9514 1404 393
Answer:
-16∛2
Step-by-step explanation:
It can be helpful to have some familiarity with the cubes of small integers. For example, ...
2³ = 8
6³ = 216
With this in mind you recognize the expression as ...
3∛((-6)³(2)) +∛((2³)(2))
= 3(-6)∛2 +2∛2
= (-18 +2)∛2
= -16∛2
Find the distance between the points ( 4, 7) and (-1,2
Answer:
7.07 (3 significant figures)
Step-by-step explanation:
the distance between the two points on the x axis is 5 and the distance between the two point son the y axis is 5. thus by using pythagerous theorem you are able to get the hypotenuse which is the distance between the two points which in this case is 7.07 when rounded to 3 significant figures. not sure if im correct but i hope it helps
Points A, B, C, and D lie on a line in that order. If AD/AC = 2/1 and AD/AB = 3/1, what is the value of AC/BD?
9514 1404 393
Answer:
3/4
Step-by-step explanation:
It might be easier to start by expressing the ratios with AD as the denominator.
AD/AC = 2/1 ⇒ AC/AD = 1/2
AD/AB = 3/1 ⇒ AB/AD = 1/3
From the latter, we have ...
(AD -AB)/AD = 1 -1/3 = 2/3 = BD/AD
Then the desired ratio is ...
AC/BD = (AC/AD)/(BD/AD) = (1/2)/(2/3) = (3/6)/(4/6)
AC/BD = 3/4
Find f(4),f(0),f(-1) & f(x)=6x-7
Answer:
f(4) = 31
f(0) = 7
f(-1) = 1
Step-by-step explanation:
f(x) = 6x + 7
f(4) = 6(4) + 7
f(4) = 24 + 7
f(4) = 31
f(0) = 6(0) + 7
f(0) = 0 + 7
f(0) = 7
f(-1) = 6(-1) + 7
f(-1) = -6 + 7
f(-1) = 1
Leora wants to paint the nursery in her house. The nursery is an 8–by–10–foot rectangle, and the ceiling is 10 feet tall. There is a 3–by–6.5–foot door on one wall, a 3–by–6.5–foot closet door on another wall, and one 2–by–3.5–foot window on the third wall. The fourth wall has no doors or windows. If she will only paint the four walls, and not the ceiling or doors, how many square feet will she need to paint?
Answer:
The correct answer is - 242 ft^2
Step-by-step explanation:
Given:
one door : 3*6.5 => 19.5 ft^2
other door: 3*6.5 => 19.5 ft^2
a window: 2*3.5 => 7 ft^2
total = 46 ft^2
area of all four walls: 2h (l+b)
= 2(8) (10+8)
= 16 (18)
= 288 ft^2
paint required excluding doors and window:
=> area of your wall - (area of doors and window)
=> 288 - 46
= 242 ft^2
use the figure below to find the answer. find y.
9514 1404 393
Answer:
y = 7√2
Step-by-step explanation:
We are given the side opposite the angle, and we want to find the hypotenuse. The relevant trig relation is ...
Sin = Opposite/Hypotenuse
sin(45°) = 7/y
y = 7/sin(45°) = 7/(1/√2)
y = 7√2
__
Additional comment
In this 45°-45°-90° "special" right triangle, the two legs are the same length. Thus, ...
x = 7
express the ratio as a fraction in it's lowest terms.3kg to 800g
Answer:
15 / 4
Step-by-step explanation:
1 kg = 1000 g
3 kg
= 3 x 1000
= 3000 g
3kg to 800g
= 3kg : 800g
= 3000 : 800
= 30 : 8
= 30 / 8
= 15 / 4
15/4 is the fraction representing the ratio of 3 kilograms to 800 grams.
To express the ratio of 3 kilograms to 800 grams as a fraction in its lowest terms.
we need to convert both the quantities to the same units. Since 1 kg is equal to 1000 g, we can convert 3 kg to grams as follows:
3 kg = 3 * 1000 g = 3000 g
Now, we have the quantities in the same unit, and the ratio becomes:
3000 g to 800 g
To express this ratio as a fraction, we place the quantities over each other:
3000 g
-------
800 g
Now, to simplify the fraction to its lowest terms, we find the greatest common divisor (GCD) of the two numbers (3000 and 800) and divide both the numerator and denominator by this GCD.
