The probability that a 38-year-old white male will live another year is .99813. What premium would an insurance company charge to break even on a one-year $1 million term life insurance policy
Answer:
The insurance company should charge $1,873.5.
Step-by-step explanation:
Expected earnings:
1 - 0.99813 = 0.00187 probability of the company losing $1 million(if the client dies).
0.99813 probability of the company earning x(price of the insurance).
What premium would an insurance company charge to break even on a one-year $1 million term life insurance policy?
Break even means that the earnings are 0, so:
[tex]0.99813x - 0.00187(1000000) = 0[/tex]
[tex]0.99813x = 0.00187(1000000)[/tex]
[tex]x = \frac{0.00187(1000000)}{0.99813}[/tex]
[tex]x = 1873.5[/tex]
The insurance company should charge $1,873.5.
Someone please help me ASAP!
Answer:
The 3rd
Step-by-step explanation:
If x goes to infinity, f(x) goes to infinity too:
[tex]lim \: \frac{2 {x}^{2} }{3x - 1} = lim \frac{2x}{3 - \frac{1}{x} } = \frac{ 2 \times \infty }{3 - 0} = \infty [/tex]
Decide which of the two given prices is the better deal and explain why.
You can buy shampoo in a 5-ounce bottle for 3,89$ or in a 14-ounce bottle for 11,99$.
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A.The -ounce bottle is the better deal because the cost per ounce is $
nothing per ounce while the -ounce bottle is $
nothing per ounce.
B.The -ounce bottle is the better deal because the cost per ounce is $
nothing per ounce while the -ounce bottle is $
nothing per ounce.
(Round to the nearest cent as needed.)
Answer:
The 14-ounce bottle is the better deal
Step-by-step explanation:
I know this beause inorder to figure out which one is better you have to make them the same price and then see which bottle has more ounces. So I made each price 1$ so there is 1.58-ounces per dollar in the 5-ounce bottle and 1.17 -ounces per dollar in the 14-ounce bottle.
A chemical company makes two brands of antifreeze the first brand contains 65% pure antifreeze and the second brand contains 80% pure antifreeze in order to obtain 60 gallons of a mixture that contains 70% pure antifreeze how many gallons of each brand of antifreeze must be used
Answer:
30 gallons of each brand
Step-by-step explanation:
1 gallon of 60% + 1 gallon of 80% = 2 gallons 70% (60/2 = 30)
In a pen of goats and chickens, there are 40 heads. and 130 feet How many goats and chickens are there?
Answer:
25 goat and 15 chicken
Step-by-step explanation:
Say the number of goats is G, then the number of chickens is 40 - G as there are 40 heads and each chicken and each goat has one head.
The number of feet is 130
So 2(40 - G) + 4G = 130
So 80 - 2G + 4G = 130
2G = 50
G = 25
25 goats and 15 chickens
70. If set A consists of (3, 5, 7, 9) and set B consists of (1, 2, 3, 5, 8, 13), what is the average of the union of set A and set B?
A) 6
B) 3
C) 48
D) 56
⚠️will give brainliest to the best answer
Step-by-step explanation:
the answer would be 6. brrr
A) 6
{1,2,3,5,7,8,9,13}
The average is going to be 6.
Melanie has D dimes and Q quarters. She has no less than $4 worth of coins altogether. Write this situation as an inequality.
Step-by-step explanation:
D(.10) + Q(.25) = 4
I think
Answer:
D(.10) + Q(.25) = 4
Step-by-step explanation:
What is the value of k?
K=?
9514 1404 393
Answer:
k = 2
Step-by-step explanation:
The geometric mean theorem for the altitude tells you ...
ON = √(OL·OM)
ON² = OL·OM . . . . . square both sides
4² = 8·k . . . . . . . . substitute values
k = 16/8 = 2 . . . . divide by the coefficient of k
_____
Additional comment
The geometric mean theorem for the legs tells you ...
