Answer:
c. because the rod polarizes the metal.
Explanation:
Bringing the negatively charged rod close to the neutral metal ball causes the neutral metal ball to be polarized with induced positive charge on it. The polarizing of the formally neutral metal ball is due to the negative charge on the metal rod (bodies induce a charge opposite of their own charge on a nearby neutral body). The ball and rod then attract themselves because bodies with opposite charges attract each other, unlike bodies with same charges that repel each other.
How much energy is required to accelerate a spaceship with a rest mass of 121 metric tons to a speed of 0.509 c?
Answer
1.07E22 Joules
Explanation;
We know that mass expands by a factor
=>>1/√[1-(v/c)²]
But v= 0.509c
So
1/√(1 - 0.509²)
=>>> 1/√(1 - 0.2591)
= >> 1/√(0.7409) = 1.16
But given that 121 tons is rest mass so 121- 1.16= 119.84 tons is kinetic energy
And we know that rest mass-energy equivalence is 9 x 10^19 joules per ton.
So Multiplying by 119.84
Kinetic energy will be 1.07x 10^22 joules
Suppose we want to calculate the moment of inertia of a 56.5 kg skater, relative to a vertical axis through their center of mass.
Required:
a. First calculate the moment of inertia (in kg-m^2) when the skater has their arms pulled inward by assuming they are cylinder of radius 0.11 m.
b. Now calculate the moment of inertia of the skater (in kg-m^2) with their arms extended by assuming that each arm is 5% of the mass of their body. Assume the body is a cylinder of the same size, and the arms are 0.875 m long rods extending straight out from their body being rotated at the ends.
Answer:
a. 0.342 kg-m² b. 2.0728 kg-m²
Explanation:
a. Since the skater is assumed to be a cylinder, the moment of inertia of a cylinder is I = 1/2MR² where M = mass of cylinder and r = radius of cylinder. Now, here, M = 56.5 kg and r = 0.11 m
I = 1/2MR²
= 1/2 × 56.5 kg × (0.11 m)²
= 0.342 kgm²
So the moment of inertia of the skater is
b. Let the moment of inertia of each arm be I'. So the moment of inertia of each arm relative to the axis through the center of mass is (since they are long rods)
I' = 1/12ml² + mh² where m = mass of arm = 0.05M, l = length of arm = 0.875 m and h = distance of center of mass of the arm from the center of mass of the cylindrical body = R/2 + l/2 = (R + l)/2 = (0.11 m + 0.875 m)/2 = 0.985 m/2 = 0.4925 m
I' = 1/12 × 0.05 × 56.5 kg × (0.875 m)² + 0.05 × 56.5 kg × (0.4925 m)²
= 0.1802 kg-m² + 0.6852 kg-m²
= 0.8654 kg-m²
The total moment of inertia from both arms is thus I'' = 2I' = 1.7308 kg-m².
So, the moment of inertia of the skater with the arms extended is thus I₀ = I + I'' = 0.342 kg-m² + 1.7308 kg-m² = 2.0728 kg-m²
a) The moment of inertia as the skater pulled his/her arm inward by assuming he/she is a cylinder is 0.3418kg-m².
b) If the body of the skater is assumed to be a cylinder of the same size, and the arms are rods extending straight out from his/her body being rotated at the ends, the moment of inertia is 1.7495kg-m².
Given the data in the question;
Mass of skater; [tex]M = 56.5kg[/tex]
a)
When the skater has his arms pulled inward by assuming they are cylinder of radius; [tex]R = 0.11 m[/tex]
Moment of inertia; [tex]I = \ ?[/tex]
From Parallel axis theorem; Moment of Inertia for a cylindrical body is expressed:
[tex]I = \frac{1}{2}MR^2[/tex]
Where M is the mass and R is the radius
We substitute our given values into the equation
[tex]I = \frac{1}{2}\ *\ 56.5kg\ *\ (0.11m)^2\\\\I = \frac{1}{2}\ *\ 56.5kg\ *\ 0.0121m^2\\\\I = 0.3418kg.m^2[/tex]
Therefore, the moment of inertia as the skater pulled his/her arm inward by assuming he/she is a cylinder is 0.3418kg-m²
b)
With the skater's arms extended by assuming that each arm is 5% of the mass of their body
Mass of each arm; [tex]M_a = \frac{5}{100} * M = \frac{5}{100} * 56.5kg = 2.825kg[/tex]
Remaining mass; [tex]M_b = M - 2M_a = 56.5kg - 2(2.825kg) = 50.85kg[/tex]
Assume the body is a cylinder of the same size and the arms are 0.875 m long rods extending straight out from their body being rotated at the ends.
