the sine and cosine of the two non-right angles in a right triangle are related to each other by their complementary nature.
How to find middle angle?
In a right triangle, the middle angle is the angle opposite the hypotenuse. To find this angle using trigonometry, you can use either the sine, cosine, or tangent ratio. Let's say that the two legs of the right triangle are a and b, and the hypotenuse is c. Then, you can use the following trig ratios to find the middle angle:
Sine ratio: sin(theta) = a/c
Cosine ratio: cos(theta) = b/c
Tangent ratio: tan(theta) = a/b
To find the middle angle, you would use the inverse sine, cosine, or tangent function, depending on which ratio you used. For example, if you used the sine ratio, you would take the inverse sine of a/c to find the angle: theta = sin²-1(a/c).
What is the relationship between the sine and cosine of the two non-right angles in a right triangle, and how do they define the ratios sine, cosine, and tangent?
In a right triangle, the two non-right angles are complementary, which means that their sum is 90 degrees. Let's call these angles alpha and beta. The sine and cosine of these angles are defined as follows:
Sine of alpha: sin(alpha) = opposite leg / hypotenuse
Cosine of alpha: cos(alpha) = adjacent leg / hypotenuse
Sine of beta: sin(beta) = adjacent leg / hypotenuse
Cosine of beta: cos(beta) = opposite leg / hypotenuse
Note that the opposite and adjacent legs are relative to the angle being considered. The ratios sine, cosine, and tangent are defined in terms of these ratios:
Sine ratio: sin(theta) = opposite leg / hypotenuse
Cosine ratio: cos(theta) = adjacent leg / hypotenuse
Tangent ratio: tan(theta) = opposite leg / adjacent leg
Therefore, the sine and cosine of the two non-right angles in a right triangle are related to each other by their complementary nature. If you know the value of one of these ratios, you can use it to find the value of the other using the fact that sin(alpha) = cos(beta) and cos(alpha) = sin(beta). This relationship is known as the complementary angle identities.
To know more about Complementary Angle questions, visit:
https://brainly.com/question/14753399
#SPJ1
1(1/2)= 1 1/2 draw number line and represent this
|-----|-----|-----|----|-----|-----|--│--|-----|----|-----|
-5 -4 -3 -2 -1 0 1 │ 2 3 4 5
1 1/2
On this number line, the tick mark labeled "1 1/2" is located halfway between the integer values of 1 and 2.
To represent the number 1 1/2 on a number line, we need to draw a horizontal line with evenly spaced tick marks. Each tick mark represents a specific value on the number line. Since 1 1/2 is a mixed number that includes a whole number (1) and a fraction (1/2), we need to locate it between the integer values of 1 and 2. The tick mark for 1 1/2 should be halfway between these two integers, which means it would be located at the midpoint of the line segment that connects the tick marks for 1 and 2. By placing the tick mark for 1 1/2 in the correct position on the number line, we can accurately represent this number visually.
Learn more about the number line: brainly.com/question/16191404
#SPJ4
The probability distribution of the amount of memory X (GB) in a purchased flash drive is given below. x 1 2 4 8 16 p(x) .05 .10 .35 .40.10 Compute the following: E(X), E(X2), V(X), E(3x + 2), E (3X² + 2), V (3x + 2), E(X +1), V(X + 1).
To solve the question asked, you can say: Therefore, the final answers expressions are: E(X) = 5.8; E(X²) = 59.8; V(X) = 21.16 and E(3X + 2) = 20.4
what is expression ?In mathematics, an expression is a set of numbers, variables, and mathematical operations such as addition, subtraction, multiplication, division, and exponentiation that represent quantities or values. Expressions can be as simple as "3 + 4" or as complex as they can contain functions like "sin(x)" or "log(y)" . Expressions can be evaluated by substituting values for variables and performing mathematical operations in the order specified. For example, if x = 2, the expression "3x + 5" is 3(2) + 5 = 11. In mathematics, formulas are often used to describe real-world situations, create equations, and simplify complex math problems.
