Answer:
a) the distance between the interference fringes is reduced by half
b) the distance between stripes is doubled
Explanation:
Interference experiments constructive interference is described by the expression
d sin θ = m λ
let's use trigonometry to find the distance between the interference fringes
tan θ= y / L
dodne y is the distance from the central maximum, L the distance from the slit to the observation screen. In general these experiments are carried out at very small angles
tan θ = sin θ / cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ / d L
a) it asks us when the screen doubles its distance
L ’= 2 L
subtitute in the equation
y ’= m λ / (d 2L)
y ’=( m λ / d L) /2
y ’= y / 2
the distance between the interference fringes is reduced by half
b) the density of the network doubles
if the density doubles in the same distance there are twice as many slits, so the distance between them is reduced by half
d ’= d / 2
we substitute
y ’= m λ (L d / 2)
y ’= m λ / (L d) 2
y ’= y 2
the distance between stripes is doubled
wo 10-cm-diameter charged rings face each other, 25.0 cm apart. Both rings are charged to + 20.0 nC . What is the electric field strength
Complete question:
Two 10-cm-diameter charged rings face each other, 25.0cm apart. Both rings are charged to +20.0nC. What is the electric field strength at:
a) the midpoint between the two rings?
b) the center of the left ring?
Answer:
a) the electric field strength at the midpoint between the two rings is 0
b) the electric field strength at the center of the left ring is 2712.44 N/C
Explanation:
Given;
distance between the two rings, d = 25 cm = 0.25 m
diameter of each ring, d = 10 cm = 0.1 m
radius of each ring, r = [tex]\frac{0.1}{2} = 0.05 \ m[/tex]
the charge on each ring, q = 20 nC
Electric field strength for a ring with radius r and distance x from the center of the ring is given as;
[tex]E = \frac{kxQ}{(x^2 +r^2)^{3/2}}[/tex]
The electric field strength at the midpoint;
the distance from the left ring to the mid point , x = 0.25 m / 2 = 0.125 m
[tex]E = \frac{kxQ}{(x^2 +r^2)^{3/2}} \\\\E = \frac{8.99*10^{9}*0.125*20*10^{-9}}{(0.125^2 + 0.05^2)^{3/2}} \\\\E = 9210.5 \ N/C[/tex]
[tex]E_{left} = 9210.5 \ N/C[/tex]
The electric field strength due to right ring is equal in magnitude to left ring but opposite in direction;
[tex]E_{right} = -9210.5 \ N/C[/tex]
The electric field strength at the midpoint;
[tex]E_{mid} = E_{left} + E_{right}\\\\E_{mid} = 9210.5 \ N/C - 9210.5 \ N/C\\\\E_{mid} = 0[/tex]
(b)
The distance from the right ring to center of the left ring, x = 0.25 m.
[tex]E = \frac{KxQ}{(x^2 +r^2)^{3/2}} \\\\E = \frac{8.99*10^{9} *0.25*20*10^{-9}}{(0.25^2 + 0.05^2)^{3/2}} \\\\E = 2712.44 \ N/C[/tex]
Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object
Answer:
Matter's resistance to a change in motion is called INERTIA and is directly proportional to the mass of an object.
Explanation:
What is the difference between matter and energy
Answer:
Everything in the Universe is made up of matter and energy. Matter is anything that has mass and occupies space. ... Energy is the ability to cause change or do work. Some forms of energy include light, heat, chemical, nuclear, electrical energy and mechanical energy.
Explanation:
A resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.35% from its value at 20.0°C. Over what temperature range can it be used (in °C)?
Answer:
Pls seeattached file
Explanation:
A resistor made of Ni chrome wire is used in an application where its resistance cannot be more than 1.35 % so its temperature range will be from 33.75 to -33.75 °C.
What is Resistance?Electrical resistance, or resistance to electricity, is a force that opposes the flow of current. Ohms are used to expressing resistance values.
When there is an electron difference between two terminals, electricity will flow from high to low. In opposition to that flow is resistance. As resistance rises, the current declines. On the other side, when the resistance falls, the current rises.
