Answer:-
Refer to attachment for the required solution.
Answer:
Step-by-step explanation:
**URGENT PLEASE HELP**
Find g(x), where g(x) is the translation 2 units right and 13 units down of f(x) = -2x + 5.
Answer:
g(x)=x+9
Step-by-step explanation:
When translating a graph, adding the number of units shifts the graph to the left and subtracting the number of units shifts it to the right. Since you need the graph translated 9 units to the left, you will need to add that many units to x
therefore, g(x)=x+9
Answer:
g(x)=x-8
Step-by-step explanation:
-2+2 = 0, so g(x) = x
5-13 = -8
Find the area of the triangle.
Answer:
B
Step-by-step explanation:
area=1/2×32×6.1=16×6.1=97.6 yd²
Answer:
Choice B. 97.6 yd^2
Step-by-step explanation:
B×W×.5= A
The question is "find the lowest common multiple of 4 and 6"
with step by step explaination
Answer:
12
Step-by-step explanation:
4s multiples:
4,8,12,16,20,24
6s multiples:
6,12,18,24,30,36
lowest number that is a common multiple between both 4 and 6:
12
Answer: 2
Step-by-step explanation:
Find the missing length the triangles are similar.
Answer:
Step-by-step explanation:
The missing length is 13 because,
Lets say the top triangle is A and the bottom triangle is B.
Triangle A gives us the side GF, and Triangle B gives us the sides TU and ST. Since the triangles are similar(as stated in the problem), we can pair 2 sides GF(A) and TU(B) which is 11:22.(one way I usually figure which sides are similar is by first- matching the hypotenuse, then checking which of the remaining two is longer.. if that made any sense). You can see that their relationship is x2 or /2 (In another word, from A to B is multiplication- ex: 11 * 2 is 22, and from B to A is division- ex 22/2 is 11.) Since the missing number is the hypotenuse of triangle A and you know the Hypotenuse of triangle B all you have to do is divide side TS by 2 to get side SF. So the missing side is 13.
Answer: 13
A rectangular box contain 782 apples. If there are 23 rows in a box, how many columns are there?
Answer:
34
Step-by-step explanation:
This is because you will have to simply divide 782 by 23.
782 / 23 =
34 :D
The population of a large U.S. city is 2,707,210. Which of the following best expresses this population?
A 2.7 × 106 C 2.707 × 106
B 2.7 × 107 D 27.07 × 106
Answer:
2.707 * 10^6
i think it is the best expression
The perimeter of a rectangle is given by the formula P=2w+2l,where w is the width and l is the length.Rearrange the formula for the length ( ).
Answer:
l = (p - 2w)/2
Step-by-step explanation:
** I NEED HELP PLEASE AND THANK YOU***
Instructions : X,Y,and Z are midpoints. Find the length of each segment.
Answer:
MZ = 10
ZO = 10
MO = 20
XZ = 9
YZ = 7
Step-by-step explanation:
Triangles are all the same, proportionally.
X is midpoint of 14, so 7
Y for 18, so 9
Triangle with 10 is 7, 9, 10
Full triangle is double at 14, 18, MO
Since angle N is same angle, MO is double 10, so 20
Z is midpoint, so both halves are 10
Because of midpoints, XZ and YZ with 10 form same triangle as half triangle at 9, 7, and 10 respectively.
Last year, Mary opened an investment account with $5400. At the end of the year, the amount in the account
had decreased by 6%.
Evelyn earned a score of 86 on Exam A that had a mean of 71 and a standard deviation of 20. She is about to take Exam B that has a mean of 550 and a standard deviation of 40. How well must Evelyn score on Exam B in order to do equivalently well as she did on Exam A? Assume that scores on each exam are normally distributed.
Answer:
580
Step-by-step explanation:
Assuming that the answer should be in terms of z scores, we can calculate the z score as
z = (observed value - mean)/(standard deviation)
For the first exam, the observed value is 86, the mean is 71, and the standard deviation is 20. The z score fot that exam is
z = (86-71)/20 = 0.75
Then, for the second exam, Evelyn has to do equivalently well, so the z score must be the same. Therefore, we have
0.75 = (observed score - 550)/40
multiply both sides by 40 to remove a denominator
0.75 * 40 = observed score - 550
add 550 to both sides to isolate the observed score
0.75 * 40 + 550 = observed score = 580
Rectangle ABCD is similar to rectangle JKLM. AB = 12, BC = 8, CD = 12, DA = 8, and JK = 15. What is the scale factor from JKLM to ABCD? Reduce all answers.
