Answer: x=0
Step-by-step explanation:
For this problem, there are no calculations needed. You just have to know your algebraic properties. Since we are looking for x, we know that x must be 0. The answer is 0. Figuring out e²ˣ can be tricky, but since there is an x multiplying it in front, we know that x must be 0 to make the equation equal to 0.
1. Peyton has a credit card with an annual rate of 24.7% compounded monthly. She used the credit card to purchase cleaning supplies in the amount of $189.56. She can pay up to $72 on the
credit card each month. How much total interest will she pay?
Answer:
Total interest = $3.41
Step-by-step explanation:
Since she can pay $72 each month we can divide the payments on monthly basis till all the money is paid.
The annual interest rate is 24.7%, so the monthly rate will be 24.7 ÷ 12= 2.058%
For the first month
With payment of $72 the remaining amount will be 189.56 - 72 = $117.56
Interest paid will be 0.02058 * 117.56 = $2.42
Total amount owed now will be 117.56 + 2.42 = $119.98
For the second month another payment of $72 is made
The remaining will be 119.98 - 72 = $47.98
Interest charged will be 0.02058 * 47.98 = $0.99
The amount owed will be 47.98 + 0.99 = $48.97
In the third month she will pay the remaining $47.98 which is within her monthly limit
Total interest paid = Sum of Amount paid each month - Initial amount spent
Total interest = {(72 * 2) +48.97} - 189.56 = $3.41
Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X
Answer:
X is uniformly distributed.
Step-by-step explanation:
Uniform Distribution:
This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.
Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.
Which cross-sectional shapes do you find the most surprising? Which shapes do you find the least surprising? Explain why.
Answer:
I was surprised that a plane parallel to the vertical axis creates a rectangular cross-section. I guess I was expecting to always see a circle or a circular shape in the cross-section, not purely straight edges as seen in a rectangle.
Step-by-step explanation:
edmentum answer
Answer:
The circles were the least surprising because the base of the cone is a circle. The curves that look like bent rods were the most surprising because I have not seen geometric figures like those before.
Step-by-step explanation:
Can the sides of a triangle be in the given ratio? 3:4:5
Answer:
Yes
Step-by-step explanation:
Yes, and it’s a right triangle.
3²+4²=5²
9+16=25
25=25
Answer:
Yes
Step-by-step explanation:
In order to determine if a triple of values will form a triangle, we must apply the Triangle Inequality Theorem, which states that for a triangle with lengths a, b, and c:
a + b > c
a + c > b
b + c > a
Here, let's suppose that since the ratio of the sides is 3 : 4 : 5, then let the actual side lengths be 3x, 4x, and 5x, where x is simply a real value.
With loss of generality, set a = 3x, b = 4x, and c = 5x. Plug these into the Triangle Inequality to check:
a + b > c ⇒ 3x + 4x >? 5x ⇒ 7x > 5x ⇒ This is true
a + c > b ⇒ 3x + 5x >? 4x ⇒ 8x > 4x ⇒ This is also true
b + c > a ⇒ 4x + 5x >? 3x ⇒ 9x > 3x ⇒ This is true
Since all three conditions are satisfied, we know that a true triangle can be formed given that the ratio of their sides is 3 : 4 : 5.
~ an aesthetics lover
The video indicates which of the following is an acceptable alternative to washing your hands for 20 seconds with respect to preventing illness? getting a flu shot using hand sanitizer with at least 60% alcohol rinsing with mouthwash that has at least 15% alcohol washing your hands for 10 seconds with water that exceeds 100 degrees Fahrenheit The video urges people to wash their hands to reduce the likelihood (that is, the probability) of contracting diseases. What does this imply? The probability of contracting a disease is lower if you wash your hands than if you don't wash your hands. That is: P(disease if you wash your hands) < P(disease if you don't wash your hands). If you don't wash your hands, you will contract a disease. That is: P(contracting a disease if you don't wash your hands) = 1. If you contracted a disease, you must have not washed your hands. That is: P(washed your hands if you contracted a disease) = 0. If you wash your hands, you will not contract a disease. That is: P(contracting a disease if you wash your hands) = 0. Suppose a student has had one illness in the last month, b
Answer:
1. using hand sanitizer with at least 60% alcohol
2. the probability of contracting a disease is lower if you wash your hands than if you don't wash your hands. That is: P (disease if you wash your hands) < P (disease if you don't wash your hands).
Step-by-step explanation:
1. Noteworthy is the fact that alcohol based hand sanitizers provide good protections to germs, viruses as when one washes his hands with soap for 20 seconds. This was indicated in the video as an acceptable alternative to washing your hands for 20 seconds with respect to preventing illness.
2. Remember, probability implies an assumption of possiblity or likelihood of something happening. Thus, the video's message implies that when people wash their hands it reduces the likelihood (that is, the probability) of contracting diseases. One stands a lower chance of : P (disease if you wash your hands) < P (disease if you don't wash your hands).
