Answer:
D. the bottom one is the answer, because hyperbola is two curves that curve infinitely
The MCAT is the admission exam that medical schools use as one of the criteria for accepting students. The exam is based on a scale of 0-45. The following data shows the MCAT scores for nine students.
32 36 29 31 30 35 34 26 30
The 35th percentile of this data set is:________
a. 31
b. 32
c. 31.5
d. 30
Answer:
d. 30
Step-by-step explanation:
The computation of the 35th percentile of this data set is shown below:
Before that first we have to series the number in ascending number
S. No Numbers
1 26
2 29
3 30
4 30
5 31
6 32
7 34
8 35
9 36
Now use the formula
Here n = 9
Percentile = 100
[tex]= \frac{35(9 + 1)}{100} \\\\[/tex]
= 3.5th
= 3th + 0.5 (4th - 3th)
= 3th + 0.5 (30 - 30)
= 3th + 0
= 30
Variable g is 8 more than variable w. Variable g is also 2 less than w. Which pair of equations best models the relationship between g and w? g = 8w g = w + 2 w = g + 8 w = g − 2 w = 8g w = g + 2 g = w + 8 g = w − 2
Answer: g = w + 8 g=w-2
Step-by-step explanation:
We could represent the word phrases by the equations.
g = w + 8
g = w - 2
Answer:
g = w + 8
g = w - 2
Step-by-step explanation:
Assuming that g and w exists, then we can show the relation as described:
"Variable g is 8 more than variable w."
g = w + 8
"Variable g is also 2 less than w."
g = w - 2
These are the two equations of the described relationship between g and w.
Note that g could not actually exist in the real number system:
g = w + 8
g = w - 2
w + 8 = w - 2
w - w = -2 - 8
0 != -10
This is impossible within the real number system.
Cheers.
Give the domain and range of each relation using set notation
Answer:
See below.
Step-by-step explanation:
First, recall the meanings of the domain and range.
The domain is the span of x-values covered by the graph.
And the range is the span of y-values covered by the graph.
1)
So, we have here an absolute value function.
As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:
[tex]\{x|x\in\textbb{R}\}[/tex]
(You are correct!)
For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:
[tex]\{y|y\leq 7\}[/tex]
2)
We have here an ellipse.
First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:
[tex]-4\leq x\leq 6[/tex]
So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:
[tex]\{x|-4\leq x\leq 6\}[/tex]
For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:
[tex]-5\leq y\leq 1[/tex]
This represents all the y-values between -5 and 1, including -5 and 1.
In set notation, thi is:
[tex]\{y|-5\leq y\leq 1\}[/tex]
Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle?
Answer:
7.5 cm²
Step-by-step explanation:
Dimensions of the large ∆:
[tex] base (b) = 3cm, height (h) = 9cm [/tex]
[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]
Dimensions of the small ∆:
[tex] base (b) = 2cm, height (h) = 6cm [/tex]
[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]
Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²
Let f(x)=x+8 and g(x)= x2-6x-7 find f(g2)
Answer:
-7.
Step-by-step explanation:
g(x) = x^2 - 6x - 7
g(2) = 2^2 - 6(2) - 7
= 4 - 12 - 7
= -8 - 7
= -15
f(x) = x + 8
f(-15) = (-15) + 8
= 8 - 15
= -7
Hope this helps!
write a thirdthird-degree polynomial expression that has only two terms with a leading term that has a coefficient of five and a constant of negative two
Answer:
5x^3-2
[tex]ax^{3} +bx^{2} +cx+d\\5x^{3}-given\\ d=-2-given\\5x^{3} -2[/tex]
Explanation:
The two terms are [tex]5x^3[/tex] and [tex]2[/tex]. Terms are separated by either a plus or minus.
We can write it as [tex]5x^3+(-2)[/tex] which is an equivalent form. Here the two terms are [tex]5x^3[/tex] and [tex]-2[/tex]. This is because adding a negative is the same as subtracting.