Answer:
4/5 or 0.8
Step-by-step explanation:
this problem description is not very precise. it leaves out the definition what corners or sides of JKLM correspond to corners and sides of ABCD.
I assume J and K correlate to A and B, and JK is a long side of JKLM.
so, we are going from JKLM to ABCD.
that means we are going from larger to smaller (as JK = 15 and therefore larger than AB = 12).
what is the scale factor to go from 15 to 12 ?
15 × x = 12
x = 12/15 = 4/5 or 0.8
here is another question i need help
PLS HELP ME ON THIS QUESTION I WILL MARK YOU AS BRAINLIEST IF YOU KNOW THE ANSWER PLS GIVE ME A STEP BY STEP EXPLANATION!!
Data should be analyzed using each of the following except:
A. measures of central tendency
B. shape
C. population size
D. spread
[tex]\frac{3}{2x}[/tex]-[tex]\frac{11}{5}[/tex]=[tex]\frac{7}{8}[/tex].[tex]\frac{64}{49}[/tex]
Answer:
x=35/78
Step-by-step explanation:
3/2x-11/5=(7/8)*(64/49)
3/2x-11/5=8/7
3/2x=8/7+11/5
3/2x=117/35
x=(35*3)/(2*117)
x=35/78
Writing equations in standard form:
(1,-6) and (-7,2)
How would I write this in standard form? I already tried but I keep getting x+y=7 and it says it’s wrong so could someone help?
Answer:
[tex]x + y = - 5[/tex]
Step-by-step explanation:
hopefully it is clear and makes sense
:)
. Doanh nghiệp dự tính đầu tư góp vốn liên doanh với số tiền ban đầu là 500 trđ, trong vòng 4 năm, lãi suất dự kiến là 12%/năm. Tính tổng số lãi của hoạt động đầu tư liên doanh thu được sau khi kết thúc liên doanh ?
convert 123000000 milligram into gram
Answer:
123,000 grams
Step-by-step explanation:
1000 mg is equivalent to 1 gram.
Answer:
123000g
Step-by-step explanation:
1000mg=1g
123000000mg= xgrams
cross multiplying,
you'll have
[tex] \frac{123000000}{1000} = 123000[/tex]
what is the value of the smallest of five consecutive integers if the least minus twice the greates equals -3
A. -9
B. -5
C. -3
D. 5
Answer: (b)
Step-by-step explanation:
Given
There are five consecutive integers and the least minus twice the greatest equals to -3
Suppose [tex]x,x+1,x+2,x+3,x+4[/tex] are the five consecutive integers
According to the question
[tex]\Rightarrow x-2(x+4)=-3\\\Rightarrow x-2x-8=-3\\\Rightarrow -x=8-3\\\Rightarrow x=-5[/tex]
option (b) is correct.
BRAINLIEST Which equation could be solved using this application of the quadratic formula?
A.
x2 + 1 = 2x − 3
B.
x2 – 2x − 1 = 3
C.
x2 + 2x − 1 = 3
D.
x2 + 2x − 1 = -3
The quadratic equation that could be solved using the given application of the quadratic formula is x² + 2x - 1 = 3, which in standard form is x² + 2x - 4 = 0. Hence, option C is the right choice.
What is the quadratic formula?A standard quadratic equation of the form ax² + bx + c = 0, can be solved using the quadratic formula, which is given as:
[tex]x = \frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
How to solve the question?In the question, we are asked for the quadratic equation, which could be solved using this application of the quadratic formula:
[tex]x = \frac{-2\pm\sqrt{2^2-4(1)(-4)} }{2(1)}[/tex]
To find the quadratic equation for which we use the quadratic formula
[tex]x = \frac{-2\pm\sqrt{2^2-4(1)(-4)} }{2(1)}[/tex]
we compare this equation with the standard quadratic formula,
[tex]x = \frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
to get a = 1, b = 2, and c = -4, to get the standard quadratic equation, ax² + bx + c = 0, as (1)x² + (2)x + (-4) = 0, or x² + 2x - 4 = 0.