According to the question,
R = R₀ (1 + α ΔT)
(1 + 0.0135)R₀ = R₀(1 + α ΔT)
ΔT = (1 + 0.0135) / α
= 0.0135 / 0.0004
= 33.75 °C.
ΔT = [(1 - 0.0135) -1]/0.004
= -33.75 °C
To get more information about Resistance :
https://brainly.com/question/11431009
#SPJ5
What is the minimum thickness of coating which should be placed on a lens in order to minimize reflection of 566 nm light? The index of refraction of the coating material is 1.46 and the index of the glass is 1.71.
Answer:
The thickness is [tex]t = 1.415 *10^{-7 } \ m[/tex]
Explanation:
From the question we are told that
The wavelength is [tex]\lambda = 566 \ nm = 566 *10^{-9} \ m[/tex]
The index of refraction of glass is [tex]n_g = 1.71[/tex]
The index of refraction of the coating is [tex]n= 1.46[/tex]
Generally the condition for destructive interference is
[tex]2 t = (m + \frac{1}{2} ) * \frac{\lambda }{n }[/tex]
Here m is the order of the interference pattern and given from the question that we are considering minimizing reflection m = 0
t = thickness of the coating
substituting values
[tex]2 t = (0 + \frac{1}{2} ) * \frac{ 566 *10^{-9}}{ 1.46 }[/tex]
=> [tex]t = 1.415 *10^{-7 } \ m[/tex]
When a mercury thermometer is heated, the mercury expands and rises in the thin tube of glass. What does this indicate about the relative rates of expansion for mercury and glass
Answer:
This means that mercury has a higher or faster expansion rate than glass
Explanation:
This is because When a container expands, the reservoir in the glass expands at the same rate as the glass. Thus, if there is something in a glass and both expand at the same rate, they have no change - but if the contents expand faster, they will fill the container to a higher level, and if the contents expand slower, they will fill the container to a lower level (relative to the new size of the container).
The highest mountain on mars is olympus mons, rising 22000 meters above the martian surface. If we were to throw an object horizontaly off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars=3.72m/s^2
a. 2.4 minutes
b. 0.79 minutes
c. 1.8 minutes
d. 3.0 minutes
Answer:
t = 1.81 min , the correct answer is c
Explanation:
This is a missile throwing exercise
The object is thrown horizontally, so its vertical speed is zero (voy = 0), let's use the equation
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
the final height is y = 0 and the initial height is y₀ = 22000 m
0 = y₀ + 0 - ½ g t²
t = √y 2y₀ / g
let's calculate
t = √(2 22000 / 3.72)
t = 108.76 s
let's reduce to minutes
t = 108.76 s (1 min / 60 s)
t = 1.81 min
The correct answer is c
g In the atmosphere, the shortest wavelength electromagnetic waves are called A. infrared waves. B. ultraviolet waves. C. X-rays. D. gamma rays. E.
Answer:gamma ray
Explanation:
The linear density rho in a rod 3 m long is 8/ x + 1 kg/m, where x is measured in meters from one end of the rod. Find the average density rhoave of the rod.
Answer:
The average density of the rod is 1.605 kg/m.
Explanation:
The average density of the rod is given by:
[tex] \rho = \frac{m}{l} [/tex]
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, as follows:
[tex] \int_{0}^{3} \frac{8}{3(x + 1)}dx [/tex]
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{(x + 1)}dx [/tex] (1)
Using u = x+1 → du = dx → u₁= x₁+1 = 0+1 = 1 and u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{u}du [/tex]
[tex]\rho = \frac{8}{3}*log(u)|_{1}^{4} = \frac{8}{3}[log(4) - log(1)] = 1.605 kg/m[/tex]
Therefore, the average density of the rod is 1.605 kg/m.
I hope it helps you!
The average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Given data:
The length of rod is, L = 3 m.
The linear density of rod is, [tex]\rho=\dfrac{8}{x+1} \;\rm kg/m[/tex].