Length of arm; [tex]L = 0.875 m[/tex]
From Parallel axis theorem; Moment of Inertia about vertical axis is expressed as:
[tex]I = \frac{1}{2}M_bR^2 + \frac{2}{3}M_aL^2[/tex]
We substitute in our values
[tex]I = \frac{1}{2}*50.85kg*(0.11m)^2 + \frac{2}{3}*2.825kg*(0.875m)^2\\\\I = [\frac{1}{2}*50.85kg * 0.0121m^2] + [\frac{2}{3}*2.825kg*0.765625m^2]\\\\I = 0.3076kg.m^2 + 1.4419kg.m^2\\\\I = 1.7495kg.m^2[/tex]
Therefore, if the body of the skater is assumed to be a cylinder of the same size, and the arms are rods extending straight out from his/her body being rotated at the ends, the moment of inertia is 1.7495kg-m².
Learn more: https://brainly.com/question/6897330
A stone is dropped from the bridge, it takes 4s to reach the water. what's the height of the bridge?
Explanation:
Using Equations of Motion :
[tex]s = ut + \frac{1}{2} g {t}^{2} [/tex]
Height = 0 * 4 + 4.9 * 16
Height = 78.4 m
Sammy is 5 feet and 5.3 inches tall. What is Sammy's height in inches?
Answer:
[tex]\boxed{\sf 65.3 \ inches}[/tex]
Explanation:
1 foot = 12 inches
Sammy is 5 feet tall.
5 feet = ? inches
Multiply the feet value by 12 to find in inches.
5 × 12
= 60
Add 5.3 inches to 60 inches.
60 + 5.3
= 65.3
g Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.
Answer:
No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.
Explanation:
If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)
For a body under this type of equilibrium,
ΣF = 0 ...1
where ΣF is the resultant force (total effective force due to all the forces acting on the body)
For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as
ΣF = ma ...2
where m is the mass of the body
a is the acceleration of the body
Substituting equation 2 into equation 1, we have
0 = ma
therefore,
a = 0
this means that if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.
If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this?
Answer:
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Explanation:
Given:
wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m
Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m
Separation distance (D) = 5.4 cm = 0.054 m
Find:
Maximum altitude to see(L)
Computation:
Resolving power = 1.22(λ / d)
D / L = 1.22(λ / d)
0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]
0.054 / L = 1.22 [0.03 × 10⁻⁶]
L = 0.054 / 1.22 [0.03 × 10⁻⁶]
L = 0.054 / [0.0366 × 10⁻⁶]
L = 1.47 × 10⁶
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Find the rms current delivered by the power supply when the frequency is very large. Answer in units of A.
Answer:
The rms current is 0.3112 A.
Explanation:
Given that,
Suppose, The capacitance is 170 μF and the inductance is 2.94 mH. The resistance in the top branch is 278 Ohms, and in the bottom branch is 151 Ohms. The potential of the power supply is 47 V .
We know that,
When the frequency is very large then the capacitance can be treated as a short circuit and inductance as open circuit.
So,
We need to calculate the rms current
Using formula of current
[tex]I=\dfrac{V}{R}[/tex]
Where, V = voltage
R = resistance
Put the value into the formula
[tex]I=\dfrac{47}{151}[/tex]
[tex]I= 0.3112 \ A[/tex]
Hence, The rms current is 0.3112 A.
Radio station WCCO in Minneapolis broadcasts at a frequency of 830 kHz. At a point some distance from the transmitter, the magnetic-field amplitude of the electromagnetic wave from WCCO is 4.82×10-11 T.A) Calculate the wavelength.B) Calculate the wave number.C) Calculate the angular frequency.
D) Calculate the electric-field amplitude.