To calculate these values, we first need to compute the mean (expected value) and variance of X, which are given by:
E(X) = ∑[x * p(x)]
= 1 * 0.05 + 2 * 0.10 + 4 * 0.35 + 8 * 0.40 + 16 * 0.10
= 5.8
E(X²) = ∑[x² * p(x)]
= 1² * 0.05 + 2² * 0.10 + 4² * 0.35 + 8² * 0.40 + 16² * 0.10
= 59.8
V(X) = E(X²) - [E(X)]²
= 59.8 - 5.8²
= 21.16
E(3X + 2) = 3E(X) + 2
= 3(5.8) + 2
= 20.4
E(3X² + 2) = 3E(X²) + 2
= 3(59.8) + 2
= 179.4
V(3X + 2) = V(3X)
= 9V(X)
= 9(21.16)
= 190.44
E(X + 1) = E(X) + 1
= 5.8 + 1
= 6.8
V(X + 1) = V(X)
= 21.16
Therefore, the final answers are:
E(X) = 5.8
E(X²) = 59.8
V(X) = 21.16
E(3X + 2) = 20.4
E(3X² + 2) = 179.4
V(3X + 2) = 190.44
E(X + 1) = 6.8
V(X + 1) = 21.16
To know more about expressions visit :-
https://brainly.com/question/14083225
#SPJ1
find the derivative of y equals 5 x squared sec to the power of short dash 1 end exponent (2 x minus 3 )
The derivative of the given function [tex]y = 5x^2 sec^{(-1)(2x-3)^2}[/tex] is [tex]dy/dx=-20x\sqrt{((2x-3)^2-1)}[/tex]
It can be derived as:
We can use the chain rule and the derivative of [tex]sec^{(-1)x}[/tex] which is [tex]-1/(x*\sqrt{(x^2-1)})[/tex]
First, we apply the chain rule to the function.
Let [tex]u = (2x-3)^2[/tex], then:
[tex]y = 5x^2 sec^{(-1)u}[/tex]
[tex]dy/dx = d/dx [5x^2 sec^{(-1)u}][/tex]
[tex]dy/dx = d/dx [5x^2 sec^{(-1)[(2x-3)^2]}][/tex]
[tex]dy/dx= 5x^2 d/dx[sec^{(-1)u}][/tex] (Using the chain rule)
Now, let [tex]v = u^{(1/2)} = (2x-3)[/tex].
Then:
[tex]dy/dx = 5x^2 d/dv [sec^{(-1)v}] dv/dx[/tex] (Using the chain rule again)
We have:
[tex]d/dv [sec^{(-1)v}] = -1/(v*\sqrt{(v^2-1)}) = -1/[(2x-3)*\sqrt{((2x-3)^2-1)}][/tex]
Also, [tex]dv/dx = 2[/tex]
Substituting these back into the equation:
[tex]dy/dx = 5x^2 d/dv [sec^{(-1)v}] dv/dx[/tex]
[tex]dy/dx= 5x^2 (-1/[(2x-3)*\sqrt{((2x-3)^2-1)}] (2)[/tex]
Simplifying this expression gives:
[tex]dy/dx = -20x (2x-3)/[(2x-3)*\sqrt{((2x-3)^2-1)}][/tex]
[tex]dy/dx = -20x\sqrt{((2x-3)^2-1)}[/tex]
Therefore, the derivative of y with respect to x is:
[tex]dy/dx = -20x\sqrt{((2x-3)^2-1)}[/tex]
To practice more questions about derivative:
https://brainly.com/question/12047216
#SPJ11
Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt.x2+y2=100a) Find dy/dt when x=6, y=8 given that dx/dt=4.b) Find dx/dt when x=8, y=6 given that dy/dt=-2.
a) When x = 6 and y = 8, and dx/dt = 4, the value of dy/dt is -3.
Using implicit differentiation, we have:
2x(dx/dt) + 2y(dy/dt) = 0
Solving for dy/dt, we get:
dy/dt = -(x/y)(dx/dt)
Substituting x = 6, y = 8, and dx/dt = 4, we get:
dy/dt = -(6/8)(4) = -3
Therefore, when x = 6 and y = 8, and dx/dt = 4, the value of dy/dt is -3.
b) Using implicit differentiation again, we have:
2x(dx/dt) + 2y(dy/dt) = 0
Solving for dx/dt, we get:
dx/dt = -(y/x)(dy/dt)
Substituting x = 8, y = 6, and dy/dt = -2, we get:
dx/dt = -(6/8)(-2) = 1.5
Therefore, when x = 8 and y = 6, and dy/dt = -2, the value of dx/dt is 1.5.
To find the values of dy/dt and dx/dt, we used implicit differentiation, which is a technique used to find the derivative of an equation that is not expressed in the form y = f(x).
In this case, we had the equation x^2 + y^2 = 100, and we differentiated both sides of the equation with respect to t. Then, we solved for the required derivative using the given values of x, y, and the other derivative.