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, The expression for the average density is given as,
[tex]\rho' = \int\limits^3_0 { \rho} \, dx\\\\\\\rho' = \int\limits^3_0 { \dfrac{m}{L}} \, dx\\\\\\\rho' = \int\limits^3_0 {\dfrac{8}{3(x+1)}} \, dx[/tex]............................................................(1)
Using u = x+1
du = dx
u₁= x₁+1 = 0+1 = 1
and
u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex]\rho' =\dfrac{8}{3} \int\limits^3_0 {\dfrac{1}{u}} \, du\\\\\\\rho' =\dfrac{8}{3} \times [log(u)]^{4}_{1}\\\\\\\rho' =\dfrac{8}{3} \times [log(4)-log(1)]\\\\\\\rho' =1.605 \;\rm kg/m^{3}[/tex]
Thus, we can conclude that the average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Learn more about the average density here:
https://brainly.com/question/1371999
How much work is needed to pump all the water out of a cylindrical tank with a height of 10 m and a radius of 5 m
Answer:
Explanation:
volume of water being lifted
= π r² h , where r is radius of cylinder and h is height of cylinder
= 3.14 x5² x 10
= 785 m³
mass of water = 785 x 10³ kg
mass of this much of water is lifted so that its centre of mass is lifted by height
10 / 2 = 5m .
So work done = mgh , m is mass of water , h is displacement of centre of mass and g is acceleration due to gravity
= 785 x 10³ x 9.8 x 5
= 38.465 x 10⁶ J
An unstable particle at rest spontaneously breaks into two fragments of unequal mass. The mass of the first fragment is 3.00 10-28 kg, and that of the other is 1.86 10-27 kg. If the lighter fragment has a speed of 0.844c after the breakup, what is the speed of the heavier fragment
Answer: Speed = [tex]3.10^{-31}[/tex] m/s
Explanation: Like in classical physics, when external net force is zero, relativistic momentum is conserved, i.e.:
[tex]p_{f} = p_{i}[/tex]
Relativistic momentum is calculated as:
p = [tex]\frac{mu}{\sqrt{1-\frac{u^{2}}{c^{2}} } }[/tex]
where:
m is rest mass
u is velocity relative to an observer
c is light speed, which is constant (c=[tex]3.10^{8}[/tex]m/s)
Initial momentum is zero, then:
[tex]p_{f}[/tex] = 0
[tex]p_{1}-p_{2}[/tex] = 0
[tex]p_{1} = p_{2}[/tex]
To find speed of the heavier fragment:
[tex]\frac{mu_{1}}{\sqrt{1-\frac{u^{2}_{1}}{c^{2}} } }=\frac{mu_{2}}{\sqrt{1-\frac{u^{2}_{2}}{c^{2}} } }[/tex]
[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=\frac{3.10^{-28}.0.844.3.10^{8}}{\sqrt{1-\frac{(0.844c)^{2}}{c^{2}} } }[/tex]
[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=1.42.10^{-19}[/tex]
[tex]1.86.10^{-27}u_{1} = 1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }[/tex]
[tex](1.86.10^{-27}u_{1})^{2} = (1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } })^{2}[/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38}.(1-\frac{u_{1}^{2}}{9.10^{16}} )[/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -[2.02.10^{-38}(\frac{u_{1}^{2}}{9.10^{16}} )][/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -2.24.10^{-23}.u^{2}_{1}[/tex]
[tex]3.46.10^{-54}.u_{1}^{2}+2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]
[tex]2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]
[tex]u^{2}_{1} = \frac{2.02.10^{-38}}{2.24.10^{-23}}[/tex]
[tex]u_{1} = \sqrt{9.02.10^{-62}}[/tex]
[tex]u_{1} = 3.10^{-31}[/tex]
The speed of the heavier fragment is [tex]u_{1} = 3.10^{-31}[/tex]m/s.
A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?
