I need help with this
bing jhwwjwiwisisuwuwywywywfsfsahajai
Зу = -2 - 6
3y = 2z - 6
Answer:
y = -8/3, z = -1
Find the missing side. Round your answer to the nearest
Please help me
Answer:
Step-by-step explanation:
What is the least common denominator that will allow you to combine the constant terms? 10 21 35 or 42
Answer:
[tex]LCM = 21[/tex]
Step-by-step explanation:
Given
[tex]-\frac{3}{5}y + \frac{1}{7}= \frac{1}{3}y -\frac{2}{3}[/tex]
Required
LCM of the constant terms
Collect like terms
[tex]\frac{1}{3}y+\frac{3}{5}y = \frac{1}{7}+\frac{2}{3}[/tex]
The constant terms are on the right-hand side
To combine them, we simply take the LCM of the denominator, i.e. 7 and 3
The prime factorization of 3 and 7 are:
[tex]3 = 3[/tex]
[tex]7 = 7[/tex]
So:
[tex]LCM = 3 * 7[/tex]
[tex]LCM = 21[/tex]
The travel time on a section of a Long Island Expressway (LIE) is normally distributed with a mean of 80 seconds and a standard deviation of 6 seconds. What travel time separates the top 2.5% of the travel times from the rest
Answer:
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 80 seconds and a standard deviation of 6 seconds.
This means that [tex]\mu = 80, \sigma = 6[/tex]
What travel time separates the top 2.5% of the travel times from the rest?
This is the 100 - 2.5 = 97.5th percentile, which is X when Z has a p-value of 0.975, so X when Z = 1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.96 = \frac{X - 80}{6}[/tex]
[tex]X - 80 = 6*1.96[/tex]
[tex]X = 91.76[/tex]
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
What is the value of x in the equation
-%y = 30, when y = 15?
Answer:
x not given
therefore no answer for x
Coefficient of y in the equation: 3(2x -1/3y) = 0 is equal to a) 3 b) 1 c)-3 d)-1
Answer:
d is the right answer because the coefficient of y is 3*(-1/3) which results -1 so d is the right answer
The coefficient of y in the given equation is 1. Therefore, option B is the correct answer.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
The given equation is 3(2x -1/3y)=0.
Now, 6x-1/y=0
A numerical or constant quantity placed before and multiplying the variable in an algebraic expression.
Here, coefficient of y is 1.
Therefore, option B is the correct answer.
To learn more about an equation visit:
https://brainly.com/question/14686792.
#SPJ2
The mortgage on your new house is $180,000. Your monthly mortgage payment is $839 for 30 years. How much interest will be paid if the house is kept for the full 30 years?
9514 1404 393
Answer:
$122,040
Step-by-step explanation:
The interest is the difference between the mortgage value and the total amount paid.
($839/mo)×(12 mo/yr)×(30 yr) -180,000 = $302,400 -180,000 = $122,040
$122,040 will be paid in interest.
if p is a acute angle then p is how many degrees
Answer:
Less than 90⁰
Step-by-step explaination:
If p is an acute angle then, p can be equal to any measurement less than 90⁰
It can be upto 89⁰
Answer:
0 < angle < 90
Step-by-step explanation:
Acute angles are between 0 and up to 90 degrees
Right angles are 90 degrees
Obtuse angles are greater than 90 degrees and less than 180 degrees
A jar contains 11red marbles, 12 blue marbles and 6 white marbles. Four marbles from the jar are selected. With each marble being replaced after each selection. What is the probability that the first red marble chosen is on the 5th selection?
Answer:
Red on the 5th draw = 0.0907
Step-by-step explanation:
The first to fourth selections are all the same.
Blue + white = 12 + 6 = 18
The total number of marbles is 11 + 12 + 6 = 29
P(~ red) for the first four times = (18/29)^4 = 0,1484
Now on the 5th time, the first red is 11/18
So the Probability is 0.1484 * 11/18 = 0.0907
Combine the expressions below
4x+(-2x)+6+(-9)
=4x-2x=2x
=6-9=-3
=2x-3
A sofa regularly sells for $760. The sale price is $676.40. Find the percent decrease of the sale price from the regular price.