MN = √(MO·ML) ⇒ l = 2√5
LN = √(LO·LM) ⇒ m = 4√5
These relations come from the fact that corresponding sides of the right triangles are proportional. (All of the triangles are similar.)
Omar has a gift card for $40.00 at a gift shop. Omar wants to buy a hat for himself for $13.50. For his friends, he would like to buy souvenir
bracelets, which are $3.25 each. All prices include taxes.
Which inequality can be used to solve for how many bracelets Omar can buy?
ОА.
3.25x + 13.50 S 40
OB.
3.25x + 13.50 240
Oc.
13.50x +3.25 S 40
OD.
13.50x +3.25 2 40
Answer:
A. 3.25x + 13.50 ≤ 40
The number of bracelets is x. It's a variable.
The 13.50 is a constant.
The total needs to be less than or equal to 40 because that's all the money he has.
Answer:
3.25x + 13.50 ≤ 40
Step-by-step explanation:
For this problem, you have to directly make the equation. Using the givens, it shows that he has only 40 dollars, and wants to buy only one hat for 13. 50. He wants to buy his friends braclets 3.25, but since you dont know how many friends its for, you will leave it as x.
There is only 40 dollars so you will use: ≤
The answer will be:
3.25x + 13.50 ≤ 40
Hope this helps.
Find the circumference of a circle with a diameter of 50 centimeters. Round your answer to the nearest
centimeter.
Given :-
Diameter of circle = 50 cm .To Find :-
The circumference of the Circle.Solution :-
We know that the circumference of the Circle with radius r is given by ,
=> C = 2πr .
Here r is 50cm .=> C = 2 × 3.14 × 50 cm
=> C = 314 cm .
Hence the required answer is 314 cm .
Answer:
Step-by-step explanation:
b 75
A telephone exchange operator assumes that 9% of the phone calls are wrong numbers. If the operator is correct, what is the probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%
Answer:
0.0264 = 2.64% probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A telephone exchange operator assumes that 9% of the phone calls are wrong numbers.
This means that [tex]p = 0.09[/tex]
Sample of 448
This means that [tex]n = 448[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{448}} = 0.0135[/tex]
What is the probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%?
More than 9% + 3% = 12 or less than 9% - 3% = 6%. Since the normal distribution is symmetric, these probabilities are the same, so we find one of them and multiply by 2.
Probability it is less than 6%
P-value of Z when X = 0.06. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0135}[/tex]
[tex]Z = -2.22[/tex]
[tex]Z = -2.22[/tex] has a p-value of 0.0132
2*0.0132 = 0.0264
0.0264 = 2.64% probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%
75. In the figure below, what is the slope of
the diagonal AC of the rectangle ABCD?
9514 1404 393
Answer:
A. 3/2
Step-by-step explanation:
Point C is 3 units higher and 2 units right of point A. The slope is ...
slope = rise/run = 3/2
The mean incubation time of fertilized eggs is 19 days. Suppose the incubation times are approximately normally distributed with a standard deviation of 1 day. Answer the following. For each question draw an appropriate distribution function (graph) to represent the data, shade the desired area, and show all work, including what you input into your calculator to attain your results.
(A) The 14th percentile for incubation times is __ days.
(B) The incubation times that make up the middle 97% of fertilized eggs are __ to __ days.
Answer:
a)17.92
b) 16.83 .... 21.17
Step-by-step explanation:
ρ→ z
0.14 = -1.080319341
-1.080 = (x - 19)/1 = 17.92
~~~~~~~~~~~~~~~~~~
3% / 2 = 1.5%
1.5% - 98.5%
ρ→ z
0.015 = -2.170090378 .... -2.17 = (x-19) =16.83
0.985 = 2.170090378 .... 2.17 = (x-19) =21.17
If A = {x, y, z} then the number of non-empty subsets of A is ________.