The coefficient is the number to the left of the variable.
The degree is the largest exponent, which helps form the leading term.
The third degree polynomial written above is considered a cubic binomial. "Cubic" refers to the third degree, while "binomial" means there are 2 terms.
We can write something like [tex]5x^3[/tex] as 5x^3 when it comes to computer settings.
How many times does 1/4 go into 3/8
Answer:
3/2
Step-by-step explanation:
3/8 ÷ 1/4
Copy dot flip
3/8 * 4/1
12/8
Divide top and bottom by 4
3/2
solve for x: 5x+3+8x-4=90
Answer:
[tex]x = 7[/tex]
Step-by-step explanation:
We can solve the equation [tex]5x+3+8x-4=90[/tex] by isolating the variable x on one side. To do this, we must simplify the equation.
[tex]5x+3+8x-4=90[/tex]
Combine like terms:
[tex]13x - 1 = 90[/tex]
Add 1 to both sides:
[tex]13x = 91[/tex]
Divide both sides by 13:
[tex]x = 7[/tex]
Hope this helped!
Answer:
x = 7
Step-by-step exxplanation:
5x + 3 + 8x - 4 = 90
5x + 8x = 90 - 3 + 4
13x = 91
x = 91/13
x = 7
probe:
5*7 + 3 + 8*7 - 4 = 90
35 + 3 + 56 - 4 = 90
Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...
Answer:
C. -8, -6, -4, -2, ...
Step-by-step explanation:
An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.
A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.
B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.
C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.
Hope this helps!
PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y
Answer: -10
Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.
1. -4+2(-3)
2. -4+(-6)
3.-4-6
4.-10
Answer:
8
Step-by-step explanation:
-b + 2y
if
b = 4
and
y = 3
then:
-b + 2y = -4 + 2*6 = -4 + 12
= 8
nick cut a circular cookie into 5 equal slices. what is the angle measure of each slice?
Using concepts of circles, it is found that the angle measure of each slice is of 72º.
--------------------------------------------
The cookies have circular formats.A complete circle, which is the format of a cookie, has an angular measure of 360º.If it is divided into a number n of equal slices, the angles will be 360 divided by n.--------------------------------------------
5 equal slices, thus:
[tex]\frac{360}{5} = 72[/tex]
The angle measure of each slice is of 72º.
A similar problem is given at https://brainly.com/question/16746988
Gina, Sam, and Robby all rented movies from the same video store. They each rented some dramas, comedies, and documentaries. Gina rented 11 movies total. Sam rented twice as many dramas, three times as many comedies, and twice as many documentaries as Gina. He rented 27 movies total. If Robby rented 19 movies total with the same number of dramas, twice as many comedies, and twice as many documentaries as Gina, how many movies of each type did Gina rent?
Hi there! :)
Answer:
Gina rented 3 dramas, 5 comedies, and 3 documentaries.
Step-by-step explanation:
To solve, we will need to set up a system of equations:
Let x = # of dramas, y = # of comedies, and z = # of documentaries:
Write equations to represent each person:
Gina:
x + y + z = 11
Sam:
2x + 3y + 2z = 27
Robby:
x + 2y + 2z = 19
Write the system:
x + y + z = 11
2x + 3y + 2z = 27
x + 2y + 2z = 19
Begin by subtracting the third equation from the second:
2x + 3y + 2z = 27
x + 2y + 2z = 19
-----------------------
x + y = 8
If x + y = 8, plug this into the first equation:
(8) + z = 11
z = 11 - 8
z = 3
We found the # of documentaries Gina rented, now we must solve for the other variables:
Subtract the top equation from the third. Substitute in the value of z we solved for:
x + 2y + 2(3) = 19
x + y + (3) = 11
-------------------------
y + 3 = 8
y = 5
Substitute in the values for y and z to solve for x:
x + 5 + 3 = 11
x + 8 = 11
x = 11 - 8
x = 3.