For more questions like Function click the link below:
https://brainly.com/question/12431044
#SPJ11
If a first sample has a sample variance of 12 and a second sample has a sample variance of 22 , which of the following could be the value of the pooled sample variance? 1 10 16 25
The value of the pooled sample variance is 25 when the first sample has a sample variance of 12 and a second sample has a sample variance of 22.
If a first sample has a sample variance of 12 and a second sample has a sample variance of 22, then the possible values of the pooled sample variance are given by the formula below:
Formula:
pooled sample variance = [(n₁ - 1) s₁² + (n₂ - 1) s₂²] / (n₁ + n₂ - 2)
Where s₁ and s₂ are the sample standard deviations of the first and second samples,
n₁ and n₂ are the sample sizes of the first and second samples, respectively.
Thus, substituting the given values into the formula above, we have pooled sample variance:
= [(n₁ - 1) s₁² + (n₂ - 1) s₂²] / (n₁ + n₂ - 2)
= [(n₁ - 1) 12 + (n₂ - 1) 22] / (n₁ + n₂ - 2)
Checking each of the answer options:
If pooled sample variance is 1, then:
(n₁ - 1) 12 + (n₂ - 1) 22
= (n₁ + n₂ - 2)(1)
= 12n₁ + 22n₂ - 34
= (12n₁ - 12) + (22n₂ - 22)
= 12(n₁ - 1) + 22(n₂ - 1)
The expression on the right-hand side of the equation is a sum of multiples of 12 and 22, and therefore, the expression itself will be a multiple of the greatest common divisor of 12 and 22, which is 2.
Since 34 is not a multiple of 2, the equation cannot be true if the pooled sample variance is 1.
Thus, 1 is not a possible value of the pooled sample variance.
If pooled sample variance is 10, then:
(n₁ - 1) 12 + (n₂ - 1) 22
= (n₁ + n₂ - 2)(10)
= 12n₁ + 22n₂ - 34
= (12n₁ - 12) + (22n₂ - 22)
= 12(n₁ - 1) + 22(n₂ - 1)
The expression on the right-hand side of the equation is a sum of multiples of 12 and 22, and therefore, the expression itself will be a multiple of the greatest common divisor of 12 and 22, which is 2.
Since 34 is not a multiple of 2, the equation cannot be true if the pooled sample variance is 10.
Thus, 10 is not a possible value of the pooled sample variance.
If pooled sample variance is 16, then:
(n₁ - 1) 12 + (n₂ - 1) 22
= (n₁ + n₂ - 2)(16)
= 12n₁ + 22n₂ - 34
= (12n₁ - 12) + (22n₂ - 22)
= 12(n₁ - 1) + 22(n₂ - 1)
The expression on the right-hand side of the equation is a sum of multiples of 12 and 22, and therefore, the expression itself will be a multiple of the greatest common divisor of 12 and 22, which is 2.
Since 34 is not a multiple of 2, the equation cannot be true if the pooled sample variance is 16.
Thus, 16 is not a possible value of the pooled sample variance.
If pooled sample variance is 25, then:
(n₁ - 1) 12 + (n₂ - 1) 22
= (n₁ + n₂ - 2)(25)
= 12n₁ + 22n₂ - 34
= (12n₁ - 12) + (22n₂ - 22)
= 12(n₁ - 1) + 22(n₂ - 1)
The expression on the right-hand side of the equation is a sum of multiples of 12 and 22, and therefore, the expression itself will be a multiple of the greatest common divisor of 12 and 22, which is 2.
Since 46 is a multiple of 2, the equation can be true if the pooled sample variance is 25.
Thus, 25 is a possible value of the pooled sample variance.
Learn more about sample variance here:
brainly.com/question/29077187
#SPJ11
Brittany needed new tires for her truck. She went to the auto shop and bought 4 tires on sale for $85.95 each. The salesman told her that she saved a total of $96.16. If Brittany saved the same amount on each tire, what was the original price of each tire?
The best solution gets brainlist
Answer:
$109.99
Step-by-step explanation:
The original price of each tire is [tex]\[/tex][tex]109.99[/tex]
Solution:Take the amount saved and divide by 4 to find the amount saved on each tire
[tex]96.16\div4 =24.04[/tex]
Add that to the sale price of each tire to find the original price
[tex]85.95+24.04 =109.99[/tex]
Therefore, The original price is $109.99.