Answer:
A
[tex]\lambda = 361.45 \ m[/tex]
B
[tex]k = 0.01739 \ rad/m[/tex]
C
[tex]w = 5.22 *10^{6} \ rad/s[/tex]
D
[tex]E = 0.01446 \ N/C[/tex]
Explanation:
From the question we are told that
The frequency is [tex]f = 83 0 \ kHz = 830 *10^{3} \ Hz[/tex]
The magnetic field amplitude is [tex]B = 4.82*10^{-11} \ T[/tex]
Generally wavelength is mathematically represented as
[tex]\lambda = \frac{c}{f}[/tex]
where c is the speed of light with value [tex]c = 3.0*10^{8} \ m/s[/tex]
=> [tex]\lambda = \frac{3.0*10^{8}}{ 830 *10^{3}}[/tex]
=> [tex]\lambda = 361.45 \ m[/tex]
Generally the wave number is mathematically represented as
[tex]k = \frac{2 \pi }{\lambda }[/tex]
=> [tex]k = \frac{2 * 3.142 }{ 361.45 }[/tex]
=> [tex]k = 0.01739 \ rad/m[/tex]
Generally the angular frequency is mathematically represented as
[tex]w = 2 * \pi * f[/tex]
=> [tex]w = 2 * 3.142 * 830*10^{3}[/tex]
=> [tex]w = 5.22 *10^{6} \ rad/s[/tex]
The the electric-field amplitude is mathematically represented as
[tex]E = B * c[/tex]
=> [tex]E = 4.82 *10^{-11} * 3.0*10^{8}[/tex]
=> [tex]E = 0.01446 \ N/C[/tex]
This question involves the concepts of wavelength, frequency, wave number, and electric field.
a) The wavelength is "361.44 m".
b) The wave number is "0.0028 m⁻¹".
c) The angular frequency is "5.22 x 10⁶ rad/s".
d) The electric field amplitude is "0.0145 N/C".
a)
The wavelength can be given by the following formula:
[tex]c=f\lambda[/tex]
where,
c = speed of light = 3 x 10⁸ m/s
f = frequency = 830 KHz = 8.3 x 10⁵ Hz
λ = wavelength = ?
Therefore,
[tex]3\ x\ 10^8\ m/s=(8.3\ x\ 10^5\ Hz)\lambda\\\\\lambda=\frac{3\ x\ 10^8\ m/s}{8.3\ x\ 10^5\ Hz}\\\\[/tex]
λ = 361.44 m
b)
The wave number can be given by the following formula:
[tex]wave\ number = \frac{1}{\lambda} = \frac{1}{361.44\ m}[/tex]
wave number = 0.0028 m⁻¹
c)
The angular frequency is given as follows:
[tex]\omega = 2\pi f = (2)(\pi)(8.3\ x\ 10^5\ Hz)[/tex]
ω = 5.22 x 10⁶ rad/s
d)
The electric field amplitude can be given by the following formula:
[tex]\frac{E}{B} = c\\\\c(B)=E\\\\E = (3\ x\ 10^8\ m/s)(4.82\ x\ 10^{-11}\ T)\\[/tex]
E = 0.0145 N/C
Learn more about wavelength and frequency here:
https://brainly.com/question/12924624?referrer=searchResults
A square coil of wire with 15 turns and an area of 0.40 m2 is placed parallel to a magnetic field of 0.75 T. The coil is flipped so its plane is perpendicular to the magnetic field in 0.050 s. What is the magnitude of the average induced emf
Answer:
The magnitude of the average induced emf is 90V
Explanation:
Given;
area of the square coil, A = 0.4 m²
number of turns, N = 15 turns
magnitude of the magnetic field, B = 0.75 T
time of change of magnetic field, t = 0.05 s
The magnitude of the average induced emf is given by;
E = -NAB/t
E = -(15 x 0.4 x 0.75) / 0.05
E = -90 V
|E| = 90 V
Therefore, the magnitude of the average induced emf is 90V
n ultraviolet light beam having a wavelength of 130 nm is incident on a molybdenum surface with a work function of 4.2 eV. How fast does the electron move away from the metal
Answer:
The speed of the electron is 1.371 x 10⁶ m/s.