Now, we convert the given options in the standard form to check for the correct choice:
A. x² + 1 = 2x - 3 ⇒ x² - 2x + 4 = 0, which is not the correct choice.B . x² - 2x - 1 = 3 ⇒ x² - 2x - 4 = 0, which is not the correct choice.C. x² + 2x - 1 = 3 ⇒ x² + 2x - 4 = 0, which is the correct choice.D. x² + 2x - 1 = -3 ⇒ x² + 2x + 2 = 0, which is not the correct choice.Thus, the quadratic equation that could be solved using the given application of the quadratic formula is x² + 2x - 1 = 3, which in standard form is x² + 2x - 4 = 0. Hence, option C is the right choice.
Learn more about the quadratic formula at
https://brainly.com/question/1214333
#SPJ2
Find the volume of each figure. Round your answers to the nearest tenth, if necessary
Answer:
1.92 m³
hopefully this answer can help you to answer the next question.
Two sides of a right triangle measure 5 inches and 6 nches, and the third side measures 61 inches.
The length of the third side is about
inches _ . The perimeter of the triangle is about
inches. __
Answer:
The length of the third side is 7.81 inches and the perimeter of the triangle is about 18.81 inches
Step-by-step explanation:
Find the vertical asymptotes of the function (x-1)(x-3)^2(x+1)^2/(x-2)(x+2)(x-1)(x+3)
Answer:
x=2, x=-2, x=-3
Step-by-step explanation:
-check if anything simplifies
(x-1)(x-3)²(x+1)² / (x-2)(x+2)(x-1)(x+3), simplify (x-1)
(x-3)²(x+1)² / (x-2)(x+2)(x+3)
-make the denominator 0 to find the asymptotes
(x-2)(x+2)(x+3) = 0
(x-2) =0 gives x = 2 asymptote
(x+2) =0 gives x= -2 asymptote
(x+3) = 0 gives x=- 3 asymptote
Plz help me out with this ;)
find the distance of gap d
Answer:
[tex]\displaystyle d \approx 15.8768[/tex]
Step-by-step explanation:
We want to find the distance of d or AB.
From the right triangle with a 35° angle, we know that:
[tex]\displaystyle \tan 35^\circ = \frac{50}{PB}[/tex]
And from the right triangle with a 42° angle, we know that:
[tex]\displaystyle \tan 42^\circ = \frac{50}{PA}[/tex]
AB is PA subtracted from PB. Thus:
[tex]\displaystyle d = AB = PB - PA[/tex]
From the first two equations, solve for PB and PA:
[tex]\displaystyle \frac{1}{\tan 35^\circ } = \frac{PB}{50} \Rightarrow PB = \frac{50}{\tan 35^\circ}[/tex]
And:
[tex]\displaystyle \frac{1}{\tan 42^\circ } = \frac{PA}{50} \Rightarrow PA = \frac{50}{\tan 42^\circ}[/tex]
Therefore:
[tex]\displaystyle d = AB = \frac{50}{\tan 35^\circ} - \frac{50}{\tan 42^\circ}[/tex]
Using a calculator:
[tex]\displaystyle d= AB \approx 15.8768[/tex]
Please help me
A person starts walking from home and walks: 6 miles East 6 miles Southeast 3 miles South 5 miles Southwest 2 miles East This person has walked a total of 22Correct miles Find the total displacement vector for this walk: If this person walked straight home, they'd have to walk miles
Answer:
1) The total displacement vector is ((16 + √2)/2, -(6+11·√2)/2)
2) The number of miles they'd have to walk is approximately 13.856 miles
Step-by-step explanation:
1) The distance, direction, and location of the path of the walk the person takes, are listed as follows;
Start location, (0, 0)
6 miles East walk to location, (6, 0)
6 miles Southeast to location, (6 + 3·√2, -3·√2)
3 miles South to location, (6 + 3·√2, -3·√2 - 3)
5 miles Southwest to location, (6 + 3·√2 - 2.5·√2, -3·√2 - 3 - 2.5·√2)
2 miles East to location, (6 + 3·√2 - 2.5·√2 + 2, -3·√2 - 3 - 2.5·√2)
(6 + 3·√2 - 2.5·√2 + 2, -3·√2 - 3 - 2.5·√2) = ((16 + √2)/2, -(6+11·√2)/2)
Therefore the destination coordinates is ((16 + √2)/2, -(6+11·√2)/2)
The total displacement vector, [tex]\underset{d}{\rightarrow}[/tex] = ((16 + √2)/2, -(6+11·√2)/2)
d = (16 + √2)/2)·i - (6+11·√2)/2)·j
2) If the person walked straight home, the number of miles they'd have to walk, [tex]\left | \underset{d}{\rightarrow} \right |[/tex], is given as follows;
[tex]\left | \underset{d}{\rightarrow} \right | = \sqrt{\left(\dfrac{16 +\sqrt{2} }{2} \right)^2 + \left(-\dfrac{6 + 11 \cdot \sqrt{2} }{2} \right)^2 } = \sqrt{134 + 41 \cdot \sqrt{2} }[/tex]
Therefore;
If the person walked straight home, the number of miles they'd have to walk [tex]\left | \underset{d}{\rightarrow} \right | \approx 13.856 \ miles[/tex]
someone please help me with this question
Answer:
Step-by-step explanation:
The diagram is given to you below. I could not change <C so that it was theta. So C = theta.