Answer:
Torque = 0.012 N.m
Explanation:
We are given;
Mass of wheel;m = 750 g = 0.75 kg
Radius of wheel;r = 25 cm = 0.25 m
Final angular velocity; ω_f = 0
Initial angular velocity; ω_i = 220 rpm
Time taken;t = 45 seconds
Converting 220 rpm to rad/s we have;
220 × 2π/60 = 22π/3 rad/s
Equation of rotational motion is;
ω_f = ω_i + αt
Where α is angular acceleration
Making α the subject, we have;
α = (ω_f - ω_i)/t
α = (0 - 22π/3)/45
α = -0.512 rad/s²
The formula for the Moment of inertia is given as;
I = ½mr²
I = (1/2) × 0.75 × 0.25²
I = 0.0234375 kg.m²
Formula for torque is;
Torque = Iα
For α, we will take the absolute value as the negative sign denotes decrease in acceleration.
Thus;
Torque = 0.0234375 × 0.512
Torque = 0.012 N.m
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^2, separated by a distance of 1.70 mm. A 25.0-V potential difference is applied to these plates. Calculate: a. the electric field between the plates b. the surface charge density c. the capacitance d. the charge on each plate.
Answer:
(a) 1.47 x 10⁴ V/m
(b) 1.28 x 10⁻⁷C/m²
(c) 3.9 x 10⁻¹²F
(d) 9.75 x 10⁻¹¹C
Explanation:
(a) For a parallel plate capacitor, the electric field E between the plates is given by;
E = V / d -----------(i)
Where;
V = potential difference applied to the plates
d = distance between these plates
From the question;
V = 25.0V
d = 1.70mm = 0.0017m
Substitute these values into equation (i) as follows;
E = 25.0 / 0.0017
E = 1.47 x 10⁴ V/m
(c) The capacitance of the capacitor is given by
C = Aε₀ / d
Where
C = capacitance
A = Area of the plates = 7.60cm² = 0.00076m²
ε₀ = permittivity of free space = 8.85 x 10⁻¹²F/m
d = 1.70mm = 0.0017m
C = 0.00076 x 8.85 x 10⁻¹² / 0.0017
C = 3.9 x 10⁻¹²F
(d) The charge, Q, on each plate can be found as follows;
Q = C V
Q = 3.9 x 10⁻¹² x 25.0
Q = 9.75 x 10⁻¹¹C
Now since we have found other quantities, it is way easier to find the surface charge density.
(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e
σ = Q / A
σ = 9.75 x 10⁻¹¹ / 0.00076
σ = 1.28 x 10⁻⁷C/m²
3. What are the first steps that you should take if you are unable to get onto the Internet? (1 point)
O Check your router connections then restart your router.
O Plug the CPU to a power source and reboot the computer.
O Adjust the display properties and check the resolution.
Use the Control Panel to adjust the router settings.
Answer:
Check your router connections then restart your router.
Explanation:
Answer:
Check your router connections then restart your router.
Explanation:
Most internet access comes from routers so the problem is most likely the router.
A deep-space vehicle moves away from the Earth with a speed of 0.870c. An astronaut on the vehicle measures a time interval of 3.10 s to rotate her body through 1.00 rev as she floats in the vehicle. What time interval is required for this rotation according to an observer on the Earth
Answer:
t₀ = 1.55 s
Explanation:
According to Einstein's Theory of Relativity, when an object moves with a speed comparable to speed of light, the time interval measured for the event, by an observer in motion relative to the event is not the same as measured by an observer at rest.
It is given as:
t = t₀/[√(1 - v²/c²)]
where,
t = time measured by astronaut in motion = 3.1 s
t₀ = time required according to observer on earth = ?
v = relative velocity = 0.87 c
c = speed of light
3.1 s = t₀/[√(1 - 0.87²c²/c²)]
(3.1 s)(0.5) = t₀
t₀ = 1.55 s
Answer:
The time interval required for this rotation according to an observer on the Earth = [tex]6.29sec[/tex]Explanation:
Time interval required for this rotation according to an observer on the Earth is given as [tex]\delta t[/tex]
where,
[tex]t_o = 3.1\\\\v = 0.87[/tex]
[tex]\delta t = \frac{t_o}{\sqrt{1-\frac{v^2}{c^2}}}\\\\\delta t = \frac{3.1}{\sqrt{1-(\frac{0.87c}{c})^2}}\\\\\delta t = 6.29sec[/tex]
For more information visit
This problem explores the behavior of charge on conductors. We take as an example a long conducting rod suspended by insulating strings. Assume that the rod is initially electrically neutral. For convenience we will refer to the left end of the rod as end A, and the right end of the rod as end B. In the answer options for this problem, "strongly attracted/repelled" means "attracted/repelled with a force of magnitude similar to that which would exist between two charged balls.A. A small metal ball is given a negative charge, then brought near (i.e., within about 1/10 the length of the rod) to end A of the rod. What happens to end A of the rod when the ball approaches it closely this first time?