Answer: (760 - 676. 40) × 100 ÷ 760 = 11%
Step-by-step explanation:
Answer:
11% decrease
Step-by-step explanation:
Concepts:
Percent change is the change between an old value and its new value represented as a %. If a percent change is a decrease, it means that the new value is less than the old value. If a percent change is a increase, it means that the old value is less than the new value. The formula for percent change is: (NV - OV)/OV · 100 = C, where NV = New Value, OV = Old Value, and C = Percent Change.The sale price is the price at which something sells or sold after the price has been reduced by sales, discounts, etc.Solving:
Let's find the percent change by using the formula.
1. Formula for Percent Change
(NV - OV)/OV · 100 = C2. Plug in the values of NV and OV
(676.40 - 760)/760 · 100 = C3. Simplify
-83.6/760 · 100 = C-0.11 · 100 = C-11 = CTherefore, our percent decrease is 11% decrease.
please help me its timed -H.M
Answer:
f(3) = g(3)
General Formulas and Concepts:
Algebra I
Functions
Function NotationGraphingStep-by-step explanation:
We can see from the graph that the lines intersect at (3, 6). If this is the case, then that means that when x = 3 for both functions, it outputs f(x) = 6.
Rewriting this in terms of function notation:
f(3) = 6, g(3) = 6
∴ f(3) = g(3)
the length of a rectangle is twice its width the perimeter is 48 cm what are the dimensions of the rectangle
Answer:
The length=16cm and the width=8cm.
Step-by-step explanation:
Given that the length is twice the breadth or width of the rectangle
Let's assume that the breadth of the rectangle is x.
Thus the length is 2x.
Given perimeter=48cm
The formula for the perimeter of a rectangle is 2(l+b) where l is length and b is breadth.
2(x+2x)=48
(3x)=48/2
3x=24
x=8cm
2x=16cm
Step-by-step explanation:
length=2x
width=x
2x+x+2x+x=48
6x=48
6x÷6=48÷6
x=8
length=16
width=8
Engineering
When p= 3, q. I and r. 2, the
expression 2p² q3 is equal to
Answer:
[tex]{ \tt{2 {p}^{2} {q}^{3} }} \\ = { \tt{ {2(3)}^{2} . {(1)}^{3} }} \\ = 18[/tex]
Which is the graph of the following inequality
Answer:
graph a is the correct answer
Step-by-step explanation:
The manufacturer of a laser printer reports the mean number of pages a cartridge will print before it needs replacing is 12,450. The distribution of pages printed per cartridge closely follows the normal probability distribution and the standard deviation is 570 pages. The manufacturer wants to provide guidelines to potential customers as to how long they can expect a cartridge to last.
How many pages should the manufacturer advertise for each cartridge if it wants to be correct 90 percent of the time? (Round z value to 2 decimal places. Round your answer to the nearest whole number.)
Answer:
The manufacturer should advertise 11720 pages.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 12450, standard deviation of 570:
This means that [tex]\mu = 12450, \sigma = 570[/tex]
How many pages should the manufacturer advertise for each cartridge if it wants to be correct 90 percent of the time?
They should advertise the 10th percentile, which is X when Z has a p-value of 0.1, so X when Z = -1.28. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.28 = \frac{X - 12450}{570}[/tex]
[tex]X - 12450 = -1.28*570[/tex]
[tex]X = 11720[/tex]
The manufacturer should advertise 11720 pages.
The sum of two integers is 90 and their difference is 30. Find the larger number
Answer:
60 is the larger number
Step-by-step explanation:
Let the two numbers be a and y
x+y = 90
x-y = 30
Add the two equations together
x+y = 90
x-y = 30
-----------------
2x = 120
Divide by 2
2x/2 =120/2
x = 60
x+y =90
60+y = 90
y = 90-60
y = 30
The numbers are 60 and 30
Help ASPPP!!!
Name a point that is represented on this graph. Use an ordered pair to give your answer. (Hint:
Look at the shaded region)
Answer:
(-5, -9)
Step-by-step explanation:
From the graph shown, the perfect ordered pair represented on the graph occurs when x = -5, y = -9. Therefore the required coordinate could be (-5, -9)
If the length of a leg of a right triangle is 25 and the length of the hypotenuse is 35, what's the length of the other leg, to the nearest tenth?