Therefore, Gina rented 3 dramas, 5 comedies, and 3 documentaries.
Answer:
B- x + y + z = 11
2x + 3y + 2z = 27
x + 2y + 2z = 19
Step-by-step explanation:
I took the quiz
Reduce the following fraction to lowest terms: 8/14
Answer:
4/7
Step-by-step explanation:
divide both by two for its simplest form
Answer:4/7
Step-by-step explanation
Divide both the numerator and denominator by 2
The result for the numerator is 8/2=4
that of the denominator is 14/2=7
Therefore the resultant answer is 4/7
The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0
Answer:
Step-by-step explanation:
A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).
X = 100pth percentile of W
Y = 100(1-p)th percentile of W
Expressing Y as a function of X;
Y = 100(1-p)th = 100th - 100pth
Recall that 100pth is same as X, so substitute;
Y = 100th - X
where 100th = hundredth percentile of W and X = 100pth percentile of W
find the value of x? please help
Answer:
49
Step-by-step explanation:
With these types of problems, you have to subtract the outer and inner values and then divide by 2. So, (125-27)/2 = 49. Hope this helps!
16
Select the correct answer.
If function g is defined by the equation Y-3X = -14, which equation represents the function in function notation?
OA. gx) = 3X - 14
OB. gx) = -3X - 14
OC. g(x) = 3X + 14
OD. gx) = -3X + 14
Reset
Next
Answer: A) g(x) = 3x - 14
Step-by-step explanation:
Solve the equation for y and replace y with g(x):
y - 3x = -14
y = 3x - 14
g(x) = 3x - 14
What is 5 feet and 11 inches in inches
Answer:
60
Step-by-step explanation:
5 is 60 inch
Your investment club has only two stocks in its portfolio. $25,000 is invested in a stock with a beta of 0.8, and $40,000 is invested in a stock with a beta of 1.7. What is the portfolio's beta? Do not round intermediate calculations. Round your answer to two decimal places.
Answer:
The portfolio beta is [tex]\alpha = 1.354[/tex]
Step-by-step explanation:
From the question we are told that
The first investment is [tex]i_1 = \$ 25,000[/tex]
The first beta is [tex]k = 0.8[/tex]
The second investment is [tex]i_2 = \$ 40,000[/tex]
The second beta is [tex]w = 1.7[/tex]
Generally the portfolio beta is mathematically represented as
[tex]\alpha = \frac{ i_1 * k + i_2 * w }{ i_1 + i_2}[/tex]
substituting values
[tex]\alpha = \frac{ (25000 * 0.8) + ( 40000* 1.7 ) }{40000 + 25000}[/tex]
[tex]\alpha = 1.354[/tex]
A maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use. In a random sample of 50 microwaves that are 5 years old, 12% needed repairs at a=.04 can you reject the makers claim that no more than 10% of its microwaves need repair during the first five years of use?
Answer:
We conclude that no more than 10% of its microwaves need repair during the first five years of use.
Step-by-step explanation:
We are given that a maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use.
In a random sample of 50 microwaves that are 5 years old, 12% needed repairs.
Let p = population proportion of microwaves who need repair during the first five years of use.
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10% {means that no more than 10% of its microwaves need repair during the first five years of use}
Alternate Hypothesis, [tex]H_A[/tex] : p > 10% {means that more than 10% of its microwaves need repair during the first five years of use}
The test statistics that will be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of microwaves who need repair during the first 5 years of use = 12%
n = sample of microwaves = 50
So, the test statistics = [tex]\frac{0.12-0.10}{\sqrt{\frac{0.10(1-0.10)}{50} } }[/tex]
= 0.471
The value of z-test statistics is 0.471.
Now, at a 0.04 level of significance, the z table gives a critical value of 1.751 for the right-tailed test.