The GCD of 3000 and 800 is 200, so dividing both by 200 gives us:
3000 ÷ 200 = 15
800 ÷ 200 = 4
Therefore, the ratio 3 kg to 800 g expressed as a fraction in its lowest terms is 15/4.
In summary, we first converted the units to the same (grams) to make the ratio easier to handle. Then, we represented the ratio as a fraction and simplified it to its lowest terms using the GCD method. The final answer, 15/4, is the fraction representing the ratio of 3 kilograms to 800 grams.
To know more about Fraction here
https://brainly.com/question/32865816
#SPJ2
Which equation represents a line which is parallel to the line y = -7x - 8?
7x + y = -3
x+ 7y = 7
y - 7x = 6
x- -7y = -28
Answer:
7x+y=-3
Step-by-step explanation:
if m is the slope of a line, then the slope of its parallel line will have the same slope m,
in the given equation, y=-7x-8, the slope is -7
among the options, 1st option has a slope of -7, since,
7x+y=-3
or, y=-7x-3
Answered by GAUTHMATH
work out the area of this shape
Answer:
1000
Step-by-step explanation:
Many electronics follow a failure rate described by an exponential probability density function (PDF). Solar panels are advertised to last 20 years or longer, but panels made in China are failing at a higher rate. The time-to-failure of this device is usually exponentially distributed with mean 13 years. What is the probability of failure in the first 5 years
Answer:
The right answer is "0.3193".
Step-by-step explanation:
According to the question,
Mean,
[tex]\frac{1}{\lambda} = 13[/tex]
[tex]\lambda = \frac{1}{13}[/tex]
As we know,
The cumulative distributive function will be:
⇒ [tex]1-e^{-\lambda x}[/tex]
hence,
In the first 5 years, the probability of failure will be:
⇒ [tex]P(X<5)=1-e^{-\lambda\times 5}[/tex]
[tex]=1-e^{-(\frac{1}{13} )\times 5}[/tex]
[tex]=1-e^(-\frac{5}{13})[/tex]
[tex]=1-0.6807[/tex]
[tex]=0.3193[/tex]
How many students rank themselves as introverts? Demonstrate your work!!
Answer:
36 (maybe...)
Step-by-step explanation:
Technically there is no way to answer this question, it says that 120 ADULTS were surveyed and then asks how many STUDENTS rank themselves as introverts. But if we a supposed to assume that all adults are students:
The ratio of 3:7 means that for every 3 introverts, there are 7 extroverts.
In other words for every 10 people (total introvert+extrovert) there are 3 introverts.
So to find the number of introverts in the group of 120, just multiply by 3/10 or 0.3
The answer would be 36
3z+8=12+3x-2
I really need the answer to this asap
Answer:
3z+3x=2
Step-by-step explanation:
3z+8=12+3x-2
collecting like terms
3z-3x=12-2-8
3z-3x=2
3z=2+3x
divide through by three
z= ⅔+x
What is the slope of (-4,1) and (-1,3)
Answer:
slope is 2÷3 of giving line points
The data on the box plot describes the weight of several students in sixth grade. Which of the following statements are true about the data set? Select all that apply.
One-fourth of the students weigh between 90 and 101 pounds.
One-half of the students weigh between 75 and 90 pounds.
The median weight of the sixth graders is 85 pounds.
One-fourth of the students weigh less than 75 pounds.
One-fourth of the students weigh more than 75 pounds.
The total range of weight is 40 pounds.
Answer:
Step-by-step explanation:
B
The graphs below have the same shape the equation of the bluegrass is f(x)=x^3 what is the equation of the red graph
Answer:
g(x) = x^3 - 2
Step-by-step explanation:
As you can see on the graph, the line has been translated down 2 units.
If the graph of f has the same shape as the graph of g, then the slope remains the same. The y intercept (k) changes by -2 units, so the k value is -2
g(x) = x^3 - 2
Hope this helps!!
NEED ANSWER QUICK
Timmy and Tommy are two boys whose ages add up to 23. Timmy is 5
years older than Tommy. How old are they?
Answer:
Tommy's age is 9 years old.
Timmy's age is 14 years old.
Step-by-step explanation:
Take Tommy's age to be x and Timmy's age to be x+5
x+x+5=23
2x+5=23
2x=23-5=18
x=18÷2=9
x+5=9+5=14
the focus of a parabola is (-5,-1) and the directrix is y= -3.
what is an equation of the parabola? (one of the answered above)
Answer:
Step-by-step explanation:
-2
What does point b represent on the graph ?