What happens to end A of the rod when the ball approaches it closely this first time?a. It is strongly repelled.b. It is strongly attracted.c. It is weakly attracted.d. It is weakly repelled.e. It is neither attracted nor repelled.
Answer:
e. It is neither attracted nor repelled.
Explanation:
Electrostatic attraction or repulsion occurs between two or more charged particles or conductors. In this case, if the negatively charged ball is brought close to the neutral end A of the rod, there would be no attraction or repulsion between the rod end A and the negatively charged ball. This is because a charged particle or conductor has no attraction or repulsion to a neutral particle or conductor.
A/An ____________________ is a small, flexible tube with a light and lens on the end that is used for examination. Question 96 options:
Answer:
"Endoscope" is the correct answer.
Explanation:
A surgical tool sometimes used visually to view the internal of either a body cavity or maybe even an empty organ like the lung, bladder, as well as stomach. There seems to be a solid or elastic tube filled with optics, a source of fiber-optic light, and sometimes even a sample, epidurals, suction tool, and perhaps other equipment for sample analysis or recovery.Adjust the mass of the refrigerator by stacking different objects on top of it. If the mass of the refrigerator is increased (with the Applied Force held constant), what happens to the acceleration
Answer:
The acceleration of the refrigerator together with the objects decreases.
Explanation:
If the mass of the refrigerator is increased by stacking more masses (objects) on it,
and the force applied remains constant, then we know from
F = ma
where
F is the applied force
m is the total mass of the refrigerator and the objects
a is the acceleration of the masses.
If F is constant, and m is increased, the acceleration will decrease
Answer:
The acceleration decreases.
Explanation:
its right
If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this?
Answer:
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Explanation:
Given:
wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m
Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m
Separation distance (D) = 5.4 cm = 0.054 m
Find:
Maximum altitude to see(L)
Computation:
Resolving power = 1.22(λ / d)
D / L = 1.22(λ / d)
0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]
0.054 / L = 1.22 [0.03 × 10⁻⁶]
L = 0.054 / 1.22 [0.03 × 10⁻⁶]
L = 0.054 / [0.0366 × 10⁻⁶]
L = 1.47 × 10⁶
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Which statement accurately describes the inner planets? Uranus is one of the inner planets. The inner planets formed when the solar system cooled. The inner planets are also called terrestrial planets. The inner planets are larger than the outer planets.
The correct answer is C. The inner planets are also called terrestrial planets.
Explanation:
Our solar system includes a total of eight planets. Additionally, planets are classified into broad categories including inner planets and outer planets. The inner planets category applies to planets such as Earth, Mercury, or Mars because these are located within the asteroid belt (region of asteroids between Mars and Jupiter). Moreover, inner planets differ from others due to their composition as they are composed of rocks and metals. Also, due to this composition, these are known as terrestrial planets. According to this, the statement that best describes inner planets is "The inner planets are also called terrestrial planets".
Answer:
The answer is c.) The inner planets are also called terrestrial planets.
Explanation:
A car travels at 45 km/h. If the driver breaks 0.65 seconds after seeing the traffic light turn yellow, how far will the car continue to travel before it begins to slow?
Answer:
8.1 m
Explanation:
Convert km/h to m/s.
