Answer:
-24
Step-by-step explanation:
4(x+2−5x)
Combine like terms
4(2 -4x)
Distribute
8 -16x
Let x=2
8 - 16(2)
8 - 32
-24
how to evaluate 4(x+2−5x) when x=2
To Find :The value after evaluating Solution :We are provided that x equals 2 so have to put 2 instead of x to the desired result4(x + 2 - 5x)
Putting the value of x we get
4(2 + 2 - 5 × 2)
According to BODMAS multiplication comes first then addition
So 5 × 2 will be solved after that we will simplify 2 added with 2
4(2 + 2 - 10)
4(4 - 10)
4(-6)
- 24
Henceforth, the required answer is -24
The picture attached
Answer:
Step-by-step explanation:
m1 = 300
m2= 300(1+.05) = 300(1.05)
m3 = 300(1.05)(1.05)
m4= 300(1.05)(1.05)(1.05)
each subsequent month is the previous month times "1 + .05"
the "one" preserving the running total, and the extra ".05" adding the 5%
the repeating (1.05)(1.05)(1.05) is notational simplified using exponents
(1.05)(1.05)(1.05) = [tex](1.05)^{3}[/tex]
21 is 35% of what number (shown work)
Answer:
60
Step-by-step explanation:
Is means equals and of means multiply
21 = 35% * n
21 = .35*n
Divide each side by .35
21/.35 = .35n/.35
60 = n
Answer:
60
Step-by-step explanation:
35% of 60 is 21 its that simple
PLEASE HELP ASAP! NO SCAMS ALLOWED!
Answer:
Step-by-step explanation:
I used calculus for this, as I'm not sure there's any other way to do it and to do it as easily. This is the volume of a solid found by using the disk method of rotation:
[tex]V=\pi\int\limits^a_b {[R(x)]^2-[r(x)]^2} \, dx[/tex]
where R(x) is the outer shell of the solid and r(x) is the space inbetween the solid and the axis of rotation. There is no space between the solid and the axis of rotation, so r(x) = 0. R(x) is the height of the solid which is 3. Therefore, f(x) = 3 and that's the function we put into the formula with the lower bound of 3 and the upper bound of 5:
[tex]V=\pi\int\limits^5_3 {3^2}-0^2 \, dx[/tex] and
[tex]V-\pi\int\limits^5_3 {9} \, dx[/tex] and integrating:
[tex]V=\pi(9x\left \} {{5} \atop 3}} \right.[/tex] and using the First Fundamental Theorem of Calculus:
V = π(9(5) - 9(3)) and
V = π(45 - 27) so
V = 18π units cubed or in decimal format,
V = 56.549 units cubed
Simplify the expressions by combining like terms.
30) 4x + 3-x =
Step-by-step explanation:
the answer is -1. I have a picture, take a lot at it
Answer: 3x+3
Step-by-step explanation:
4x+3-x
= (4x-x) + 3
= 3x+3
WORKED EXAMPLES
Try Vertical Angle Problems
ZC and Dare vertical angles.
m_C=° and mZD=(-3x +80)°
What is mZC
Enter your answer in the box.
Answer:
M<C = 20°
Step-by-step explanation:
Because they’re vertical angles, that means they’re equal to each other so:
m<C = m<D
x = -3x + 80
x + 3x = 80
4x = 80
x = 20
Since m<C equals x, that means m<C is 20°
What is the measure of angle c?
Answer:
29.
Step-by-step explanation:
We know that all functions of any angle must add up to be 180 degrees. using this knowledge we take 54 and subtract it by 180.
That leaves us with 126.
We can safely assume the measurement of angle B, using the angle measured as 97.
This is due to the law of corresponding angles.
97 and angle B; correspond, so they must measure the same.
our sum of 126 subtracted by angle B (97) leaves us with the sum of 29.
Paul invests ₦4800 for 5 years at 3% per annum simple interest. Calculate the amount Paul has after 5 years.
Answer:
bạn cực ngu
Step-by-step explanation:
bạn cực kì ngu
What are the solutions to the system of equations graphed below?
Answer:
The answer is B (4, 8) and (0, -8)
Solve for a.
-4a – 2a – 7 = 11
a =
[?]
Answer:
or, -4a - 2a -7 = 11
or, -4a -2a =11 +7
or, - 6a = 18
or, a= 18÷ -6
a= -3
how many letters in the english alphabet preeced the letter v?
Answer:
21 letters
Step-by-step explanation:
A, B, C, D, E, F, G, H, I, J, K, L, M, NO, P, Q, R, S, T, U
The access code for a cars security system consists of 4 digits. The first digit cannot
be 0 and the last digit nust be even. How many different codes are available?
Answer:
4500
Step-by-step explanation:
The first digit can't be 0. so it will be a number from 1000 to 9999. That's a total of 9000 numbers (9999-1000+1=9000). Since the last digit must be an even number that is one half of the 9000 numbers which is 4500.
helphelphelphelphelphelphelp
Answer:
P = 1,-10
Q=1,-1
R=7,-1
S=7,-10
Compare the functions shown below:
Which function has the greatest maximum y-value?