Answer:
Step-by-step B represents the $14 John earned in the 2 hours he worked.
explanation:
11 Emilio makes metal fences.
He is making a fence using this design.
1.44 m
DO NOT WRITE IN THIS AREA
1.8 m
.
The fence will need
3 horizontal metal pieces of length 1.8m
2 tall metal pieces of length 1.44 m
5 medium metal pieces
6 short metal pieces as shown on the diagram.
The heights of the tall, medium and short metal pieces are in the ratio 9:8:7
.
How many metres of metal in total does Emilio need to make the fence?
Answer:
21.4 m
Step-by-step explanation:
Let x represent the sum of the tall metal, medium metal and short metal heights. Since the tall metal has a length of 1.44 m, and the ratio is in 9:8:7, hence:
(9/24) * x = 1.44
x = 3.84 m
For the medium metal pieces:
(8/24) * 3.84 = medium metal height
medium metal height = 1.28 m
For the short metal pieces:
(7/24) * 3.84 = short metal height
short metal height = 1.12 m
Total horizontal metal piece length = 3 * 1.8 m = 5.4 m
Total tall metal piece length = 2 * 1.44 m = 2.88 m
Total medium metal piece length = 5 * 1.28 m = 6.4 m
Total short metal piece length = 6 * 1.12 m = 6.72 m
Total length of metal = 5.4 + 2.88 + 6.4 + 6.72 = 21.4 m
Which graph shows the solution to the system of linear inequalities?
y>2/3x+3
y ≤ -1/3x+2
Answer:
Graph 2 which has both solid and dashed line
Step-by-step explanation:
Given the linear inequalities :
y>2/3x+3 - - - (1)
y ≤ -1/3x+2 - - - (2)
One quick observation that can be made from the two graphs is the type of line used to plot the two linear inequalities;
Inequalities that uses either the < or > sign are plotted using a dashed line while inequalities with makes use of ≤ or ≥ are plotted using the solid line. Therefore we can conclude that the graph which uses both the solid line and the dashed line to represent the linear inequality conditions is the correct choice.
The control department of a light bulb manufacturer randomly picks light bulbs from the production lot every week. The records show that, when there is no malfunction, the defect rate in the manufacturing process (due to imperfections in the material used) is . When or more of the light bulbs in the sample of are defective, the control unit calls repair technicians for service.
Required:
a. Find the mean of p, where p is the proportion of defective light bulbs in a sample of 4400 when there is no malfunction.
b. Find the standard deviation of p.
Answer:
The answer is a
Step-by-step explanation:
Given: f(x) = x- 7 and h(x) = 2x + 3
Write the rule for f(h(xc)).
Answer:
[tex]f(h(xc)) = 2xc-4[/tex]
Step-by-step explanation:
Given
[tex]f(x) = x - 7[/tex]
[tex]h(x) = 2x + 3[/tex]
Required
[tex]f(h(xc))[/tex]
First, calculate h(xc)
If [tex]h(x) = 2x + 3[/tex]
Then
[tex]h(xc) = 2xc + 3[/tex]
Solving further:
[tex]f(x) = x - 7[/tex]
Substitute h(xc) for x
[tex]f(h(xc)) = h(xc) - 7[/tex]
Substitute [tex]h(xc) = 2xc + 3[/tex]
[tex]f(h(xc)) = 2xc + 3 - 7[/tex]
[tex]f(h(xc)) = 2xc-4[/tex]
calculate the cost of 4 liters of gasoline if 10 Liters of gasoline cost $8.20 (using proportional relationship).
A . $3.28
B. $4.20
C. $8.20
D.$10
A farmer picks pumpkins from a large field. The farmer makes samples of 260 pumpkins and inspects them. If one in fifty pumpkins are not fit to market and will be saved for seeds, what is the standard deviation of the mean of the sampling distribution of sample proportions?
Answer:
[tex]\mu = 5.2[/tex]
[tex]\sigma = 2.257[/tex]
Step-by-step explanation:
Given
[tex]n = 260[/tex] -- samples
[tex]p = \frac{1}{50}[/tex] --- one in 50
Solving (a): The mean
This is calculated as:
[tex]\mu = np[/tex]
[tex]\mu = 260 * \frac{1}{50}[/tex]
[tex]\mu = 5.2[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\mu * (1-p)}[/tex]
[tex]\sigma = \sqrt{5.2 * (1-1/50)}[/tex]
[tex]\sigma = \sqrt{5.2 * 0.98}[/tex]
[tex]\sigma = \sqrt{5.096}[/tex]
[tex]\sigma = 2.257[/tex]
Add. Please show work too.