45 km/h × (1000 m/km) × (1 h / 3600 s) = 12.5 m/s
Distance = speed × time
d = (12.5 m/s) (0.65 s)
d = 8.125 m
What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current
Answer:
Explanation:
From the question we are told that
The radius is [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]
The current is [tex]I = 4.5 \ A[/tex]
Generally the electric field is mathematically represented as
[tex]E = \frac{J}{\sigma }[/tex]
Where [tex]\sigma[/tex] is the conductivity of aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]
J is the current density which mathematically represented as
[tex]J = \frac{I}{A}[/tex]
Here A is the cross-sectional area which is mathematically represented as
[tex]A = \pi r^2[/tex]
[tex]A = 3.142 * (1.4*10^{-3})^2[/tex]
[tex]A = 6.158*10^{-6} \ m^2[/tex]
So
[tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]
[tex]J = 730757 A/m^2[/tex]
So
[tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]
[tex]E = 0.021 \ N/C[/tex]
A high school physics student claims her muscle car can achieve a constant acceleration of 10 ft/s/s. Her friend develops an accelerometer to confirm the feat. The accelerometer consists of a 1 ft long rod (mass=4 kg) with one end attached to the ceiling of the car, but free to rotate. During acceleration, the rod rotates. What will be the angle of rotation of the rod during this acceleration? Assume the road is flat and straight.
Answer: Ф = 17.2657 ≈ 17°
Explanation:
we simply apply ET =0 about the ending of the rod
so In.g.L/2sinФ - In.a.L/2cosФ = 0
g.sinФ - a.cosФ = 0
g.sinФ = a.cosФ
∴ tanФ = a/g
Ф = tan⁻¹ a / g
Ф = tan⁻¹ ( 10 / 32.17405)
Ф = tan⁻¹ 0.31080948777
Ф = 17.2657 ≈ 17°
Therefore the angle of rotation of the rod during this acceleration is 17.2657 ≈ 17°
A simple arrangement by means of which e.m.f,s. are compared is known
Answer:
A simple arrangement by means of which e.m.f,s. are compared is known as?
(a)Voltmeter
(b)Potentiometer
(c)Ammeter
(d)None of the above
Explanation:
If the
refractive index of benzere is 2.419,
what is the speed of light in benzene?
Answer:
[tex]v=1.24\times 10^8\ m/s[/tex]
Explanation:
Given that,
The refractive index of benzene is 2.419
We need to find the speed of light in benzene. The ratio of speed of light in vacuum to the speed of light in the medium equals the refractive index. So,
[tex]n=\dfrac{c}{v}\\\\v=\dfrac{c}{n}\\\\v=\dfrac{3\times 10^8}{2.419}\\\\v=1.24\times 10^8\ m/s[/tex]
So, the speed of light in bezene is [tex]1.24\times 10^8\ m/s[/tex].
Water flows at speed v in a pipe of radius R. At what speed does the water flow through a constriction in which the radius of the pipe is R/3
Answer:
v₂ = 9 v
Explanation:
For this exercise in fluid mechanics, let's use the continuity equation
v₁ A₁ = v₂ A₂
where v is the velocity of the fluid, A the area of the pipe and the subscripts correspond to two places of interest.
The area of a circle is
A = π R²
let's use the subscript 1 for the starting point and the subscript 2 for the part with the constraint
In this case v₁ = v and the area is
A₁ = π R²
in the second point
A₂= π (R / 3)²
we substitute in the continuity equation
v π R² = v₂ π R² / 9
v = v₂ / 9
v₂ = 9 v
Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup. You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured 1.1 Hz, for the 2 kg weight you measured 0.8 Hz. a) Find k (spring constant) and c (damping constant). Find a formula for the mass in terms of the frequency in Hz. Note that there may be more than one possible mass for a given frequency. b) For an unknown object you measured 0.2 Hz, what is the mass of the object? Suppose that you know that the mass of the unknown object is more than a kilogram.