Education Planning For the past 15 years, an employee of a large corporation has been investing in an employee sponsored educational savings plan. The employee has invested $8,000 dollars per year. Treat the investment as a continuous stream with interest paid at a rate of 4.2% compounded continuously.
a. What is the present value of the investment?
b. How much money would have had to be invested 15 years ago and compounded at 4.2% compounded continuously to grow to the amount found in part a?
The amount that would have had to be invested 15 years ago and compounded at 4.2% compounded continuously to grow to the present value is $37,537.19.
The investment can be treated as a continuous stream with the interest paid at a rate of 4.2% compounded continuously.The present value of the investment can be calculated using the formula:P = C/e^(rt)Where,P = Present ValueC = Cash Flowsr = Interest Rate Per Periodt = Number of Periodse = Euler’s numberThe given values are as follows:C = $8,000 per yearr = 4.2% compounded continuously for 15 years.
C = $8,000e = 2.71828t = 15 yearsNow, we need to calculate the present value using the above formula.P = 8000/e^(0.042 x 15) = $82,273.24.The formula to calculate the amount that would have been invested 15 years ago is:A = P x e^(rt)Where,A = Future Value of the investmentP = Present Value of the investmentr = Rate of Interest Per Periodt = Number of Periodse = Euler’s numberThe present value of the investment is $82,273.24.
The rate of interest is 4.2% compounded continuously.t = 15 yearsNow, we need to calculate the amount that would have been invested 15 years ago.A = 82,273.24 x e^(0.042 x 15) = $37,537.19
Learn more about Invested
brainly.com/question/15105766
#SPJ11
Select the correct solution for the expression. 2 5 + 3 8 2 5 + 3 8 A. 2 5 + 3 8 = 5 13 2 5 + 3 8 = 5 13 B. 16 40 + 15 40 = 31 40 16 40 + 15 40 = 31 40 C. 10 40 + 24 40 = 34 40 10 40 + 24 40 = 34 40 D. 2 5 + 3 8 = 6 40
In response to the stated question, we may state that As a result, the equation proper answer is: B. 16/40 + 15/40 = 31/40
What is equation?An equation in mathematics is a statement that states the equality of two expressions. An equation is made up of two sides that are separated by an algebraic equation (=). For example, the argument "2x + 3 = 9" asserts that the phrase "2x + 3" equals the number "9". The purpose of equation solving is to determine the value or values of the variable(s) that will allow the equation to be true. Equations can be simple or complicated, regular or nonlinear, and include one or more elements. In the equation "x2 + 2x - 3 = 0," for example, the variable x is raised to the second power. Lines are utilised in many different areas of mathematics, such as algebra, calculus, and geometry.
We must identify a common denominator for the two fractions in order to solve the formula 2/5 + 3/8. Because 40 is the lowest common multiple of 5 and 8, we can transform both fractions to have a denominator of 40:
2/5 = 16/40
3/8 = 15/40
We can now sum the two fractions:
16/40 + 15/40 = 31/40
As a result, the proper answer is:
B. 16/40 + 15/40 = 31/40
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
Reduce each expression to a polynomial
((y-b)^(2))/(y-b+1)+(y-b)/(y-b+1)
The given expression ((y-b)²/(y-b+1)+(y-b)/(y-b+1) after being reduced to a polynomial, can be represented as y-b.
In order to reduce the given equation to a polynomial, we are required to simplify and combine like terms. First, we can simplify the expression in the numerator by expanding the square:
((y-b)²/(y-b+1) = (y-b)(y-b)/(y-b+1) = (y-b)²/(y-b+1)
Now, we can combine the two terms in the equation by finding a common denominator:
(y-b)²/(y-b+1) + (y-b)/(y-b+1) = [(y-b)² + (y-b)]/(y-b+1)
Next, we can combine the terms in the numerator by factoring out (y-b):
[(y-b)² + (y-b)]/(y-b+1) = (y-b)(y-b+1)/(y-b+1)
Finally, we can cancel out the common factor of (y-b+1) in the numerator and denominator to get the polynomial:
(y-b)(y-b+1)/(y-b+1) = y-b
Therefore, the equation ((y-b)²)/(y-b+1)+(y-b)/(y-b+1) after being simplified, is equivalent to the polynomial y-b.
Learn more about polynomials :
https://brainly.com/question/30127172
#SPJ4
Does someone mind helping me with this problem? Thank you!
the answer to the problem that you need to is 1024
first 6 terms of n² + 7
Answer:
8, 11, 16, 23, 32, and 43.