Explanation:
Given;
wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m
the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J
The energy of the incident light is given by;
E = hf
where;
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
f = c / λ
[tex]E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{130*10^{-9}} \\\\E = 15.291*10^{-19} \ J[/tex]
Photo electric effect equation is given by;
E = W₀ + K.E
Where;
K.E is the kinetic energy of the emitted electron
K.E = E - W₀
K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J
K.E = 8.563 x 10⁻¹⁹ J
Kinetic energy of the emitted electron is given by;
K.E = ¹/₂mv²
where;
m is mass of the electron = 9.11 x 10⁻³¹ kg
v is the speed of the electron
[tex]v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2*8.563*10^{-19}}{9.11*10^{-31}}}\\\\v = 1.371 *10^{6} \ m/s[/tex]
Therefore, the speed of the electron is 1.371 x 10⁶ m/s.
Without actually calculating any logarithms, determine which of the following intervals the sound intensity level of a sound with intensity 3.66×10^−4W/m^2 falls within?
a. 30 and 40
b. 40 and 50
c. 50 and 60
d. 60 and 70
e. 70 and 80
f. 80 and 90
g. 90 and 100
Answer:
f. 80 and 90
Explanation:
1 x 10⁻¹² W/m² sound intensity falls within 0 sound level
1 x 10⁻¹¹ W/m² sound intensity falls within 10 sound level
1 x 10⁻¹⁰ W/m² sound intensity falls within 20 sound level
1 x 10⁻⁹ W/m² sound intensity falls within 30 sound level
1 x 10⁻⁸ W/m² sound intensity falls within 40 sound level
1 x 10⁻⁷ W/m² sound intensity falls within 50 sound level
1 x 10⁻⁶ W/m² sound intensity falls within 60 sound level
1 x 10⁻⁵ W/m² sound intensity falls within 70 sound level
1 x 10⁻⁴ W/m² sound intensity falls within 80 sound level
1 x 10⁻³ W/m² sound intensity falls within 90 sound level
Given sound intensity (3.66 x 10⁻⁴ W/m²) falls with 1 x 10⁻⁴ W/m² of intensity which is within 80 and 90 sound level.
f. 80 and 90
A metal sphere A of radius a is charged to potential V. What will be its potential if it is enclosed by a spherical conducting shell B of radius b and the two are connected by a wire?
Answer:
The potential will be Va/b
Explanation:
So Let sphere A charged Q to potential V.
so, V= KQ/a. ....(1
Thus, spherical shell B is connected to the sphere A by a wire, so all charge always reside on the outer surface.
therefore, potential will be ,
V ′ = KQ/b = Va/b... That is from .....(1), KQ=Va]
The heat capacity of object B is twice that of object A. Initially A is at 300 K and B at 450 K. They are placed in thermal contact and the combination is thermally insulated. The final temperature of both objects is
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by
[tex]T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b}[/tex]
But heat capacity of object B is twice that of object A
[tex]T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b} \\\\T_2 = \frac{C_aT_a + 2C_aT_b}{C_a + 2C_a}\\\\T_2 = \frac{c_a(T_a + 2T_b)}{3C_a} \\\\T_2 = \frac{T_a + 2T_b}{3}\\\\T_2 = \frac{300 + (2*450)}{3}\\\\T_2 = 400 \ K[/tex]
Therefore, the final temperature of both objects is 400 K.
A father and his young son get on a teeter-totter. The son sits 2 m fromthe center, but the father has to sit closer to balance. Where does the father have to sit to balance the teeter-totter if he weighs 4 times as much as his son?