Answer:
a) k = 95.54 N / m, c = 19.55 , b) m₃ = 0.9078 kg
Explanation:
In a simple harmonic movement with friction, we can assume that this is provided by the speed
fr = -c v
when solving the system the angular value remains
w² = w₀² + (c / 2m)²
They give two conditions
1) m₁ = 1 kg
f₁ = 1.1 Hz
the angular velocity is related to frequency
w = 2π f₁
Let's find the angular velocity without friction is
w₂ = k / m₁
we substitute
(2π f₁)² = k / m₁ + (c / 2m₁)²
2) m₂ = 2 kg
f₂ = 0.8 Hz
(2π f₂)² = k / m₂ + (c / 2m₂)²
we have a system of two equations with two unknowns, so we can solve it
we solve (c / 2m)² is we equalize the expression
(2π f₁)² - k / m₁ = (2π f₂²) 2 - k / m₁
k (1 / m₂ - 1 / m₁) = 4π² (f₂² - f₁²)
k = 4π² (f₂² -f₁²) / (1 / m₂ - 1 / m₁)
a) Let's calculate
k = 4 π² (0.8² -1.1²) / (½ -1/1)
k = 39.4784 (1.21) / (-0.5)
k = 95.54 N / m
now we can find the constant of friction
(2π f₁) 2 = k / m₁ + (c / 2m₁)²
c2 = ((2π f₁)² - k / m₁) 4m₁²
c2 = (4ππ² f₁² - k / m₁) 4 m₁²
let's calculate
c² = (4π² 1,1² - 95,54 / 1) 4 1²
c² = (47.768885 - 95.54) 8
c² = -382.1689
c = 19.55
b) f₃ = 0.2 Hz
m₃ =?
(2πf₃)² = k / m₃ + (c / 2m₃) 2
we substitute the values
(4π² 0.2²) = 95.54 / m₃ + 382.1689 2/4 m₃²
1.579 = 95.54 / m₃ + 95.542225 / m₃²
let's call
x = 1 / m₃
x² = 1 / m₃²
- 1.579 + 95.54 x + 95.542225 x² = 0
60.5080 x² + 60.5080 x -1 = 0
x² + x - 1.65 10⁻² = 0
x = [1 ±√ (1- 4 (-1.65 10⁻²)] / 2
x = [1 ± 1.03] / 2
x₁ = 1.015 kg
x₂ = -0.015 kg
Since the mass must be positive we eliminate the second results
x₁ = 1 / m₃
m₃ = 1 / x₁
m₃ = 1 / 1.1015
Light of wavelength 500 nm falls on two slits spaced 0.2 mm apart. If the spacing between the first and third dark fringes is to be 4.0 mm, what is the distance from the slits to a screen?
Answer:
L = 0.8 m
Explanation:
Since, the distance between first and third dark fringes is 4 mm. Therefore, the fringe spacing between consecutive dark fringes will be:
Δx = 4 mm/2 = 2 mm = 2 x 10⁻³ m
but,
Δx = λL/d
λ = wavelength of the light = 500 nm = 5 x 10⁻⁷ m
d = slit spacing = 0.2 mm = 0.2 x 10⁻³ m
L = Distance between slits and screen = ?
Therefore, using the values, we get:
2 x 10⁻³ m = (5 x 10⁻⁷ m)(L)/(0.2 x 10⁻³)
L = (2 x 10⁻³ m)(0.2 x 10⁻³ m)/(5 x 10⁻⁷ m)
L = 0.8 m
A nearsighted person has a far point that is 4.2 m from his eyes. What focal length lenses in diopters he must use in his contacts to allow him to focus on distant objects?
Answer:
-0.24diopters
Explanation:
The lens is intended that makes an object at infinity appear to be 4.2 m away, so do=infinity, dI = - 4.2m (minus sign because image is on same side of lens as object)
So 1/do +1/di = 1/f
1/infinity + 1/-4.2 = 1/f
1/f = 1/-4.2 = -0.24diopters
The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
OA. The mechanical waves reach Earth, while the electromagnetic waves do not.
OB. The electromagnetic waves reach Earth, while the mechanical waves do not.
OC. Both the mechanical waves and the electromagnetic waves reach Earth.
OD. Neither the mechanical waves nor the electromagnetic waves reach Earth.
Answer: The correct answer for this question is letter (B) The electromagnetic waves reach Earth, while the mechanical waves do not. The sun generates both mechanical and electromagnetic waves. Space, between the sun and the earth is a nearly vacuum. So mechanical wave can not spread out in the vacuum.
Hope this helps!
Answer:
The electromagnetic waves reach Earth, while the mechanical waves do not