Since the value of our test statistics is less than the critical value of z as 0.471 < 1.751, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.
Therefore, we conclude that no more than 10% of its microwaves need repair during the first five years of use.
Which is a perfect square? 6 Superscript 1 6 squared 6 cubed 6 Superscript 5 What is the length of the hypotenuse, x, if (20, 21, x) is a Pythagorean triple
Answer:
Step-by-step explanation:
Hello, by definition a perfect square can be written as [tex]a^2[/tex] where a in a positive integer.
So, to answer the first question, [tex]6^2[/tex] is a perfect square.
(a,b,c) is a Pythagorean triple means the following
[tex]a^2+b^2=c^2[/tex]
Here, it means that
[tex]x^2=20^2+21^2=841=29^2 \ \ \ so\\\\x=29[/tex]
Thank you.
Answer:
Its B
Step-by-step explanation:
What is the volume of a cube with a side length of
of a unit?
if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=
Answer:
3
Step-by-step explanation:
f(x)=3x-3
g(x)=-x^2+4,
f(2) = 3(2) -3 = 6-3 =3
g(-2) = -(-2)^2+4 = -4+4 = 0
f(2)-g(-2)= = 3-0 = 3
Find the area of the shaded regions:
area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$
so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$
$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$
abd there are 2 such arcs, so double the area.
[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]
Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2To FinD:-Find the area of the shaded regions....?How to solve?For solving this question, Let's know how to find the area of a sector in a circle?
[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]
Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.
Solution:-We have,
No. of sectors = 2Angle of sector = 72°By using formula,
⇛ Area of shaded region = 2 × Area of each sector
⇛ Area of shaded region = 2 × Θ/360° × πr²
⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²
⇛ Area of shaded region = 2/5 × 100 × 22/7
⇛ Area of shaded region = 40 × 22/7
⇛ Area of shaded region = 880/7 inch. sq.
⇛ Area of shaded region = 125.71 inch. sq.
☄ Your Required answer is 125.71 inch. sq(approx.)
━━━━━━━━━━━━━━━━━━━━
Determine which is the appropriate approach for conducting a hypothesis test. Claim: The mean RDA of sodium is 2400mg. Sample data: n150, 3400, s550. The sample data appear to come from a normally distributed population.
Answer:
Use the student t distribution
Step-by-step explanation:
Here is the formula
t = (x - u) ÷(s/√N)
From the information we have in the question:
n = 150
s = 550
x = 3400
u = mean = 2400
= 3400 - 2400÷ 500/√150
= 1000/44.9
= 22.27
At 0.05 significance level, df = 149 so t tabulated will be 1.65.
We cannot use normal distribution since we do not have population standard deviationWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceThe parametric or bootstrap method cannot be used either.A standardized exam's scores are normally distributed. In a recent year, the mean test score was and the standard deviation was . The test scores of four students selected at random are , , , and . Find the z-scores that correspond to each value and determine whether any of the values are unusual. The z-score for is nothing. (Round to two decimal places as needed.) The z-score for is nothing. (Round to two decimal places as needed.) The z-score for is nothing. (Round to two decimal places as needed.) The z-score for is nothing. (Round to two decimal places as needed.) Which values, if any, are unusual? Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The unusual value(s) is/are nothing. (Use a comma to separate answers as needed.) B. None of the values are unusual.
Answer:
The z-score for 1880 is 1.34.
The z-score for 1190 is -0.88.
The z-score for 2130 is 2.15.
The z-score for 1350 is -0.37.
And the z-score of 2130 is considered to be unusual.