Answer:
The distance of the father from the center is [tex]d_f = \frac{1}{2} \ m[/tex]
Explanation:
From the question we are told that
The distance of the son from the center is [tex]d_s = 2 \ m[/tex]
Let the mass of the son be [tex]m_s[/tex]
then the mass of the father is [tex]m_f = 4m_s[/tex]
Now for the teeter-totter to be balanced the torque due to the weight of the father must be equal to the torque due to the weight the son, this is mathematically represented as
[tex]\tau_s = \tau_f[/tex]
Where [tex]\tau_s[/tex] is the torque of the son which is mathematically represented as
[tex]\tau_ s = m_s * d_s * g[/tex]
while [tex]\tau_f[/tex] is the torque of the father which is mathematically represented as
[tex]\tau_f = m_f * d_f * g[/tex]
=> [tex]\tau_f = 4 m_s * d_f * g[/tex]
So
[tex]4 m_s * d_f * g = m_s * d_s * g[/tex]
substituting values
[tex]4 * d_f * = 2[/tex]
=> [tex]d_f = \frac{1}{2} \ m[/tex]
Find an analytic expression for p(V)p(V)p(V), the pressure as a function of volume, during the adiabatic expansion.
Answer:
In an adiabatic process we have
pV γ = const..
This explains that the pressure is a function of volume, p ( V ) ,
So can be written as:
p ( V ) × V γ = p 0 V γ 0 ,
or p ( V ) = p 0 V 0 / V γ
= p 0 V 0 / V ^(7 / 5)
Distinguish between physical and chemical changes. Include examples in your explanations.
Answer:
Chemical changes are recognized when a substance changes its properties permanently and it cannot be the same substance as before.
Instead the physical changes implies that if you can return to the same substance through a reverse process.
Explanation:
A chemical change is, by example, a combustion, if a sheet of paper burns, its result is ashes, the ashes cannot go back to being a sheet of paper because its properties changed, heat energy was generated that changed matter permanently.
A physical change, by example, is that of freezing water, the water becomes ice, but this can easily become water again if the temperature is increased, its properties do not change and the chemistry of the substance does not change.
A chemical change takes place when a chemical reaction takes place, while when a matter changes forms but not the chemical identity then a physical change takes place.
• A product or a new compound formation takes place from a chemical change as the rearrangement of atoms takes place to produce novel chemical bonds.
• In a chemical change always a chemical reaction takes place.
• Some of the chemical changes examples are souring milk, burning wood, digesting food, mixing acid and base, cooking food, etc.
• In a physical change no new chemical species form.
• The changing of the state of a pure substance between liquid, gas, or solid is a physical change as there is no change in the identity of the matter.
• Some of the physical changes are melting of ice, tempering of steel, breaking a bottle, crumpling a sheet of aluminum foil, boiling water, and shredding paper.
Thus, a new substance is formed during a chemical change, while a physical change does not give rise to a new substance.
To know more about:
https://brainly.com/question/7279398
A 1.2-m length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x= 5.0m on x-axis.
a. 1.6 nt in the negative z direction
b. 1.6 nt in the positive z direction
c. 2.4 T in the positive z direction
d. 2.4 nt in the negative z direction
e. None of the above
Answer:
None of the above
Explanation:
The formula of the magnetic field of a point next to a wire with current is:
B = 2×10^(-7) × ( I /d)
I is the intensity of the current.
d is the distance between the wire and the point.
● B = 2*10^(-7) × (20/5) = 8 ×10^(-7) T
Two protons, A and B, are next to an infinite plane of positive charge. Proton B is twice as far from the plane as proton A. Which proton has the larg
Answer:
They both have the same acceleration
When light is either reflected or refracted, the quantity that does not change in either process is its
Answer:
Frequency
Explanation:
When waves travel from one medium to another, it is only the frequency of the wave that remains constant . when a wave is refracted at the boundary between two media, the wave will slow down and its wavelength decreases. The wave usually bends at the interface between the two media. The wavelength and speed of a wave may change at the boundary between two media but its frequency remains the same.
Hence the frequency of light is its only property that remains constant.
If mirror M2 in a Michelson interferometer is moved through 0.233 mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?