Answer:
24.5
Step-by-step explanation:
using Pythagorean theorem
[tex]a^{2} +b^{2} =c^{2} \\[/tex]
Since we know the hypotenuse, we can change up the theorem into [tex]c^{2} -b^{2} =a^{2}[/tex]
[tex]35^{2} -25^{2} =a^{2}[/tex]
1225-625=[tex]a^{2}[/tex]
[tex]\sqrt{a^{2} } =24.5[/tex]
15
Simplify
a
25
O A. a3
O B. a10
O c. a-10
O D. a-3
Answer:
B is the correct answer of your question.
I HOPE I HELP YOU....
In forming a confidence interval for μ1 - μ2, only two assumptions are required: independent samples and sample sizes of at least 30.
a. True
b. False
Josue leans a 26-foot ladder against a wall so that it forms an
angle of 80° with the ground. How high up the wall does the
ladder reach? Round your answer to the nearest hundredth of a
foot if necessary.
Answer:
25.61 feet
Step-by-step explanation:
First, we can draw a picture (see attached picture). With the wall representing the rightmost line, and the ground representing the bottom line, the ladder (the hypotenuse) forms a 80 degree angle with the ground and the wall and ground form a 90 degree angle.
Without solving for other angles, we know one angle and the hypotenuse, and want to find the opposite side of the angle.
One formula that encompasses this is sin(x) = opposite/hypotenuse, with x being 80 degrees and the hypotenuse being 26 feet. We thus have
sin(80°) = opposite / 26 feet
multiply both sides by 26 feet
sin(80°) * 26 feet = opposite
= 25.61 feet as the height of the wall the ladder reaches
The height of the wall does the ladder reach to the nearest hundredth of the foot is 25.61 feet.
What is a right-angle triangle?It is a type of triangle in which one angle is 90 degrees and it follows the Pythagoras theorem and we can use the trigonometry function. The Pythagoras is the sum of the square of two sides is equal to the square of the longest side.
Josue leans a 26 feet ladder against a wall so that it forms an angle of 80° with the ground.
The condition is shown in the diagram.
Then the height of the wall will be
[tex]\rm \dfrac{h }{26 } = sin 80 \\\\h \ \ = 26 \times sin 80\\\\h \ \ = 25.61 \ ft[/tex]
More about the right-angle triangle link is given below.
https://brainly.com/question/3770177
Miller's Steakhouse offers 8 side dishes, 5 types of steak, and 4 toppings. How many different smothered steak dinners can be made if a smothered steak dinner consists of the customer's choice of steak served with 3 different toppings and 3 different side dishes?
Answer:
1120
Step-by-step explanation:
To find the possible number of steak dinners, you would multiply the number of choices for each part of the dinner. You would used combinations instead of permutations since the order of the toppings chosen or side dishes chosen do not matter. There are 5 choose 1 choices for types of steak, which is just 5. There are 8 choose 3 choices for side dishes, which is 56. There are 4 choose 3 choices for toppings, which is 4. 5*56*4 is 1120, so there are 1120 possible steak dinners.
The surface area of a melting snowball decreases at a rate of3.8cm2/min. Find the rate at which its diameter decreases when the diameter is13cm. (Round your answer to three decimal places if required)
Answer:
Step-by-step explanation:
This is a pretty basic related rates problem. I'm going to go through this just like I do in class when I'm teaching it to my students.
We see we have a snowball, which is a sphere. We are talking about the surface area of this sphere which has a formula of
[tex]S=4\pi r^2[/tex]
In the problem we are given diameter, not radius. What we know about the relationship between a radius and a diameter is that
d = 2r so
[tex]\frac{d}{2}=r[/tex] Now we can have the equation in terms of diameter instead of radius. Rewriting:
[tex]S=4\pi(\frac{d}{2})^2[/tex] which simplifies to
[tex]S=4\pi(\frac{d^2}{4})[/tex] and a bit more to
[tex]S=\pi d^2[/tex] (the 4's cancel out by division). Now that is a simple equation for which we have to find the derivative with respect to time.
[tex]\frac{dS}{dt}=\pi*2d\frac{dD}{dt}[/tex] Now let's look at the problem and see what we are given as far as information.