Step-by-step explanation:
When n = 1:
n² + 7 = 1² + 7 = 8
When n = 2:
n² + 7 = 2² + 7 = 11
When n = 3:
n² + 7 = 3² + 7 = 16
When n = 4:
n² + 7 = 4² + 7 = 23
When n = 5:
n² + 7 = 5² + 7 = 32
When n = 6:
n² + 7 = 6² + 7 = 43
Therefore, the first 6 terms of n² + 7 are 8, 11, 16, 23, 32, and 43.
Answer:
When n = 1, n² + 7 = 1² + 7 = 8
When n = 2, n² + 7 = 2² + 7 = 11
When n = 3, n² + 7 = 3² + 7 = 16
When n = 4, n² + 7 = 4² + 7 = 23
When n = 5, n² + 7 = 5² + 7 = 32
When n = 6, n² + 7 = 6² + 7 = 43
The first 6 terms of n² + 7 are 8, 11, 16, 23, 32, and 43.
Step-by-step explanation:
ᓚᘏᗢ
hope u have a good day man
These tables represent an exponential function. Find the average rate of
change for the interval from x = 8 to x = 9.
OA. 6561
B. 19,683
O C. 13,122
OD. 3
X
2456710
3
y
1
3
9
27
81
243
729
Interval
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
Average rate
of change
2
6
18
54
162
486
Jx3
Jx3
Jx3
Jx3
Jx3
The average rate of change for the interval from x = 8 to x = 9 is 13,122 (3⁸to 3⁹).
What is function?Function is a self-contained block of code that performs a specific task. It is used to separate logical code into separate parts and make the code more manageable. A function can accept inputs, known as parameters, and return an output, known as a return value. Functions can be reused throughout a program, making the code more efficient and easier to debug.
This can be calculated by subtracting the starting value (3⁸ = 6561) from the ending value (3⁹ = 19683) and then dividing the result by the interval (9 - 8 = 1). Mathematically, this is expressed as (19683 - 6561) / (9 - 8) = 13,122. This result shows that the rate of change for the exponential function between x = 8 and x = 9 is 13,122.
To know more about function click-
https://brainly.com/question/25841119
#SPJ1
a ball is dropped from a height of 6 ft. assuming that on each bounce, the ball rebounds to one-third of its previous height, find the total distance traveled by the ball.
A ball is dropped from a height of 6 ft. assuming that on each bounce, the ball rebounds to one-third of its previous height, the total distance traveled by the ball is approximately 11.926 feet.
How do we calculate the total distance?We have to calculate the distance traveled by the ball with the help of the given data, as shown below;The first height of the ball is 6 feet. Distance traveled by the ball at the first instance = 6 feet.The ball rebounds to one-third of its previous height, and the ball goes to a height of:6/3 = 2 feet.
Distance traveled by the ball after the first bounce = 6 + 2 + 2 = 10 feet.The ball rebounds again to one-third of its previous height, and the ball goes to a height of:2/3 = 0.6667 feet. Distance traveled by the ball after the second bounce = 10 + 0.6667 + 0.6667 = 11.3334 feet.
The ball rebounds again to one-third of its previous height, and the ball goes to a height of:0.6667/3 = 0.2222 feet. Distance traveled by the ball after the third bounce = 11.3334 + 0.2222 + 0.2222 = 11.7778 feet. The ball rebounds again to one-third of its previous height, and the ball goes to a height of:0.2222/3 = 0.0741 feet.
Distance traveled by the ball after the fourth bounce = 11.7778 + 0.0741 + 0.0741 = 11.926 feet. Therefore, the total distance traveled by the ball is approximately 11.926 feet.
See more about total distance at: https://brainly.com/question/29409777
#SPJ11
WILL YOU CRACK THE CODE ? 8 2 One number is correct and well placed One number is correct but wrong place Two numbers are correct but wrong places 3 8 Nothing is correct CODE 8 One number is correct but wrong place
Cracking the code: 8 2One number is correct and well placed One number is correct but in the wrong placeTwo numbers are correct but in the wrong place38Nothing is correctCODE8One number is correct but in the wrong placeCracking the code of this sequence of numbers can be a bit tricky, but let's do it step by step. We are given the following clues about the sequence of numbers:
One number is correct and well placed: Since the sequence of numbers is 8 2, we know that the number 8 is in the first position. So the code is either 8 _ _ _ or _ _ _ 8.One number is correct but in the wrong place: This clue tells us that the number 2 is not in the second position of the code, but it is somewhere else.