Answer:
The wavelength is [tex]\lambda = 589 nm[/tex]
Explanation:
From the question we are told that
The distance of the mirror shift is [tex]k = 0.233 \ mm = 0.233*10^{-3} \ m[/tex]
The number of fringe shift is n = 792
Generally the wavelength producing this fringes is mathematically represented as
[tex]\lambda = \frac{ 2 * k }{ n }[/tex]
substituting values
[tex]\lambda = \frac{ 2 * 0.233*10^{-3} }{ 792 }[/tex]
[tex]\lambda = 5.885 *10^{-7} \ m[/tex]
[tex]\lambda = 589 nm[/tex]
The Bohr model pictures a hydrogen atom in its ground state as a proton and an electron separated by the distance a0 = 0.529 × 10−10 m. The electric potential created by the electron at the position of the proton is
Answer:
E = -8.23 10⁻¹⁷ N / C
Explanation:
In the Bohr model, the electric potential for the ground state corresponding to the Bohr orbit is
E = k q₁ q₂ / r²
in this case
q₁ is the charge of the proton and q₂ the charge of the electron
E = - k e² / a₀²
let's calculate
E = - 9 10⁹ (1.6 10⁻¹⁹)² / (0.529 10⁻¹⁰)²
E = -8.23 10⁻¹⁷ N / C
The resistor used in the procedures has a manufacturer's stated tolerance (percent error) of 5%. Did you results from Data Table agree with the manufacturer's statement? Explain.
Resistor Measured Resistance
100 99.1
Answer:
e% = 0.99% this value is within the 5% tolerance given by the manufacturer
Explanation:
Modern manufacturing methods establish a tolerance in order to guarantee homogeneous characteristics in their products, in the case of resistors the tolerance or error is given by
e% = | R_nominal - R_measured | / R_nominal 100
where R_nominal is the one written in the resistance in your barcode, R_measured is the real value read with a multimeter and e% is the tolerance also written in the resistors
let's apply this formula to our case
R_nominal = 10 kΩ = 10000 Ω
R_measured = 100 99 Ω
e% = | 10000 - 10099.1 | / 10000 100
e% = 0.99%
this value is within the 5% tolerance given by the manufacturer
The rectangular plate is tilted about its lower edge by a cable tensioned at a constant 600 N. Determine and plot the moment of this tension about the lower edge AB of the plate for the range 0 ≤ θ ≤ 90°
Answer:
Explanation:
From the figure , it is clear that moment of tension is balanced by moment of weight of plate about the line AB which is acting as axis . If W be the weight of plate ,
moment of tension about AB = moment of weight W about line AB
= W x 2.5 cosθ
moment of tension about AB = 2.5 W cosθ
here only variable is cosθ which changes when θ changes
So, moment of tension about AB varies according to cosθ.
When θ = 0
moment of tension about AB = 2.5 W x cos 0 = 2.5 W . It is the maximum value of moment of tension .
When θ = 90°
moment of tension about AB = 2.5 W cos 90 = 0
moment of tension about AB = 0
So graph of moment of tension about AB will vary according to graph of
cosθ . It has been shown in the file attached .
A mass m = 0.6 kg is released from rest at the top edge of a hemispherical bowl with radius = 1.1 meters. The mass then slides without friction down the inner surface toward the bottom of the bowl. At a certain point of its path the mass achieves a speed v = 3.57 m/s. At this point, what angle \theta\:θ ( in degrees) does the mass make with the top of the bowl?
Answer:
The angle is [tex]\theta = 36.24 ^o[/tex]
Explanation:
From the question we are told that
The mass is [tex]m = 0.6 \ kg[/tex]
The radius is [tex]r = 1.1 \ m[/tex]
The speed is [tex]v = 3.57 \ m /s[/tex]
According to the law of energy conservation
The potential energy of the mass at the top is equal to the kinetic energy at the bottom i.e
[tex]m * g * h = \frac{1}{2} * m * v^2[/tex]
=> [tex]h = \frac{1}{2 g } * v^2[/tex]
Here h is the vertical distance traveled by the mass which is also mathematically represented as
[tex]h = r * sin (\theta )[/tex]
So
[tex]\theta = sin ^{-1} [ \frac{1}{2* g* r } * v^2][/tex]
substituting values
[tex]\theta = sin ^{-1} [ \frac{1}{2* 9.8* 1.1 } * (3.57)^2][/tex]
[tex]\theta = 36.24 ^o[/tex]
A circuit consists of four 100W lamps
connected in parallel across a 230V supply.
Inadvertently, a voltmeter has been connected
in series with the lamps. The resistance of the
voltmeter is 15000 and that of the lamps
under the conditions stated is six times their
value when burning normally. What will be the
reading of the voltmeter?