Answer:
-36m^3-21n^3+85mn^2+36m^2n
Step-by-step explanation:
That's what the calculator says:).
Tammy makes 8 dollars for each hour of work. Write an equation to represent her total pay p after working h hours.
Answer:
P=8(h)
Step-by-step explanation:
P is her total pay. You find that by multiplying what she makes an hour (8) by the total number of hours she has worked (h).
Answer:
p=8h
Step-by-step explanation:
Pay equals $8 per the number of hours
Estimate the student's walking pace, in steps per minute, at 3:20 p.m. by averaging the slopes of two secant lines from part (a). (Round your answer to the nearest integer.)
This question is incomplete, the complete question is;
A student bought a smart-watch that tracks the number of steps she walks throughout the day. The table shows the number of steps recorded (t) minutes after 3:00 pm on the first day she wore the watch.
t (min) 0 10 20 30 40
Steps 3,288 4,659 5,522 6,686 7,128
a) Find the slopes of the secant lines corresponding to the given intervals of t.
1) [ 0, 40 ]
11) [ 10, 20 ]
111) [ 20, 30 ]
b) Estimate the student's walking pace, in steps per minute, at 3:20 pm by averaging the slopes of two secant lines from part (a). (Round your answer to the nearest integer.)
Answer:
a)
1) for [ 0, 40 ], slope is 96
11) for [ 10, 20 ], slope is 86.3
111) for [ 20, 30 ], slope is 116.4
b) the student's walking pace is 101 per min
Step-by-step explanation:
Given the data in the question;
t (min) 0 10 20 30 40
Steps 3,288 4,659 5,522 6,686 7,128
SLOPE OF SECANT LINES
1) [ 0, 40 ]
slope = ( 7,128 - 3,288 ) / ( 40 - 0
= 3840 / 40 = 96
Hence slope is 96
11) [ 10, 20 ]
slope = ( 5,522 - 4,659 ) / ( 20 - 10 )
= 863 / 10 = 86.3
Hence slope is 86.3
111) [ 20, 30 ]
slope = ( 6,686 - 5,522 ) / ( 30 - 20 )
= 1164 / 10 = 116.4
Hence slope is 116.4
b)
Estimate the student's walking pace, in steps per minute, at 3:20 pm by averaging the slopes of two secant lines from part .
Since this is recorded after 3:00 pm
{ 3:20 - 3:00 = 20 }
so t = 20 min
so by average;
we have ( [ 10, 20 ] + [ 20, 30 ] ) /2
⇒ ( 86.3 + 116.4 ) / 2
= 202.7 /2
= 101.35 ≈ 101
Therefore, the student's walking pace is 101 per minutes
Find the area of the irregular figure. Round to the nearest hundredth.
Answer:
[tex]67.5\text{ [square units]}[/tex]
Step-by-step explanation:
The composite figure consists of one rectangle and two triangles. We can add up the area of these individual shapes to find the total area of the irregular figure.
Formulas:
Area of rectangle with base [tex]b[/tex] and height [tex]h[/tex]: [tex]A=bh[/tex] Area of triangle with base [tex]b[/tex] and height [tex]h[/tex]: [tex]A=\frac{1}{2}bh[/tex]By definition, the base and height must intersect at a 90 degree angle.
The rectangle has a base of 10 and a height of 5. Therefore, its area is [tex]A=10\cdot 5=50[/tex].
The smaller triangle to the left of the rectangle has a base of 2 and a height of 5. Therefore, its area is [tex]A=\frac{1}{2}\cdot 2\cdot 5=5[/tex].
Finally, the larger triangle on top of the rectangle has a base of 5 and a height of 5. Therefore, its area is [tex]A=\frac{1}{2}\cdot 5\cdot 5=12.5[/tex].
Thus, the area of the total irregular figure is:
[tex]50+5+12.5=\boxed{67.5\text{ [square units]}}[/tex]
Simultaneous equations 5x-4y=19
X+2y=8
Answer:
x=5
y=3/2
Step-by-step explanation:
Take it or leave it, that's what the computer said.
