Answer:
Difference : 4th option
Step-by-step explanation:
The first thing we want to do here is to factor the expression x² + 3x + 2. This will help us if it is similar to the factored expression " ( x + 2 )( x + 1 ). " The denominators will be the same, and hence we can combine the fractions.
x² + 3x + 2 - Break the expression into groups,
( x² + x ) + ( 2x + 2 ) - Factor x from x² + x and 2 from 2x + 2,
x( x + 1 ) + 2( x + 2 ) - Group,
( x + 2 )( x + 1 )
This is the same as the denominator of the other fraction, and therefore we can combine the fractions.
x - 1 / ( x + 2 )( x + 1 )
As you can see this is not any of the options present, as we have not expanded ( x + 2 )( x + 1 ). Remember previously that ( x + 2 )( x + 1 ) = x² + 3x + 2. Hence our solution is x - 1 / x² + 3x + 2, or option d.
Hey there please help me with this question
Answer:
see explanation
Step-by-step explanation:
sum the parts of the ratio, 2 + 1 = 3 parts , thus
81 cm² ÷ 3 = 27 cm² ← value of 1 part of the ratio
2 parts = 2 × 27 = 54 cm²
Area of A = 54 cm² and area of B = 27 cm²
The side of the original square = [tex]\sqrt{81}[/tex] = 9 cm
The width of both rectangles is 9 cm ( width remains unchanged after cut )
Thus
Rectangle A
9 × length = 54 ( divide both sides by 9 )
length = 6 cm
Rectangle B
9 × length = 27 ( divide both sides by 9 )
length = 3 cm
Rectangle A → length = 6 cm, width = 9 cm
Rectangle B → length = 3 cm , width = 9 cm
Answer:
Rectangle A Rectangle B
length = 9 cm length = 9 cm
width = 6 cm width = 3 cm
Step-by-step explanation:
Area of square At = 81 cm²
Square is cut into two pieces = A + B
The ration of area A to B = 2:1
Find
Rect A Rect B
length length
width width
---------------------------------
first, get the side of the square = A = s²
81 = s²,
s = √81
s = 9 cm
since the ratio is 2:1, therefore the side can be divided into 3
9 ÷ 3 = 3 cm ----- take note of this to get the Width
Rectangle A
L = 9 cm (which is the s = 9 cm)
W = 3 cm (2 ratio) = 6 cm
Rectangle B
L = 9 cm (which is the s = 9 cm)
W = 3 cm (1 ratio) = 3 cm
Proof:
At = A + B
81 = (9x6) + (9x3)
81 = 54 + 27
81 = 81 ----- OK
really urgent...i need the working also ...pls help me
Answer:
See below.
Step-by-step explanation:
In each case, you are looking for time. We know speed is distance divided by time. Lets start with the speed formula.
speed = distance/time
Now we solve it for time. Multiply both sides by time and divide both sides by speed.
speed * time = distance
time = distance/speed
Time is distance divided by speed. In each problem, you have a speed and a distance. Divide the distance by the speed to to find the time.
1) speed = 44.1 km/h; distance = 150 km
time = distance/speed = 150 km/(44.1 km/h) =
= 3.401 hours = 3 hours + 0.401 hour * 60 min/hour = 3 hours 24 minutes
2) speed = 120 km/h; distance = 90 km
time = distance/speed = 90 km/(120 km/h) =
= 0.75 hours = 0.75 hour * 60 min/hour = 45 minutes
3) speed = 125 m/s; distance = 500 m
time = distance/speed = 500 m/(125 m/s) =
= 4 seconds
Peter has one of each of the following coins in his pocket: a penny, a nickel, a dime, a quarter, and a half-dollar. Four of these coins are taken out of the pocket and the sum of their values is calculated. How many different sums are possible?
Answer:
10
Step-by-step explanation:
This is a combinations problem, involving factorials.
5!/3!*2!=5*4/2=20/2=10
The different sum of the 4 coins from the list of 5 coins is an illustration of combination or selection. There are 5 different possible sums.
Given
[tex]n = 5[/tex] --- number of coins
[tex]r = 4[/tex] --- coins to be selected to calculate sum
For the sum of the coin value to be calculated, the 4 coins must be selected. This means combination.
So, we make use of:
[tex]^nC_r = \frac{n!}{(n - r)!r!}[/tex]
This gives
[tex]^5C_4 = \frac{5!}{(5 - 4)!4!}[/tex]
[tex]^5C_4 = \frac{5!}{1!4!}[/tex]
Expand
[tex]^5C_4 = \frac{5*4!}{1*4!}[/tex]
[tex]^5C_4 = \frac{5}{1}[/tex]
[tex]^5C_4 = 5[/tex]
Hence, there are 5 different possible sums.