Therefore, we know that the code is not 8 2 _ _ or _ _ 2 8.Two numbers are correct but in the wrong places: This clue tells us that the code contains the numbers 3 and 8, but they are in the wrong position. Since the code cannot be 8 2 _ _ or _ _ 2 8, we know that the two correct numbers are not in the last two positions. Therefore, the code must be _ 3 8 _ or _ 8 3 _.Nothing is correct: This clue tells us that the code cannot be 3 8 _, 8 3 _, or _ 3 8 because they all contain at least one correct number. Therefore, the code must be _ _ 3 8 or 3 8 _ _.One number is correct but in the wrong place: This clue tells us that the code cannot be 3 8 _, so it must be 8 3 _. Therefore, the code is 8 3 _ _.I hope this helps you crack the code!
for such more questions on sequence of numbers
https://brainly.com/question/30983233
#SPJ11
Please help!
The object above is symmetrical through Z. If Y = 11 inches, Z = 13 inches, and H = 6 inches, what is the area of the object?
A. 6.5 square inches
B. 78 square inches
C. 31 square inches
D. 156 square inches
the correct area of the symmetrical object is option (B). 78 square inches.
Definition of SymmetryIf two more identical parts can be separated from a form and arranged in an orderly fashion, the shape is said to be symmetrical. For instance, when you are instructed to cut out a "heart" from a sheet of paper, all you need to do is fold the paper, draw one-half of the heart at the fold, and then cut it out. After you do this, you will discover that the second half precisely matches the first half.
In the first part of the object
Area of the object=½×H×Z
=½×13×6
=39 square inches
Given that object above is symmetrical through Z.
So, the area of 2nd part of object will also be 39 square inches
Hence total area is 78 square inches.
to know more about area, visit:
https://brainly.com/question
#SPJ1
If 140 men working 10 hours a day can build a house in 16 days, find out how many men will build same kind of house in 12 days by working 13 hours a day?
We need 144 men to build the house in 12 days working 13 hours a day.
Let M be the number of men needed to build the house in 12 days working 13 hours a day.
140 x 10 x 16 = M x 13 x 12
Simplifying the equation, we get:
22400 = 156M
Dividing both sides by 156, we get:
M = 144.1
An equation in mathematics is a statement that two expressions are equal. It consists of two sides, the left-hand side (LHS) and the right-hand side (RHS), separated by an equal sign (=). The expressions on either side can be numbers, variables, or combinations of both. The equation expresses that the values of the expressions on both sides are equivalent.
Equations play a fundamental role in many areas of mathematics and are used to model various real-world situations, such as physics, engineering, and finance. They can be solved using various techniques, such as substitution, elimination, or graphing, to find the values of the variables that satisfy the equation.
To learn more about Equation visit here:
brainly.com/question/29538993
#SPJ4
round 0.956 to one decimal place
Answer: 0.96
Step-by-step explanation:
To round 0.956 to one decimal place, we need to look at the second decimal place (the hundredths place), which is 5. Since 5 is greater than or equal to 5, we need to round up the first decimal place (the tenths place), which is 9. Therefore, the rounded number to one decimal place is:
0.956 rounded to one decimal place = 0.96
The population of a town is given by the equation p = 200,000 3/4t where t is the number of years since the population was first recorded in the year 2010 Fill in the table below.
The population increase according to the given years will be 27500, 23750 and 20833.
What is multiplication?Mathematicians use multiplication to calculate the product of two or more integers. It is a fundamental operation in mathematics that is frequently used in everyday living. When we need to combine sets of similar sizes, we use multiplication. The fundamental concept of repeatedly adding the same number is represented by the process of multiplication. The results of multiplying two or more numbers are known as the product of those numbers, and the factors that are compounded are referred to as the factors. Repeated adding of the same number is made easier by multiplying the number.
In this question,
p = 200,000 3/4t
When t=0
p=0
When t=1
p= 20000 3/4= 27500
when t=2
p= 20000 3/8 = 23750
When t=3
p= 20000 3/12 = 20833
To know more about multiplication visit
https://brainly.com/question/5992872
#SPJ1
PLEASE HELP FIRST CORRECT WILL GET BRAINLIEST
Answer: Felipe has walked 25.1 meters.
Step-by-step explanation:
Felipe walks the length of his living room, which is 9.1 meters. He then turns and walks the width of his living room, which is 3.5 meters. Finally, he walks back to the corner he started from, which is another 9.1 meters.
The total distance that Felipe has walked is the sum of the distances he covered in each of these three parts of his walk. So, we need to add up 9.1 meters, 3.5 meters, and 9.1 meters to get the total distance.