Answer:Hey I'm sorry I didn't get to answer your question it's just that I need the points because I don't have enough to get help with my question. I hope you get the answer that you need for you question. Good Luck :)
Step-by-step explanation:
can someone please help? worth 10pts
Answer:
equation of the line would be y=-3x+7
Step-by-step explanation:
because the line goes 3 up and 1 behind for the next point ad the line is not y intercept 7
arrange0.2,¼,30%,10%in ascending and descending order
Answer:
Ascending- 10%, 0.2, 1/4, 30%
Descending- 30%, 1/4, 0.2, 10%
Step-by-step explanation:
0.2 = 2/10 = 4/20
1/4 = 5/20
30% = 30/100 = 6/20
10% = 10/100 = 2/20
Ascending
-2/20, 4/20, 5/20, 6/20
- 10%, 0.2, 1/4, 30%
Descending
- 6/20, 5/20, 4/20, 2/20
- 30%, 1/4, 0.2, 10%
Identify a positive coterminal angle for the angle shown below. You must answer in radians.
The probability of drawing a red candy at random from a bag of 25 candies is 2/5. After 5 candies are removed from tehe bag, what is the probability of randomly drawing a red candy from the bag?
Given:
The probability of drawing a red candy at random from a bag of 25 candies is [tex]\dfrac{2}{5}[/tex].
To find:
The probability of randomly drawing a red candy from the bag after removing 5 candies from the bag.
Solution:
Let n be the number of red candies in the bag. Then, the probability of getting a red candy is:
[tex]P(Red)=\dfrac{\text{Number of red candies}}{\text{Total candies}}[/tex]
[tex]\dfrac{2}{5}=\dfrac{n}{25}[/tex]
[tex]\dfrac{2}{5}\times 25=n[/tex]
[tex]10=n[/tex]
After removing the 5 candies from the bag, the number of remaining candies is [tex]25-5=20[/tex] and the number of remaining red candies is [tex]10-5=5[/tex].
Now, the probability of randomly drawing a red candy from the bag is:
[tex]P(Red)=\dfrac{5}{20}[/tex]
[tex]P(Red)=\dfrac{1}{4}[/tex]
Therefore, the required probability is [tex]\dfrac{1}{4}[/tex].
Solving just for X. Please help and thank you:)
The cost of tickets of a comedy show of 'Gaijatra' is Rs 700 for an adult and Rs 500 for a child. If a family paid Rs 3,100 for 5 tickets, how many tickets were purchased in each category?
Answer:
Step-by-step explanation:
We need to create a system of equations here, one for the NUMBER of tickets sold and one for the COST of the tickets. They are very much NOT the same thing.
We have that the total number of tickets is 5, and that that total is made up of adult tickets and child tickets. The equation for the NUMBER of tickets, then, is:
a + c = 5
Now for the money.
If a child ticket costs Rc 500, the expression that represents that that is in fact the cost of the child ticket is 500c;
likewise for the adult ticket. If the adult ticket costs Rc 700, the expression that represents that is 700a.
And we know that a total of Rs 1300 was spent on the tickets. The equation for the COST is
700a + 500c = 1300
Now go back to the first equation and solve it for either a or c, it doesn't matter which. I solved for a:
a = 5 - c and we will sub that into the second equation for a:
700(5 - c) + 500c = 1300 and
3500 - 700c + 500c = 1300 and
-200c = -400 so
c = 2 tickets. That means that there were
a = 3 tickets sold for the adults.
Which is the graph of y = RootIndex 3 StartRoot x EndRoot?
Given:
The equation is:
[tex]y=\sqrt[3]{x}[/tex]
To find:
The graph of the given equation.
Solution:
We have,
[tex]y=\sqrt[3]{x}[/tex]
The table of values is:
x y
-8 -2
-1 -1
0 0
1 1
8 8
Plot these points on a coordinate plane and connect them by a free hand curve as shown in the below graph.
Answer:
D
Step-by-step explanation:
edge 2020
work out the area of a semicircle take pi to be 3.142 11cm
Answer:
if the diameter is 11, them the answer is 47.52275cm
A car travels 32 km due north and then 46 km in a direction 40° west of north. Find the direction of the car's resultant vector. [?] Round to the nearest hundredth.
Answer:
Step-by-step explanation:
This requires some serious work before we even begin. First off, we will convert the km to meters:
32 km = .032 m
46 km = .046 m
And then we have to deal with the angle given as 40 degrees west of north. An angle 40 degrees west of north "starts" at the north end of the compass and moves towards the west (towards the left in a counterclockwise manner) 40 degrees. That means that the angle that is made with the negative x axis is a 50 degree angle. BUT the way angles are measured in standard form are from the positive x-axis, therefore:
40 degrees west of north = 50 degrees with the negative x axis = 130 degrees with the positive x axis. 130 is the angle measure we use. Phew! Now we're ready to start. Adding vectors requires us to use the x and y components of vectors in order to add them.