Answer pllllllleeeaaaaasssss
(3.1) … … …
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2x-y}{x-2y}[/tex]
Multiply the right side by x/x :
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2-\dfrac yx}{1-\dfrac{2y}x}[/tex]
Substitute y(x) = x v(x), so that dy/dx = x dv/dx + v :
[tex]x\dfrac{\mathrm dv}{\mathrm dx} + v = \dfrac{2-v}{1-2v}[/tex]
This DE is now separable. With some simplification, you get
[tex]x\dfrac{\mathrm dv}{\mathrm dx} = \dfrac{2-2v+2v^2}{1-2v}[/tex]
[tex]\dfrac{1-2v}{2-2v+2v^2}\,\mathrm dv = \dfrac{\mathrm dx}x[/tex]
Now you're ready to integrate both sides (on the left, the denominator makes for a smooth substitution), which gives
[tex]-\dfrac12\ln\left|2v^2-2v+2\right| = \ln|x| + C[/tex]
Solve for v, then for y (or leave the solution in implicit form):
[tex]\ln\left|2v^2-2v+2\right| = -2\ln|x| + C[/tex]
[tex]\ln(2) + \ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]\ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]v^2-v+1 = e^{\ln\left(1/x^2\right)+C}[/tex]
[tex]v^2-v+1 = \dfrac C{x^2}[/tex]
[tex]\boxed{\left(\dfrac yx\right)^2 - \dfrac yx+1 = \dfrac C{x^2}}[/tex]
(3.2) … … …
[tex]y' + \dfrac yx = \dfrac{y^{-3/4}}{x^4}[/tex]
It may help to recognize this as a Bernoulli equation. Multiply both sides by [tex]y^{\frac34}[/tex] :
[tex]y^{3/4}y' + \dfrac{y^{7/4}}x = \dfrac1{x^4}[/tex]
Substitute [tex]z(x)=y(x)^{\frac74}[/tex], so that [tex]z' = \frac74 y^{3/4}y'[/tex]. Then you get a linear equation in z, which I write here in standard form:
[tex]\dfrac47 z' + \dfrac zx = \dfrac1{x^4} \implies z' + \dfrac7{4x}z=\dfrac7{4x^4}[/tex]
Multiply both sides by an integrating factor, [tex]x^{\frac74}[/tex], which gives
[tex]x^{7/4}z'+\dfrac74 x^{3/4}z = \dfrac74 x^{-9/4}[/tex]
and lets us condense the left side into the derivative of a product,
[tex]\left(x^{7/4}z\right)' = \dfrac74 x^{-9/4}[/tex]
Integrate both sides:
[tex]x^{7/4}z=\dfrac74\left(-\dfrac45\right) x^{-5/4}+C[/tex]
[tex]z=-\dfrac75 x^{-3} + Cx^{-7/4}[/tex]
Solve in terms of y :
[tex]y^{4/7}=-\dfrac7{5x^3} + \dfrac C{x^{7/4}}[/tex]
[tex]\boxed{y=\left(\dfrac C{x^{7/4}} - \dfrac7{5x^3}\right)^{7/4}}[/tex]
(3.3) … … …
[tex](\cos(x) - 2xy)\,\mathrm dx + \left(e^y-x^2\right)\,\mathrm dy = 0[/tex]
This DE is exact, since
[tex]\dfrac{\partial(-2xy)}{\partial y} = -2x[/tex]
[tex]\dfrac{\partial\left(e^y-x^2\right)}{\partial x} = -2x[/tex]
are the same. Then the general solution is a function f(x, y) = C, such that
[tex]\dfrac{\partial f}{\partial x}=\cos(x)-2xy[/tex]
[tex]\dfrac{\partial f}{\partial y} = e^y-x^2[/tex]
Integrating both sides of the first equation with respect to x gives
[tex]f(x,y) = \sin(x) - x^2y + g(y)[/tex]
Differentiating this result with respect to y then gives
[tex]-x^2 + \dfrac{\mathrm dg}{\mathrm dy} = e^y - x^2[/tex]
[tex]\implies\dfrac{\mathrm dg}{\mathrm dy} = e^y \implies g(y) = e^y + C[/tex]
Then the general solution is
[tex]\sin(x) - x^2y + e^y = C[/tex]
Given that y (1) = 4, we find
[tex]C = \sin(1) - 4 + e^4[/tex]
so that the particular solution is
[tex]\boxed{\sin(x) - x^2y + e^y = \sin(1) - 4 + e^4}[/tex]
help me guys, I really need your help
Answer:
The answer should be like this;
a) A-B
b) BUC
c) C-A
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