9.1 m + 3.5 m + 9.1 m = 21.7 m
Therefore, Felipe has walked 21.7 meters so far. However, he still needs to walk back to the corner he started from. This distance is equal to the diagonal of the rectangle formed by his living room.
We can use the Pythagorean theorem to find the length of this diagonal. The length and width of the rectangle are 9.1 meters and 3.5 meters, respectively. Let d be the length of the diagonal, then:
d² = 9.1² + 3.5²
d² = 83.06
d ≈ 9.11 meters
Therefore, the total distance that Felipe has walked is approximately:
21.7 m + 9.11 m ≈ 25.1 m
So, Felipe has walked about 25.1 meters.
Answer:
Felipe has walked 25.2 meters in total.
Step-by-step explanation:
To find out how far Felipe has walked, we need to calculate the perimeter of his living room. The perimeter is the distance around the outside of a shape.
The formula for the perimeter of a rectangle is:
perimeter = 2(length + width)
Given that the length of Felipe's living room is 9.1 meters and the width is 3.5 meters, we can substitute these values into the formula and get:
perimeter = 2(9.1 + 3.5)
perimeter = 2(12.6)
perimeter = 25.2 meters
Write the equation of a line that is perpendicular to y=½x - 9 and passes through the point (3, -2).
Answer:
y = - 2x + 4
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = [tex]\frac{1}{2}[/tex] x - 9 ← is in slope- intercept form
with slope m = [tex]\frac{1}{2}[/tex]
given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{1}{2} }[/tex] = - 2 , then
y = - 2x + c ← is the partial equation
to find c substitute (3, - 2 ) into the partial equation
- 2 = - 2(3) + c = - 6 + c ( add 6 to both sides )
4 = c
y = - 2x + 4 ← equation of perpendicular line
If you are given the opposite side and hypotenuse, which trig function should you us?
A. Contangent
B. Cosine
C. Tangent
D. Sine
Answer:D
Step-by-step explanation:
The formula for sine is opposite/hypotenuse. This is the only formula that you can use with the given information.
Joan has a credit limit of $900. Her new balance is $450. What is Joan's available credit?
Hi!
Let's write this out.
Her limit is $900, and she's used $450. So, we subtract 450 from 900.
900-450 = 450.
So, she has $450 available credit left.
Hope this helps!
~~~PicklePoppers~~~
Answer: your credit utilization ratio on that card would be 50% but the answer is 450
Step-by-step explanation:
900-450 = 450
At which values in the interval [0, 2π) will the functions f (x) = 2cos2θ and g(x) = −1 − 4cos θ − 2cos2θ intersect?
a: theta equals pi over 3 comma 4 times pi over 3
b: theta equals pi over 3 comma 5 times pi over 3
c: theta equals 2 times pi over 3 comma 4 times pi over 3
d: theta equals 2 times pi over 3 comma 5 times pi over 3
The values in the interval [0, 2π) for which the two points would intersect as required is; Choice C; theta equals 2 times pi over 3 comma 4 times pi over 3.
What values of θ make the two functions intersect?Recall from the task content; the given functions are;
f (x) = 2cos2θ and g(x) = −1 − 4cos θ − 2cos2θ
Therefore, for intersection; f (θ) and g(θ):
2 cos²θ = −1 − 4cos θ − 2cos²θ
4cos²θ + 4cosθ + 1 = 0
let cos θ = y;
4y² + 4y + 1 = 0
y = -1/2
Therefore; -1/2 = cos θ
θ = cos-¹ (-1/2)
θ = 2π/3, 4π/3.
Ultimately, the correct answer choice is; Choice C; theta equals 2 times pi over 3 comma 4 times pi over 3.
Read more on trigonometry;
https://brainly.com/question/24334139
#SPJ1
Can i get assistance with this?
Answer:
see attached
Step-by-step explanation:
You want the given triangle dilated by a factor of -3 about point A.
DilationTo find the image point corresponding to a pre-image point, multiply the pre-image point's distance from A by the dilation factor. The negative sign means the distance to the image point is measured in the opposite direction.
In the attached figure, the chosen point is 4 units up and 5 units right of A. Its image in the dilated figure is 3·4 = 12 units down, and 3·5 = 15 units left of A.
This same process can be used to locate the other vertices of the triangle's image.
HELP!!
Write a quadratic equation in standard form that has solutions of -3 and -4.