a) 8 b) 5 c) 6 d) 7
Answer:
(d) 7
Step-by-step explanation:
The total number of subsets that can be derived from a set with n elements is given by;
2ⁿ
Out of these subsets, there is one empty set. Therefore, the total number of non-empty subsets is given by;
2ⁿ - 1
Given:
A = {x, y, z}
Set A has 3 elements. This means that n = 3
Therefore, the total number of subsets that can be derived from set A is
2ⁿ = 2³ = 8
One of these 8 subsets is an empty set, therefore, the total number of non-empty subsets of A is;
2ⁿ - 1 = 2³ - 1
8 - 1 = 7
This can be checked by writing all the possible subsets of A as follows;
∅
{x}
{y}
{z}
{x, y}
{y, z}
{x, z}
{x, y, z}
Removing the empty set ∅, the non-empty subsets of A are;
{x}
{y}
{z}
{x, y}
{y, z}
{x, z}
{x, y, z}
HELP PLEASE!!! So for this problem is got 0.48 however I just wanted to confirm that my answer is correct. Can someone please help me if the answer is wrong and how to solve it. Thank your for your time
Answer:
ur answer is correct
A =xy
A = 1.6×0.3 = 0.48
Perimeter of a square with side 4 square root of 5
Answer:
16[tex]\sqrt{5}[/tex]
Step-by-step explanation:
[tex]4\sqrt{5}[/tex]+[tex]4\sqrt{5}[/tex]+[tex]4\sqrt{5}[/tex]+[tex]4\sqrt{5}[/tex]
16[tex]\sqrt{5}[/tex]
The perimeter of the square is 16√5 units.
We have,
The concept used here is straightforward: to find the perimeter of a square, you sum the lengths of all four sides because all sides of a square are equal in length.
In this case, the side length is given as 4√5, so you multiply it by 4 to calculate the total perimeter.
To find the perimeter (P) of a square with a side length of 4√5 units, you simply add up all four sides of the square, as all sides of a square are equal in length.
So,
P = 4 * side length
P = 4 * 4√5
P = 16√5 units
Thus,
The perimeter of the square is 16√5 units.
Learn more about squares here:
https://brainly.com/question/22964077
#SPJ3
The width of a rectangle is 2 cm less than its length. The perimeter is 52 cm. The length is:
14 cm.
12 cm.
9 cm.
None of these choices are correct.
Answer: 14 cm
Step-by-step explanation:
Rectangle:
Length = xWidth = x - 2x + x + (x - 2) + (x - 2) = 52
2x + 2(x - 2) = 52
2x + 2x - 4 = 52
4x = 52 + 4
4x = 56
x = 14
PLEASE HELP SOON Find the value of x. Round to the nearest tenth. 27° х 34° 11 X = ? [?] 9 Law of Sines: sin A sin C sin B b a Enter
The picture of the problem has been attached below :
Answer:
13.5
Step-by-step explanation:
Applying the sine rule to solve for x
SinA /a = SinB / b = SinC/ c
Sin 34 / x = Sin 27/11
Cross multiply :
11 * sin34 = x * sin 27
6.1511219 = 0.4539904x
Divide both sides by 0.4539904
6.1511219/0.4539904 = x
13.549 = x
x = 13.5
Need help on this problem
Answer:
Step-by-step explanation:
[tex]2(x-2)^2=8(7+y)\\2(x-2)^2=56+8y \Rightarrow y={1\over{8}}[2(x-2)^2-56]={1\over{4}}(x-2)^2-7\\finally\\y={1\over{4}}(x-2)^2-7\\let ~change~x~and~y\\x={1\over{4}}(y-2)^2-7\\x+7={1\over{4}}(y-2)^2\\4(x+7)=(y-2)^2\\y-2=\pm\sqrt{4(x+7)}\\\\y=2\pm\sqrt{4x+28}[/tex]
aulo uses an instrument called a densitometer to check that he has the correct ink colour.