Read more about combinations at:
https://brainly.com/question/15401733
Mildred’s salary has increased from £24,600 to £25,338. By what percentage has her salary increase?
Answer:
The answer is 3%Step-by-step explanation:
To find the percentage increase we use the formula
[tex]Percentage \: change = \frac{ change}{original \: quantity} \times 100[/tex]
To find the change subtract the smaller quantity from the bigger one
From the question
original price = $24,600
Current price = $ 25,338
Change = $25,338 - $ 24,600
Change = $ 738
So the percentage increase is
[tex] \frac{738}{24600} \times 100[/tex]
[tex] = \frac{3}{100} \times 100[/tex]
We have the final answer as
Percentage increase = 3%Hope this helps you
write each number in scientific notation.
1,050,200
The number between 1 and 10:
The power of 10:
The number in scientific notation:
34,600
The number between 1 and 10:
The power of 10:
The number in scientific notation:
evaluate 15.2% of a 726 + 12.8% of 673
Answer:
196.496
Step-by-step explanation:
0.152x726+0.128x673
110.352+86.144
=196.496
4. The rental for a television set changed from $80 per year to $8 per month
What is the percentage increase in the yearly rental?
Answer:
16%
Step-by-step explanation:
rental charge per year = $80
rental charge at the rate $8 per year = 8 * 12 = 96
the increased amount = 96 - 80 = 16
% = 16 / 100 = 16%
Hey, please help solve the question.
Answer:
75%=x-125
90%=x+250
subtract the second from the first
15%=375
100%=?
100%×375/15
100%=2500marked price is 2500
2500+250=2750
90%=2750
100%=?
cost price=3055.56
if a man works 400km in 6 minutes.How long will he work in 9 minutes
Answer:
600 kmStep-by-step explanation:
400 km = x
6 min 9 min
cross multiply:
6x = 400 ( 9)
x = 3600 / 6
x = 600 km
A stone is thrown downward straightly its speed at speed of 20 second what and it reaches the ground at 40 metre second what will be the height of building
Answer:
[tex]\Huge \boxed{\mathrm{61.22 \ m}}[/tex]
Step-by-step explanation:
A stone is thrown downward straightly with the velocity of 20 m/s and it reaches the ground at the velocity of 40 m/s. What will be the height of building? (Question)
The initial velocity ⇒ 20 m/s
The final velocity ⇒ 40 m/s
We can apply a formula to solve for the height of the building.
[tex](V_f)2 - (V_i)^2 =2gh[/tex]
[tex]V_f = \sf final \ velocity \ (m/s)[/tex]
[tex]V_i = \sf initial \ velocity \ (m /s)[/tex]
[tex]g = \sf acceleration \ due \ to \ gravity \ (m/s^2 )[/tex]
[tex]h = \sf height \ (m)[/tex]
Plugging in the values.
Acceleration due to gravity is 9.8 m/s².
[tex](40)^2 - (20)^2 =2(9.8)h[/tex]
Solve for [tex]h[/tex].
[tex]1600 - 400 =19.6h[/tex]
[tex]1200 =19.6h[/tex]
[tex]\displaystyle h=\frac{1200}{19.6}[/tex]
[tex]h= 61.22449[/tex]
The height of the building is 61.22 meters.
in the equation z=x^2-3y, find the value of z when x=-3 and y=4
Answer:
z=-3
Step-by-step explanation:
z=(-3)^2 - 3(4)
z=9 - 12
z=-3
solve the following: - 3 raised to 1 by 5 the whole raised to 4 (3^1/5)^4
Answer:
8.30256
Step-by-step explanation:
Step 1: Write out expression
[tex]((-3)^{\frac{1}{5} })^{4(3^{\frac{1}{5} })^4[/tex]
Step 2: Use BPEMDAS to evaluate
[tex](-1.24573)^{4(3^{\frac{1}{5} })^4[/tex]
[tex](-1.24573)^{4(1.24573)^4[/tex]
[tex](-1.24573)^{4(2.40822)[/tex]
[tex](-1.24573)^{9.6329}[/tex]
= 8.30256
And we have our answer!