The rate at which the surface area changes is -3.8, and we are looking for [tex]\frac{dD}{dt}[/tex], the rate at which the diameter is changing, when the diameter is 13. Filling in:
[tex]-3.8=\pi(2)(13)\frac{dD}{dt}[/tex] and solving for the rate at which the diameter is changing:
[tex]-\frac{3.8}{26\pi}=\frac{dD}{dt}[/tex] and divide to get
[tex]\frac{dD}{dt}=-.459\frac{cm}{min}[/tex] Obviously, the negative means that the diameter is decreasing.
JK=8x+6 KL=6x+20 find JL
Answer:
14x + 26
Step-by-step explanation:
JL = JK + KL
= 8x + 6 + 6x + 20
= 8x + 6x + 6 + 20
JL = 14x + 26
Mr. Plaggenier divided Camp Greenfield into 5 squads for an athletic scrimmages. Each squad competes against each of the other 4 squads 2 times. The scrimmage lasts 2 hours. If only one pair of teams competes at a time and all of the competitions take the same amount of time, how long is each competitions?
A)6 min.
B) 8 min.
C) 10 min.
D) 12 min.
Answer: (a)
Step-by-step explanation:
Given
There are 5 squads for an athletic scrimmages
If each team played 2 matches
Total no of matches will be
[tex]\Rightarrow \dfrac{5(5-1)}{2}\times 2=20\ \text{matches}[/tex]
So, 20 matches are played in 2 hours
Each match takes
[tex]\Rightarrow \dfrac{120}{20}=6\ \text{minute}[/tex]
Option (a) is correct.
Find the exact value of the logarithm without using a calculator.
Answer:
1/11
Step-by-step explanation:
We are asked to find the natural log of
[tex] \sqrt[11]{e} [/tex]
Convert to fractional exponent
[tex] ln(e {}^{ \frac{1}{11} } ) [/tex]
Apply Log of Power rule
[tex] \frac{1}{11} ln(e) [/tex]
Natural log of e is 1 so
[tex] \frac{1}{11} \times 1 = \frac{1}{11} [/tex]
Answer:
[tex]\frac{1}{11}[/tex]
Step-by-step explanation:
First, remember that the ln function is just a log function with a base of e. Here's how it looks
[tex]ln(x) =log_{e}(x)[/tex]
[tex]ln(\sqrt[11]{e} ) = log_{e}(\sqrt[11]{e} )[/tex]
We can take this one step further if we realize that we can rewrite the square root as a simple power to a fraction!
[tex]log_{e}(e^{\frac{1}{11} } )[/tex]
Solving the equation above is really simple. All that function is really saying is can we raise e to some number, where the result would be e^(1/11)? In other words find x.
[tex]e^{x} = e^{\frac{1}{11} }[/tex]
Well x has to be 1/11 in that case. And that ends up being our final answer.
[tex]log_{e}(e^{\frac{1}{11} } ) = \frac{1}{11}[/tex]
The width of a rectangle measures (7k-2m)(7k−2m) centimeters, and its length measures (5k-m)(5k−m) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
Answer:
[tex]P = 24k-6m[/tex]
Step-by-step explanation:
The correct expressions are:
[tex]W = 7k - 2m[/tex]
[tex]L = 5k - m[/tex]
Required
The perimeter (P)
This is calculated as:
[tex]P = 2 *(L + W)[/tex]
So, we have:
[tex]P = 2 *(5k - m + 7k -2m)[/tex]
Collect like terms
[tex]P = 2 *(5k + 7k- m -2m)[/tex]
[tex]P = 2 *(12k-3m)[/tex]
Open bracket
[tex]P = 24k-6m[/tex]
Consider a uniform density curve defined from x = 0 to x = 8. What percent of observations fall between 1 and 5?
a) 0.20
b) 0.50
c) 0.62
d) 0.13
e) 0.63
f) None of the above
Answer: 0.50, which is choice b
Explanation:
The interval [tex]1 \le x \le 5[/tex] covers 5-1 = 4 units in the horizontal direction.
This is out of 8 units that span from x = 0 to x = 8 (we could say 8-0 = 8).
So we get the final result of 4/8 = 0.50
In other words, the interval from x = 1 to x = 5 covers exactly half of the interval from x = 0 to x = 8.