Complete question is;
A circuit consists of four 100-W lamps connected in parallel across a 230-V supply. Inadvertently, a voltmeter has been connected in series with the lamps. The resistance of the voltmeter is 1500 Ω and that of the lamps under the conditions stated is six times their value then burning normally. What will be the reading of the voltmeter?
Answer:
150.42 V
Explanation:
We are told that the circuit consists of four 100W lamps.
We know that Power is given by the equation;
P = V²/R
Thus;
R = V²/P
Now, we are told that the four lamps are connected in parallel across a 230V supply.
Thus, V = 230 V
So resistance, R = 230²/100
R = 529 Ω
We are told that the resistance of the lamps under the conditions stated is six times their value when burning normally.
Thus, total resistance of each lamp under the conditions = 529 × 6 = 3174 Ω
So, since they are connected in parallel, equivalent resistance for each lamp = 3174/4 = 793.5 Ω
Now, since this resistance is connected in series with the voltmeter resistance of 1500 Ω
Therefore, total circuit resistance = 1500 + 793.5 = 2293.5 Ω
Thus;
circuit current = 230/2293.5 = 0.100283 A
Now, according to Ohm’s law, voltage drop across the voltmeter = 1500 × 0.100283 ≈ 150.42V
CHECK THE COMPLETE QUESTION BELOW
A circuit consists of four 100-W lamps connected in parallel across a 230-V supply. Inadvertently, a voltmeter has been connected in series with the lamps. The resistance of the voltmeter is 1500 Ω and that of the lamps under the conditions stated is six times their value then burning normally. What will be the reading of the voltmeter?
Answer:
the reading of the voltmeter=150.4V
Explanation:
We can determine the wattage of a lamp using below expression:
: W = I² R....................eqn(1)
But fro ohms law V=IR
then I= V/R
If we substitute I into equation (1)
We have W= V²/R
But W= 100W
V= 230V
Then
W=220²/R
100 = 2302/R
R = 529 Ω
We can as well calculate the Resistance of each lamp under given condition that they are sixtimes their value when burning normally.
R = 6 × 529 = 3174 Ω
We can also calculate quivalent resistance of the abovefour lamps connected in parallel then
R = 3174/4
= 793.5 Ω
total circuit resistance can be calculated since we know that resistance is connected to voltmeter of 1500 Ω resistance in series arrangement
Then
total circuit resistance = 1500 + 793.5
= 2293.5 Ω
Then from ohms law again
I= V/R
circuit current = 230/2293.5 A
The reading of the voltage drop across the voltmeter
= 1500 × 230/2293.5
= 150.4V
You simultaneously shine two light beams, each of intensity I0, on an ideal polarizer. One beam is unpolarized, and the other beam is polarized at an angle of exactly 30.0∘ to the polarizing axis of the polarizer. Find the intensity of the light that emerges from the polarizer. Express your answer in term of I0 .
Answer:
The emerging intensity is equal to 0.75[tex]I_{o}[/tex]
Explanation:
The initial intensity of the light = [tex]I_{o}[/tex]
The angle of polarization β = 30°
We know that the polarized light intensity is related to the initial light intensity by
[tex]I[/tex] = [tex]I_{0} cos^{2}\beta[/tex]
where [tex]I[/tex] is the emerging polarized light intensity
inserting values gives
[tex]I[/tex] = [tex]I_{0} cos^{2}[/tex] 30°
[tex]cos^{2}[/tex] 30° = [tex](cos 30)^{2}[/tex] = [tex](\frac{\sqrt{3} }{2} )^{2}[/tex] = 0.75
[tex]I[/tex] = 0.75[tex]I_{o}[/tex]
please help !!!!!!!!!!
Answer:
Lighthouse 1 during the day will be warmer, lighthouse 2 during the night will be warmer.
Explanation:
As the paragraph stated land absorbs heat and heats up faster than water. So during the day the lighthouse farthest away from the water will be hotter. But then the converse is true also land losses heat faster than water at night. So the water retains the heat from the day better making the lighthouse by the water warmer at night.