Find the value of x. A. 53–√ m B. 241−−√ m C. 6 m D. 6+35–√ m
Answer:
x = 2√41 mStep-by-step explanation:
Since the triangle is a right angled triangle we can use Pythagoras theorem to find the missing side x
Using Pythagoras theorem we have
a² = b² + c²
where a is the hypotenuse
From the question x is the hypotenuse
So we have
[tex] {x}^{2} = {8}^{2} + {10}^{2} [/tex][tex] {x}^{2} = 64 + 100[/tex][tex] {x}^{2} = 164[/tex]Find the square root of both sides
We have the final answer as
x = 2√41 mHope this helps you
Answer:
2 sqrt(41) =c
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
8^2 + 10^2 = c^2
64+ 100 = c^2
164 = c^2
take the square root of each side
sqrt(164) = sqrt(c^2)
sqrt(4*41) = c
2 sqrt(41) =c
Multiply and simplify. (1 − 5i)(1 − 2i) A) 1 + 7i B) 9 − 7i C) 1 − 7i D) − 9 − 7i
Answer:
The product renders: [tex]-9-7\,i[/tex]
Step-by-step explanation:
Recall that the product of the imaginary unit i by itself renders -1
Now proceed with the product of the two complex numbers using distributive property:
[tex](1-5\,i)\,(1-2\,i)=1-2\,i-5\,i+10\,i^2=1-7\,i-10=-9-7\,i[/tex]
a broker gets rs 20000 as commission from sale of a piece of land which costs rs 8000000. Find the rate of commission.
Answer:
0.25%
Step-by-step explanation:
Rate of commission
= (commission*100)/cost of land
=( 20000*100)/8000000
= 2000000/8000000
=2/8
= 0.25%
Michael is using a number line to evaluate the expression –8 – 3. A number line going from negative 12 to positive 12. A point is at negative 8. After locating –8 on the number line, which step could Michael complete to evaluate the expression?
Answer:
move to the left 3 more spaces
Step-by-step explanation:
you are at -8 already. Therefore, you (-3) more spaces, so you go to the left three more spaces. Use the saying keep change change to help with this.
Keep the first number sign, change the next sign, and the next sign.
Answer:
d
Step-by-step explanation:
To get from home to work, Felix can either take a bike path through the rectangular park or ride his bike along two sides of the park. How much farther would Felix travel by riding along two sides of the park than he would by taking the path through the park?
Answer:
c=5.9/6(G)
Step-by-step explanation:
first find the 2 distances.
a^2+b^2=c^2 c=2.4+.7
7^2+2.4^2=c^2 c=3.1
.49+5.85=c^2
c^2=6.34
c=√6.34
c=2.51.
next subtract the two distances to find the difference.
c=2.51-3.1
c=.59
so the distance would be .59 which can be rounded up to .60/G
explanation on how I knew the answer.
Im reviewing for the math 8th grade staar.
The heights of two similar parallelograms are 16 inches and 20 inches. Their
respective areas are (3x+5) square inches and 9x square inches. Find the value of
X?
Answer: [tex]x=\dfrac{25}{21}[/tex]
Step-by-step explanation:
Area of parallelogram = Base x height
If two parallelograms are similar, then their corresponding sides are proportional.
That means, [tex]\dfrac{\text{Area of first parallleogram}}{\text{Area of second parallleogram}}=\dfrac{\text{height of first parallelogram}}{\text{height of second parallelogram}}[/tex]
[tex]\Rightarrow \dfrac{3x+5}{9x}=\dfrac{16}{20}\Rightarrow \dfrac{3x+5}{9x}=\dfrac{4}{5}\\\\\Rightarrow 5(3x+5)=4(9x)\\\\\Rightarrow\ 15x+25 = 36x\\\\\Rightarrow\ 36x-15x=25\\\\\Rightarrow\ 21x = 25\\\\\Rightarrow\ x=\dfrac{25}{21}[/tex]
Hence, [tex]x=\dfrac{25}{21}[/tex]
inscribed angles. help asap!
Answer:
20°
Step-by-step explanation:
The measure of the inscribed angle is equal to the half of the arc it sees
Since AC is the diameter the measure of arc ABC is 180°
and since A sees arc BC and C sees the arc AB
A< + C< = 90° so angle C = 20°
Sarah has $20 saved. She gets $10 per week for her allowance, and she saves her allowance for the next 3 weeks. At the end of the week, she gets $150 in birthday money. How much money will she have after the 3 weeks? Which of the following sets of equations represents this problem?
Answer:
$200
Step-by-step explanation:
We know that she already has $20. And we know that every week, for three weeks she gets $10.
20+3(10)+150=m
We add all of this up, and we find that at the end of 3 weeks Sarah has $200 saved.
Write an expression that can be used to find the price of a television that is on sale for 20% off the regular price of p dollars. Can you write a second expression equivalent to the one you wrote in the last questions.
Answer:
The expression that could help calculate the price of the TV is;
$P - 20% of $P
Step-by-step explanation:
Here, we want to write an expression that corresponds to the price of a television set that is on sale at a price which is 20% off the regular price.