Step-by-step explanation:
The complete question is: A standardized exam's scores are normally distributed. In recent years, the mean test score was 1464 and the standard deviation was 310. The test scores of four students selected at random are 1880, 1190, 2130, and 1350. Find the z-scores that correspond to each value and determine whether any of the values are unusual. The z-score for 1880 is nothing. (Round to two decimal places as needed.) The z-score for 1190 is nothing. (Round to two decimal places as needed.) The z-score for 2130 is nothing. (Round to two decimal places as needed.) The z-score for 1350 is nothing. (Round to two decimal places as needed.) Which values, if any, are unusual? Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The unusual value(s) is/are nothing. (Use a comma to separate answers as needed.) B. None of the values are unusual.
We are given that the mean test score was 1464 and the standard deviation was 310.
Let X = standardized exam's scores
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = mean test score = 1464
[tex]\sigma[/tex] = standard deviation = 310
S, X ~ Normal([tex]\mu=1464, \sigma^{2} = 310^{2}[/tex])
Now, the test scores of four students selected at random are 1880, 1190, 2130, and 1350.
So, the z-score of 1880 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{1880-1464}{310}[/tex] = 1.34
The z-score of 1190 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{1190-1464}{310}[/tex] = -0.88
The z-score of 2130 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{2130-1464}{310}[/tex] = 2.15
The z-score of 1350 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{1350-1464}{310}[/tex] = -0.37
Now, the values whose z-score is less than -1.96 or higher than 1.96 are considered to be unusual.
According to our z-scores, only the z-score of 2130 is considered to be unusual as all other z-scores lie within the range of -1.96 and 1.96.
Suppose you are standing such that a 32-foot tree is directly between you and the sun. If you are standing 140 feet away from the tree and the tree casts a 160-foot shadow, how tall could you be and still be completely in the shadow of the tree? x 160 ft 140 ft 32 ft
Answer:
Height = 4 feet
Step-by-step explanation:
To determine how tall I can be we take the difference between the shadow cast by the 32-feet tree and the distance away from the tree
But the tree is 32 feet tall but on shadow it's 160
So lemme determine how long I'll be in my shadow first
Distance away from tree= 140 feet
Length of shadow cast by tree
= 160 feet
Length of shadow= 160-140
Length if shadow= 20 feet
My height= x
X/20= 32/160
X= 20*32/260
X = 4 feet
Height = 4 feet
Find the rectangular coordinates of the point with the given polar coordinates.
Answer:
[tex]( - \sqrt{3} \: an d \: 1)[/tex]
This graph shows the US unemployment rate from August 2010 to November 2011.
Sample Unemployment Rate
Graph
Unemployment Rate
10%
80%
6%
Unemployment Rate
Aug 10
Jan 11
Jun 11
Nov 11
This graph suggests unemployment in the United States
O will continue to fall.
O will continue to rise.
O will remain the same.
O will only change a little.
Answer: Will continue to rise
Step-by-step explanation:
Looking at the graph one notices that after a slight dip in the unemployment rate from August 2010 to January 2011, the unemployment rate began to rise and by November 2011 was still rising.
The arrow on the graph serves to indicate the direction the unemployment rate is going and as it is pointing upwards, this means that the Unemployment rate will continue to rise.
This was down to the fact that in 2011 the US was still yet to recover from the Great Recession of 2008 - 2009.
Answer:
EDGE 2021
Step-by-step explanation:
1) 4%
2) Increase
In the following equation, when x=3, what is the value of y? -4x + 3y = 12 A. 9 B. 3 C. 0 D. 8 PLZ HURRY IM TIMED WILL MARK BRAINLIEST
Answer:
[tex]\huge\boxed{y = 8}[/tex]
Step-by-step explanation:
-4x + 3y = 12
Given that x = 3
-4 (3) + 3y = 12
-12 + 3y = 12
Adding 12 to both sides
3y = 12+12
3y = 24
Dividing both sides by 3
y = 8
Answer:
y =8
Step-by-step explanation:
-4x + 3y = 12
Let x = 3
-4(3) +3y = 12
-12+3y = 12
Add 12 to each side
-12+12+3y =12+12
3y =24
Divide each side by 3
3y/3 = 24/3
y =8
Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5