Question 2
A) A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released? (1 point)
The spring exerts a restoring force to the right and compresses even further
The spring exerts a restoring force to the left and returns to its equilibrium position
The spring exerts a restoring force to the right and returns to its equilibrium position
The spring exerts a restoring force to the left and stretches beyond its equilibrium position
1. Which example best describes a restoring force?
B) the force applied to restore a spring to its original length
2. A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released?
C) The spring exerts a restoring force to the left and returns to its equilibrium position.
3. A 2-N force is applied to a spring, and there is displacement of 0.4 m. How much would the spring be displaced if a 5-N force was applied?
D) 1 m
4. Hooke’s law is described mathematically using the formula Fsp=−kx. Which statement is correct about the spring force, Fsp?
D)It is a vector quantity.
5. What happens to the displacement vector when the spring constant has a higher value and the applied force remains constant?
A) It decreases in magnatude.
Question 2.
In the US, lengths are often measured in inches, feet, yards and miles. Let's do
some conversions. The definition of the inch is: 1 inch = 25.4 mm, exactly. A foot is
12 inches and a mile is 5280 ft, exactly. A centimetre is exactly 0.01 m or 10 mm.
Sammy is 5 feet and 5.3 inches tall.
a). What is Sammy's height in Inches? (answer to 3 significant figures)
(3)
b). What is Sammy's height in Feet? (answer to 3 significant figures)
what is Sammy's hight in feet according to this statement
Explanation:
1 inch = 25.4 mm
1 foot = 12 inches
1 mile = 5260 feet
1 cm = 0.01 m or 10 mm
Now Sammy's height is 5 feet and 5.3 inches.
(a) We need to find Sammy's height in inches.
Since, 1 foot = 12 inches
5 feet = 5 × 12 inches = 60 inches
Now, 5 feet and 5.3 inches = 60 inches + 5.3 inches = 65.3 inches
Sammy's height is 65.3 inches.
(b) We need to find Sammy's height in feet.
Since, 1 foot = 12 inches
[tex]1\ \text{inch}=\dfrac{1}{12}\ \text{feet}[/tex]
So,
[tex]5.3\ \text{inch}=\dfrac{5.3}{12}\ \text{feet}=0.4416\ \text{feet}[/tex]
5 feet and 5.3 inches = 5 feet + 0.4416 feet = 5.44 feet
Sammy's height is 5.44 feet.
A spring with spring constant 15 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 6.0 cm and released. If the ball makes 30 oscillations in 20 s, what are its (a) mass and (b) maximum speed?
Answer:
a
[tex]m = 0.169 \ kg[/tex]
b
[tex]|v_{max} |= 0.5653 \ m/s[/tex]
Explanation:
From the question we are told that
The spring constant is [tex]k = 14 \ N/m[/tex]
The maximum extension of the spring is [tex]A = 6.0 \ cm = 0.06 \ m[/tex]
The number of oscillation is [tex]n = 30[/tex]
The time taken is [tex]t = 20 \ s[/tex]
Generally the the angular speed of this oscillations is mathematically represented as
[tex]w = \frac{2 \pi}{T}[/tex]
where T is the period which is mathematically represented as
[tex]T = \frac{t}{n}[/tex]
substituting values
[tex]T = \frac{20}{30 }[/tex]
[tex]T = 0.667 \ s[/tex]
Thus
[tex]w = \frac{2 * 3.142 }{ 0.667}[/tex]
[tex]w = 9.421 \ rad/s[/tex]
this angular speed can also be represented mathematically as
[tex]w = \sqrt{\frac{k}{m} }[/tex]
=> [tex]m =\frac{k }{w^2}[/tex]
substituting values
[tex]m =\frac{ 15 }{(9.421)^2}[/tex]
[tex]m = 0.169 \ kg[/tex]
In SHM (simple harmonic motion )the equation for velocity is mathematically represented as
[tex]v = - Awsin (wt)[/tex]
The velocity is maximum when [tex]wt = \(90^o) \ or \ 1.5708\ rad[/tex]
[tex]v_{max} = - A* w[/tex]
=> [tex]|v_{max} |= A* w[/tex]
=> [tex]|v_{max} |= 0.06 * 9.421[/tex]
=> [tex]|v_{max} |= 0.5653 \ m/s[/tex]