From the question, we can see that the regular price is $P
So now we are having 20% off;
This corresponds to;
20/100 * p = p/5 = 0.2p
So in the expression form, we can have;
$P - 20% of $P
a rectangular garden is fenced on all sides with 128 feet of fencing. The garden is 4 feet longer than it is wide. Find the length and width of the garden
Answer:
Length = 34 feet
Breadth = 30 feet
Step-by-step explanation:
Perimeter= 128 ft
Let the breadth be = [tex]x[/tex]
Let the length be = [tex]x+4[/tex]
∴by the problem ,
2(length+breadth)= perimeter
[tex]2(x+4+x)=128\\2(2x+4)=128\\4x+8=128\\4x=128-8\\4x=120\\x=120/4\\x=30[/tex]
Therefore, length of the garden = 30+4= 34 feet
breadth of the garden = 30 feet
Coordinate plane with two lines graphed. The equations of the lines are y equals negative two-thirds x plus four and the other line is y equals two-thirds x. Determine the number of solutions the system of linear equations has and the solution(s) to the equations represented by these two lines? The system of equations has 0 solutions, because the graph has no point of intersection. The system of equations has infinite number of solutions and all real numbers satisfy both equations. The system of equations has 1 solution and it is (3, 2). The system of equations has 1 solution and it is (3, 0).
Answer:
Step-by-step explanation:
y = -2/3x + 4
y = 2/3x
2/3x = -2/3x + 4
4/3x = 4
4x = 12
x = 3
y = 2/3(3)
y = 2
(3,2) one solution
option 3
Determine if the ordered pair (6, 4) is a solution to the inequality
Answer:
[tex]\Large \boxed{\mathrm{Option \ D}}[/tex]
Step-by-step explanation:
(6, 4)
x = 6 and y = 4
y > -1/2x + 7
Plug in the values to check if it is true.
4 > -1/2(6) + 7
4 > -3 + 7
4 > 4
This statement is false.
(6, 4) lies on the line.
Please help I did the first 2
Answer:
x = 1.5
Step-by-step explanation:
6 - 2x = 3
→ Minus 6 from both sides to isolate -2x
-2x = -3
→ Divide -2 from both sides to isolate x
x = 1.5
someone please expain how to do this, i’m really confused.
Answer:
13
Step-by-step explanation:
Basically, we have to plug in 4 for r into g(r). Doing so gives us g(4) = 25 - 3 * 4 = 25 - 12 = 13.
Some more examples:
g(6) = 25 - 3 * 6 = 25 - 18 = 7
g(1) = 25 - 3 * 1 = 25 - 3 = 22
Answer:g(4)=13
Step-by-step explanation:
g(4)=25-3r
25-3(4)
25-12
g(4)=13
PLEASE HELP!! what is the equation of a line that is perpendicular to y = 2x + 4 and passes through the point (4, 6)?
Answer:
The answer is B)
[tex]y = - \frac{1}{2}x + 8[/tex]
Answer:
B. y = -[tex]\frac{1}{2}[/tex]x + 8
Step-by-step explanation:
The line is perpendicular to line whose equation is:
y = 2x + 4 and;
passes through point (4,6) .
The product slopes of two perpendicular lines is -1.
The slope of the line whose equation is y = 2x + 4 is; 2
Let the slope of the perpendicular line (l2) be [tex]m_{l2}[/tex]
[tex]m_{l2} * 2 = -1[/tex]
[tex]m_{l2}[/tex] = [tex]-\frac{1}{2}[/tex]
Taking another point xy on line l2;
[tex]\frac{y - 6}{x - 4} = -\frac{1}{2}[/tex]
Cross multiplying this gives;
y = -[tex]\frac{1}{2}[/tex]x + 8 which is the equation of the perpendicular line!
