determine whether the relation is a one-to-one function. {(6,21),(23,21),(12,9),(24,10),(2,22),(22,22)} which of the following best describes the effect of replacing the graph of y = f(x) with the graph of y= f(x) - 9? a. the graph of y = f(x) will shift up 9 units b. the graph of y = f(x) will shift down 9 units c. the graph of y = f(x) will shift left 9 units d. the graph of y = f(x) will shift right 9 units Simplify the slope of bd Which equation can be used to find x, the length of the hypotenuse of the right 18 + 24 = x 18 squared + 24 = x (18 + 24) squared = x squared 18 squared + 24 squared = x squared Fill in the blank with the appropriate form of oublier. J le nom du professeur. Can someone check my Latin homework? 1. Ambulando montem ascenderunt. They have climbed the mountain by walking. 2. Signum deo donandum est. A sign is to be given by goD) . 3. Dei colendi causa, templum aedificandum erat. To cause the Gods to be protected, a temple was to be built. 4. Dux Romanus, qui ad Graeciam belli gerendi gratia venerat, multa pulchra ad Romam ferebat. The Roman leader, who thankfully came to beautiful Greece, was bearing many Roman treasures. 5. Omnia quae dicenda sunt, libere dicam. All things that are to be told, I shall tell freely. 4 3/4 - 2 3/8 thanks The FI Corporations dividends per share are expected to grow indefinitely by 5% per year. a. If this years year-end dividend is $8 and the market capitalization rate is 10% per year, what must the current stock price be according to the DDM? b. If the expected earnings per share are $12, what is the implied value of the ROE on future investment opportunities? c. How much is the market paying per share for growth opportunities (i.e., for an ROE on future investments that exceeds the market capitalization rate)? thingFill in the blank with the correct response.The slope of the graph of y= 5x isao Calculate the pH of a solution formed by mixing 250.0 mL of 0.15 M NH4Cl with 200.0 mL of 0.12 M NH3. The Kb for NH3 is 1.8 10-5.