[tex]A_x=.032cos90.0[/tex] so
[tex]A_x=0[/tex] (the 90 degrees comes from "due north")
[tex]B_x=.046cos130[/tex] so
[tex]B_x=-.030[/tex] and if we add those to get the x component of the resultant vector, C:
[tex]C_x=-.030[/tex] And onto the y components:
[tex]A_y=.032sin90.0[/tex] so
[tex]A_y=.032[/tex]
[tex]B_y=.046sin130[/tex] so
[tex]B_y=.035[/tex] and if we add those together to get the y component of the resultant vector, C:
[tex]C_y=.067[/tex] Note that since [tex]C_x[/tex] is negative and [tex]C_y[/tex] is positive, the resultant angle (the direction) will put us into QII.
We find the magnitude of C:
[tex]C_{mag}=\sqrt{(-.030)^2+(.067)^2}[/tex]
We will round this after we take the square root to the thousandths place.
[tex]C_{mag}=.073m[/tex] and now for the angle:
[tex]\theta=tan^{-1}(\frac{.067}{-.030})[/tex] which gives us an angle measure of -67, but since we are in QII, we add 180 to that to get that, in sum:
The magnitude of the resultant vector is .073 m at 113°
The circumference of a circle is 257 cm. What is the area,
in
square
centimeters
Answer:
[tex]2\pi \times r = c[/tex]
[tex]\pi \times {r}^{2} = a[/tex]
A=5257.76
Step-by-step explanation:
Or use a calculator online.
What is the quotient when the polynomial 4x2 - 2x - 12 is divided by 2x - 4?
(1,-2),(-2,-5) find the slope and show me how u got it please
Answer:
where m= slope m= -7/3
Step-by-step explanation:
carly walks 30 feet in seven seconds. At this rate, how many minutes will it take for carly to walk a mile if there are 5,280 feet in one mile?
Answer:
20.53 minutes
Step-by-step explanation:
Speed = Distance/Time = 30/7
Time = Distance / Speed
= 5280/30/7
= 1232 seconds / 60 = 20.53 minutes
Answered by Gauthmath
which algebraic expression represents this word description the quotient of six and the sum of a number and eight
The number 804 is divisible by what numbers?
Answer: 804 is divisible by 1, 2, 3, 4, 6, 12 ,67 ,134 ,201, 268, 402 ,804
Answer:
The factors of 804 are: 1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402,804.
Step-by-step explanation:
2x^2-4x+8 when factored is
Answer:
[tex]2(x^{2} -2x+4)[/tex]
Step-by-step explanation:
[tex]2x^{2} -4x+8[/tex]
= [tex]2x^{2} -2*2x+2*4[/tex]
= [tex]2(x^{2} -2x+4)[/tex]
Find the number of terms, n, in the arithmetic series whose first term is 13, the common difference is 7, and the sum is 2613.
A26
B27
C23
D32
Answer:
A
Step-by-step explanation:
Recall that the sum of an arithmetic series is given by:
[tex]\displaystyle S = \frac{n}{2}\left(a + x_n\right)[/tex]
Where n is the number of terms, a is the first term, and x_n is the last term.
We know that the initial term a is 13, the common difference is 7, and the total sum is 2613. Since we want to find the number of terms, we want to find n.
First, find the last term. Recall that the direct formula for an arithmetic sequence is given by:
[tex]x_n=a+d(n-1)[/tex]
Since the initial term is 13 and the common difference is 7:
[tex]x_n=13+7(n-1)[/tex]
Substitute:
[tex]\displaystyle S = \frac{n}{2}\left(a + (13+7(n-1)\right)[/tex]
We are given that the initial term is 13 and the sum is 2613. Substitute:
[tex]\displaystyle (2613)=\frac{n}{2}((13)+(13+7(n-1)))[/tex]
Solve for n. Multiply both sides by two and combine like terms:
[tex]5226 = n(26+7(n-1))[/tex]
Distribute:
[tex]5226 = n (26+7n-7)[/tex]
Simplify:
[tex]5226 = 7n^2+19n[/tex]
Isolate the equation:
[tex]7n^2+19n-5226=0[/tex]
We can use the quadratic formula:
[tex]\displaystyle x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
In this case, a = 7, b = 19, and c = -5226. Substitute:
[tex]\displaystyle x =\frac{-(19)\pm\sqrt{(19)^2-4(7)(-5226)}}{2(7)}[/tex]
Evaluate:
[tex]\displaystyle x = \frac{-19\pm\sqrt{146689}}{14} = \frac{-19\pm 383}{14}[/tex]
Evaluate for each case:
[tex]\displaystyle x _ 1 = \frac{-19+383}{14} = 26\text{ or } x _ 2 = \frac{-19-383}{14}=-\frac{201}{7}[/tex]
We can ignore the second solution since it is negative and non-natural.
Therefore, there are 26 terms in the arithmetic series.
Our answer is A.