For this print job the acceptable range for the reading on the densitometer is 1.8 ± 10%.
What is the acceptable range for the densitometer reading?
Answer:
The range is from 1.62 to 1.98.
Step-by-step explanation:
We have to solve for the percentage of the particular value if the range of the answer should be +/- 10% of the particular value.
The value given is 1.8, we thus want to find 10% of that: 1.8 * 10/100 = 0.18
Then, add this value to the original value of 1.8: 1.8+0.18 = 1.98
Furthermore, subtract .18 from from the original value of 1.8: 1.8-0.18 = 1.62
The range will be between these two numbers, so the range is from 1.62 to 1.98.
A recipe for chocolate chip cookies calls for 3 1/3 cups of flour. If you are making 2 1/4 recipes, how many cups of flour are needed.
Answer:
THIS IS THE ANSWER
Step-by-step explanation:
1 1/2 = 3/2
2 1/3 = 7/3
3/2 * 7/3 = 21/6 = 3 3/5 = 3 1/2 cups
PLEASE MARK ME AS A BRAINLIST!Working to
(simplify y
Lisa, an experienced shipping clerk, can fill a certain order in 7 hours, Bill, a new clerk, needs 9 hours to do the
same job. Working together, how long will it take them to fill the order?
it might take 19 hours i might be wrong
Step-by-step explanation:
a girl painted a rectangular-shaped portrait which is 10 inches long and 8 inches wide. if she trimmed 2/1/2 inches on both sides of the width and 2 inches on one side of the length, what would be the resulting area?
Answer:
32 in^2
Step-by-step explanation:
8-2=6, 6-2=4. 4 inches wide
10-2=8. 8 Inches tall.
4*8=32
\int (x+1)\sqrt(2x-1)dx
Answer:
[tex]\int (x+ 1) \sqrt{2x-1} dx = \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{15}(2x-1)^{\frac{5}{2}} + C[/tex]
Step-by-step explanation:
[tex]\int (x+1)\sqrt {(2x-1)} dx\\Integrate \ using \ integration \ by\ parts \\\\u = x + 1, v'= \sqrt{2x - 1}\\\\v'= \sqrt{2x - 1}\\\\integrate \ both \ sides \\\\\int v'= \int \sqrt{2x- 1}dx\\\\v = \int ( 2x - 1)^{\frac{1}{2} } \ dx\\\\v = \frac{(2x - 1)^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}} \times \frac{1}{2}\\\\v= \frac{(2x - 1)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{2}\\\\v = \frac{2 \times (2x - 1)^{\frac{3}{2}}}{3} \times \frac{1}{2}\\\\v = \frac{(2x - 1)^{\frac{3}{2}}}{3}[/tex]
[tex]\int (x+1)\sqrt(2x-1)dx\\\\ = uv - \int v du[/tex]
[tex]= (x +1 ) \cdot \frac{(2x - 1)^{\frac{3}{2}}}{3} - \int \frac{(2x - 1)^{\frac{3}{2}}}{3} dx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ u = x + 1 => du = dx \ ][/tex]
[tex]= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{3} \int (2x - 1)^{\frac{3}{2}}} dx\\\\= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{3} \times ( \frac{(2x-1)^{\frac{3}{2} + 1}}{\frac{3}{2} + 1}) \times \frac{1}{2}\\\\= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{3} \times ( \frac{(2x-1)^{\frac{5}{2}}}{\frac{5}{2} }) \times \frac{1}{2}\\\\= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{15} \times (2x-1)^{\frac{5}{2}} + C\\\\[/tex]
Question 8
Points 3
Identify the functions whose lines are parallel.
0 3x + 2y = 45 and 8x + 4y = 135
x + y = 25 and 2x + y = 15
O 2x + 2y = 50 and 4x + 2y = 90
O 2x + 2y = 4 and 4x + 4y = 16
Answer:
2x + 2y = 4 and 4x + 4y = 16
Step-by-step explanation:
For two lines to be parallel, they must have the same slope.