So C is the reference angle. Call it theta when you think of it. The diagram shows you how cos(C) must be set up.
The adjacent side is 7
The hypotenuse is 18
theta = C = cos-1(7/18) = 67.11
To the nearest degree 67.11 = 67
Use the quadratic formula to find the solutions to the quadratic equation below. Check all that apply. 5x2-X-4 = 0 A. -4/5 B. 5/4C. 2/3 D. 1 E. -1 F.3/2
Hi
5x²-x-4 = 0
Δ= (-1)² - 4*5*(-4)
Δ = 1 -4*-20
Δ = 1 +80
Δ = 81
√Δ= 9
as Δ ≥ 0 , so 2 solutions exist in R
S1 is : ( 1+9) /2*5 = 10/10 = 1
s2 = (1 -9)/2*5 = -8/10 = -4*2 /2*5 = -4/5
Corrects answers are A and D
Answer:
A. -4/5 And D. 1
Step-by-step explanation:
i just got it right
Х
49°
X =
degrees
What do I do
Answer:
x = 139
Step-by-step explanation:
The exterior angle is equal to the sum of the opposite interior angle
x = 49 +90
x = 139
An exterior angle of a triangle is equal to the sum of its interior opposite angles.
[tex] \bf \large \implies \: x \: = \: 49 \degree \: + \: 90 \degree[/tex]
[tex] \bf \large \implies \: x \: = \: 139 \degree [/tex]
Click the photo to solve the photo
Answer:
A=2
B=4
C=6
D=5
E=7
F=8
G=3
H=1
Step-by-step explanation:
explanation is in the picture!
In a survey of women in a certain country the mean height was 62.9 inches with a standard deviation of 2.81 inches answer the followinv questions about the specified normal distribution
The question is incomplete. The complete question is :
In a survey of women in a certain country ( ages 20-29), the mean height was 62.9 inches with a standard deviation of 2.81 inches. Answer the following questions about the specified normal distribution. (a) What height represents the 99th percentile? (b) What height represents the first quartile? (Round to two decimal places as needed)
Solution :
Let the random variable X represents the height of women in a country.
Given :
X is normal with mean, μ = [tex]62.9[/tex] inches and the standard deviation, σ = [tex]2.81[/tex] inches
Let,
[tex]$Z=\frac{X - 62.9}{2.81}$[/tex] , then Z is a standard normal
a). Let the [tex]99th[/tex] percentile is = a
The point a is such that,
[tex]$P(X<a)=0.99$[/tex]
[tex]$P \left( Z < \frac{a-62.9}{2.81} \right) = 0.99$[/tex]
From standard table, we get : [tex]P( Z < 2.3263) =0.99[/tex]
∴ [tex]$\frac{(a-62.9)}{281} = 2.3263$[/tex]
[tex]$a= (2.3263 \times 2.81 ) +62.9$[/tex]
= 6.536903 + 62.9
= 69.436903
= 69.5 (rounding off)
Therefore, the height represents the [tex]99th[/tex] percentile = 69.5 inches.
b). Let b = height represents the first quartile.
It is given by :
[tex]P( X < b) =0.25[/tex]
[tex]$P \left( Z < \frac{(b-62.9)}{2.81} \right) = 0.25$[/tex]
From the standard normal table,
[tex]P( Z < -0.6745) =0.99[/tex]
∴ [tex]$\frac{(b-62.9)}{2.81}= 0.6745$[/tex]
[tex]$b=(0.6745 \times 2.81) +62.9$[/tex]
= 1.895345 + 62.9
= 64.795345
= 64.8 (rounding off)
Therefore, the height represents the 1st quartile is 64.8 inches.