A line passes (-8,-2) and has a slope of 5/4. Write an equation in Ax + By=C
Answer:
5x-4y = -32
Step-by-step explanation:
First write the equation in point slope form
y-y1 = m(x-x1)
y - -2 = 5/4 ( x- -8)
y+2 = 5/4 (x+8)
Multiply each side by 4 to clear the fraction
4( y+2 )= 4*5/4 (x+8)
4y +8 = 5(x+8)
4y+8 = 5x+40
Subtract 4y from each side
8 = 5x-4y +40
Subtract 40 from each side
-32 = 5x-4y
5x-4y = -32
Answer:
The answer is
5x - 4y = -32Step-by-step explanation:
To write an equation of a line given a point and slope use the formula
y - y1 = m( x - x1)
where
m is the slope
( x1 , y1) is the point
From the question
slope = 5/4
point (-8 , -2)
So the equation of the line is
[tex]y + 2 = \frac{5}{4} (x + 8)[/tex]Multiply through by 4
4y + 8 = 5( x + 8)
4y + 8 = 5x + 40
5x - 4y = 8 - 40
We have the final answer as
5x - 4y = -32Hope this helps you
Pregunta N° 1: ¿Cuántas fracciones propias e irreductibles con denominador 24 existen? 1 punto A) 2 B) 4 C) 6 D) 8 E) 10 Pregunta N° 2: ¿Cuántas fracciones impropias e irreductibles con numerador 25 existen? 1 punto A) 19 B) 21 C) 25 D) 29 E) 33 Pregunta N° 3: La edad de Miguel es 4/5 de la edad de su novia. Si las edades de los dos suman 63 años, calcule la edad de la novia de Miguel. 1 punto A) 20 años B) 26 años C) 32 años D) 35 años E) 40 años Pregunta N° 4: Si son las 8 a. m., ¿qué fracción del día ha transcurrido? 1 punto A) 1 B) 2 C) 1/2 D) 1/3 E) 1/5
ayuden porfavor
Answer:
Pregunta 1: Opcion D. 8
Pregunta 2: Opción A. 19 (aunque lo correcto es decir que son 20)
Pregunta 3: 28 años (no está como opción)
Pregunta 4: Opción D. 1/3
Step-by-step explanation:
Las fracciones irreductibles son aquellas que después de dividirlas por un común divisor, una vez que no se pueden dividir más se dice que son irreducibles, por lo tanto no existe ningún número que sea divisor común del numerador y del denominador más que 1.
Fracciones irreductibles con común denominador 24.
Como máximo divisor tenemos el 24 y como mínimo el 1
entre 1/24 y 1 estarán nuestras fracciones o sea:
1/24 < x/24 < 1. Ahora convertimos el 1 en fracción de 24, lo que sería 24/24 para igualar el numerador en ambos lados de la ecuación, para poder determinar x
1/24 < x/24 < 24/24
Como vemos que x tiene que estar entre 1 y 24, las respuestas serán:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 y 23
Eliminamos los números divisores de 24, aquellos pares, y nos focalizamos en los que no podriamos dividir por nada con 24, o sea los números primos
5, 7, 11, 13, 17, 19, 23. Como nos falta el 1, obtenemos un total de 8 fracciones: 1/24, 5/24, 7/24, 11/24, 13/24, 17/24, 19/24, 23/24
Mismo procedimiento para el 25:
1/25 es una de las fracciones irreductibles. Pensamos en los valores de x
1/25 < x/25 < 25/25
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Los números divisibles por 25, son los multiplos de 5, asi que esas respuestas no irían. Las fracciones irreductibles son:
1/25, 2/25, 3/25, 4/25, 6/25, 7/25, 8/25, 9/25, 11/25, 12/25, 13/25, 14/25, 16/25, 17/25, 18/25, 19/25, 21/25, 22/25, 23/25 y 24/25 haciendo un total de
20. Por alguna razón está mal formulada la pregunta, son 20 pero no está como opción y como te piden fraccion impropia (numerador > denominador), contamos a partir de 26. FIjate que hasta el proximo entero que sería 50/25, también son 20 fracciones (irreductibles e impropias)
26/25, 27/25, 28/25, 29/25, 31/25, 32/25, 33/25, 34/25, 36/25, 37/25, 38/25, 39/25, 41/25, 42/25, 43/25, 44/25, 46/25, 47/25, 48/25, 49/25
Próxima pregunta:
Miguel tiene 4/5 de la edad de la novia, y ambas edades suman 63.
Plantiemos la siguiente ecuacion donde x es la edad de la novia
4/5x + x = 63
9/5x = 63
x = 63 . 5/9 (como 9/5 pasa al otro lado de la igualdad dividiendo, damos vuelta la fraccion multiplicandola)
x = 35
Si la novia tiene 35 años y la edad de Miguel es 4/5 de esa edad
4/5 .35 = (35 .4) /5 = 28
Es raro porque no está la respuesta como tal.
Próxima pregunta:
Al ser las 8 am, quiere decir que han pasado 8 horas de que empezó el día
y el día tiene 24 horas.
8 horas transcurridas / 24 horas totales = 1/3
find the exterior angle of a triangle whose interior opposite angles are 43 degree and 27 degree
Answer:
[tex]\huge\boxed{Exterior\ angle = 70\°}[/tex]
Step-by-step explanation:
The measure of exterior angle is equal to the sum of opposite interior angles.
So,
Exterior angle = 43+27
Exterior angle = 70°