To determine the correct answer to the question, we shall determine the slope of each equation in the given options to see which have the same slope. This can be obtained as follow:
1st option:
3x + 2y = 45 and 8x + 4y = 135
We shall rearrange the above equations to look like y = mx + c
NOTE: m is the slope.
3x + 2y = 45
rearrange
2y = –3x + 45
Divide both side by 2
y = –3x/2 + 45/2
Slope (m) = –3/2
8x + 4y = 135
Rearrange
4y = –8x + 135
Divide both side by 4
y = –8x/4 + 135/4
Slope (m) = –8/4 = –2
The two equation has different slopes. Thus, they are not parallel.
2nd option:
x + y = 25 and 2x + y = 15
x + y = 25
Rearrange
y = –x + 25
Slope (m) = –1
2x + y = 15
Rearrange
y = –2x + 15
Slope (m) = –2
The two equations has different slopes. Thus, they are not parallel.
3rd option:
2x + 2y = 50 and 4x + 2y = 90
2x + 2y = 50
Rearrange
2y = –2x + 50
Divide both side by 2
y = –2x/2 + 50/2
Slope (m) = –2/2 = –1
4x + 2y = 90
Rearrange
2y = –4x + 90
Divide both side by 2
y = –4x/2 + 90/2
Slope (m) = –4/2 = –2
The two equations has different slopes. Thus, they are not parallel.
4th option:
2x + 2y = 4 and 4x + 4y = 16
2x + 2y = 4
Rearrange
2y = –2x + 4
Divide both side by 2
y = –2x/2 + 4/2
Slope (m) = –2/2 = –1
4x + 4y = 16
Rearrange
4y = –4x + 16
Divide both side by 4
y = –4x/4 + 16/4
Slope (m) = –4/4 = –1
The two equations have the same slopes. Thus, they are parallel.
Which expression gives the best estimate of 30 percent of 61?
The answers are below:
Hurry, please!
Answer:
it would be 1/4(60)
Step-by-step explanation:
30 percent of 61 is 18.3 and 1/4 of 60 is 15 which is closest to 18.3
The proportion of brown M&M's in a milk chocolate packet is approximately 14% (Madison, 2013). Suppose a package of M&M's typically contains 52 M&M's
Answer:
7 brown M&Ms.
Step-by-step explanation:
This question is not complete, but I will assume that the final question is how many brown M&Ms will be in this package.
0.14 × 52 is our equation.
The answer is 7.28. We cannot have .28 of a brown M&M in a package (unless you count the broken ones) so there will be, on average, 7 brown M&Ms in a package.
(again, the question is incomplete, so this may not be the answer)
Find sin d, sin e, cos d, and cos e. Write each answer as a fraction in simplest form
Answer:
r= 17.73174
Step-by-step explanation:
calculations
If you draw a card with a value of three or less from a standard deck of cards, I will pay you $41. If not, you pay me $11. (Aces are considered the highest card in the deck). If you played this game 877 times how much would you expect to win or lose?
There are 12 cards with a value ≤ 3 (3 between 1, 2, and 3, and multiply by 4 to count each suit). So the probability of drawing one of these cards and thus winning the game is 12/52 = 3/13.
The expected winnings for playing this game once are
3/13 × ($41) + 10/13 × (-$11) = $1
so after playing 877 times, you can expect to win a total of $877.
A single, six-sided die is rolled. Find the probability of rolling an even number or a number less than 6 .
Answer:
P=1
Step-by-step explanation:
P(even or less than 6) = P(even)+P(less than 6) -P(even ∩ less than 6)
P(even)=3/6 (numbers 2,4, and 6)
P(less than 6) =5/6 (numbers 1,2,3,4, and 5)
P(even ∩ less than 6)=2/6 (numbers 2 and 4)
(3/6)+(5/6) -(2/6) = (3+5-2)/6 = 6/6=1