Answer:
If a quadratic equation has solutions of -3 and -4, then it can be written in factored form as:
(x + 3)(x + 4) = 0
To convert this to standard form, we can multiply out the factors:
x^2 + 7x + 12 = 0
Therefore, the quadratic equation in standard form that has solutions of -3 and -4 is:
x^2 + 7x + 12 = 0
Samuel bought four adult tickets to a movie for $48. Erica bought 3 adult tickets to a movie at a different theater. Erica paid $2.50 more than Samuel for each movie ticket she bought. How much did Erica spend on her movie ticket purchase?
Answer: £43.50
Step-by-step explanation:
each ticket from samuel is £12 if erica is spending £2.50 more per ticket that is £14.50 per ticket. £14.50 x 3 = £43.50
when calculating confidence intervals in this class the product of a constant times a margin of error is added and subtracted to what value to obtain the ci range? group of answer choices mean standard deviation alpha median
The confidence interval is calculated by adding and subtracting the product of a constant (usually 1.96), the margin of error, and the mean.
The constant times the margin of error is added and subtracted from the sample mean to obtain the confidence interval range.
A standard deviation (or σ) is a measure of how dispersed the data is in relation to the mean.
A low standard deviation means data are clustered around the mean, and a high standard deviation indicates data are more spread out.
The constant is determined by the confidence level of your analysis (typically 95%) and the margin of error is determined by the standard deviation and the size of your sample.
To learn more about “standard deviation” refer to the https://brainly.com/question/475676
#SPJ11
how many yard are in 10 meters
Answer:
10.936 yards
Step-by-step explanation:
This was an exceptionally dry year for portions of the southwestern United States. Monthly precipitation in Phoenix, Arizona, was recorded in the table and is modeled by y = –0.04088x2 + 0.4485x + 1.862. In what month did Phoenix receive the lowest amount of precipitation? Month (x) Precipitation January 2.27 inches February ? March ? April ? May ? June ? July ? August ? September 2.59 inches October ? November ? December ? Sketch a graph or fill in the table to answer the question. January February November December
the lowest amount of precipitation occurred in February, with a value of approximately 2.32 inches.
Why it is and how to form a graph?
To find the month with the lowest amount of precipitation, we need to find the minimum value of the quadratic equation y = –0.04088x²2 + 0.4485x + 1.862.
Using calculus, we can find the minimum point of the quadratic function by taking its derivative and setting it equal to zero:
y' = -0.08176x + 0.4485
0 = -0.08176x + 0.4485
x = 5.484
This means that the minimum value of the function occurs at x = 5.484. Since x represents the month number (with January being 1), we can conclude that the month with the lowest amount of precipitation is February (the second month in the table).
To verify this, we can plug in x = 2 into the quadratic equation:
y = –0.04088(2)²2 + 0.4485(2) + 1.862
y = 2.31752
Therefore, the lowest amount of precipitation occurred in February, with a value of approximately 2.32 inches.
To graph the function, we can plot the points given in the table and connect them with a smooth curve. Here is a completed table with the missing values:
Month (x) Precipitation
January 1 2.27 inches
February 2 2.32 inches
March 3 2.57 inches
April 4 2.94 inches
May 5 3.43 inches
June 6 3.94 inches
July 7 2.72 inches
August 8 2.86 inches
September 9 2.59 inches
October 10 2.03 inches
November 11 1.46 inches
December 12 1.03 inches
To know more about Calculus visit:
https://brainly.com/question/29448610
#SPJ1
Answer:
D: December
The given model for precipitation in Phoenix, Arizona is y = –0.04088x2 + 0.4485x + 1.862, where x is the month number (1 for January, 2 for February, and so on) and y is the precipitation in inches. We can use this model to fill in the missing values in the table:
| Month (x) | Precipitation |
|-----------|---------------|
| January | 2.27 inches |
| February | 2.27 inches |
| March | 2.24 inches |
| April | 2.18 inches |
| May | 2.09 inches |
| June | 1.98 inches |
| July | 1.84 inches |
| August | 1.68 inches |
| September | 2.59 inches |
| October | 1.50 inches |
| November | 1.30 inches |
| December | 1.08 inches |
According to the table, Phoenix received the lowest amount of precipitation in **December** with **1.08 inches** of precipitation, so the correct answer is **D. December**.
how to check 2(a+3)=-12
Answer:
a = -9
Step-by-step explanation:
2(a+3) = -12
2a + 6 = -12
2a = -18
a = -9
Let's Check
2(-9 + 3) = -12
2(-6) = -12
-12 = -12
So, a = -9 is the correct answer.