The given line segment has a midpoint at (-1, -2).
What is the equation, in slope-intercept form, of the
perpendicular bisector of the given line segment?
ch
4
3
O y=-4x - 4
O y = -4x - 6
O y=x-4
2
1
х
5 4 -3 -2 -11
61,-2)
Oy=+x-6
234
(3.-1).
-3
(-5, 3)
w5
Answer:
y = -4x -6
Step-by-step explanation:
The given segment has a rise if 1 for a run of 4, so a slope of ...
m = rise/run = 1/4
The desired perpendicular has a slope that is the negative reciprocal of this:
m = -1/(1/4) = -4
A point that has a rise of -4 for a run of 1 from the given midpoint is ...
(-1, -2) +(1, -4) = (0, -6) . . . . . . . the y-intercept of the bisector
So, our perpendicular bisector has a slope of m=-4 and a y-intercept of b=-6. Putting these in the slope-intercept form equation, we find the line to be ...
y = mx +b
y = -4x -6
The equation of the line in slope intercept form is y = -4x -6
What is a linear equation?A linear equation is in the form:
y = mx + b
Where y,x are variables, m is the rate of change and b is the y intercept.
Two lines are perpendicular of the product of the slope is -1
The line passes through the point (-5, -3) and (3, -1). Hence:
Slope = (-1 - (-3)) / (3 - (-5)) = 1/4
The slope of the line perpendicular to this line is -4 (-4 * 1/4 = -1).
The line passes through (-1, -2), hence:
y - (-2) = -4(x - (-1))
y + 2 = -4(x + 1)
y = -4x -6
The equation of the line in slope intercept form is y = -4x -6
Find out more on linear equation at: https://brainly.com/question/14323743
Simplify 6m^2-5m-3+3m+4+9m^2
Answer: 15m²-2m+1
Step-by-step explanation:
To simplify, you want to combine like terms.
15m²-2m+1
Answer:
[tex]\huge\boxed{15m^2-2m+1}[/tex]
Step-by-step explanation:
[tex]6m^2-5m-3+3m+4+9m^2\\\\\text{combine like terms}\\\\=(6m^2+9m^2)+(-5m+3m)+(-3+4)\\\\=(6+9)m^2+(-5+3)m+1\\\\=15m^2-2m+1[/tex]
What are two solutions of x
Answer:
Answer is attached below :)
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
Find the solution of the system of equations.
2x – 10y = -28
-10x + 10y = -20
GbA
Answer:
(6, 4 )
Step-by-step explanation:
Given the 2 equations
2x - 10y = - 28 → (1)
- 10x + 10y = - 20 → (2)
Adding (1) and (2) term by term eliminates the term in y, that is
- 8x = - 48 ( divide both sides by - 8 )
x = 6
Substitute x = 6 into either of the 2 equations and evaluate for y
Substituting into (1)
2(6) - 10y = - 28
12 - 10y = - 28 ( subtract 12 from both sides )
- 10y = - 40 ( divide both sides by - 10 )
y = 4
Solution is (6, 4 )
What is the equation of the line of best fit for the following data? Round the
slope and y-intercept of the line to three decimal places.
Answer:
the line of best fit can be approximated to:
y = -1.560 x + 22.105
Step-by-step explanation:
You are most likely expected to use a graphing tool are statistical program to calculate this. So enter the list of x-values separate from the list of y values and run the tool in linear regression mode.
Look at the attached image with the actual results including the line of best fit.
The equation can be written (rounding slope and y-intercept to 3 decimals) as:
y = -1.560 x + 22.105
Choose the best answer to the following question. Explain your reasoning with one or more complete sentences. At 11:00 you place a single bacterium in a bottle, and at 11:01 it divides into 2 bacteria, which at 11:02 divide into 4 bacteria, and so on. How many bacteria will be in the bottle at 11:30?
Answer:
we could work this out by geometric sequence
Step-by-step explanation:
G1=2, G2=4, we have a formula,Gn=G1r^n-1
G2=G1 (r)^1, 4=2r, r=2
G30=G1 (2)^29=1,073,741,824 bacterium
Which expression is the factored form of x2-7x+10
Answer:
[tex]\boxed{ (x - 2)(x - 7)}[/tex]
Step-by-step explanation:
Hey there!
To factor,
[tex]x^2-7x+10[/tex]
We need 2 numbers that multiply to get 10 and add to get -7 which is,
-2 and -5.
-2*-5 = 10
-2x + -5x = -7x
x*x=x^2
Factored - (x - 2)(x - 7)
Hope this helps :)
How much money will you have in 5 years if you invest $9000 at a 5.4% annual rate of interest compounded quarterly? How much will you have if it is compounded monthly?
SHOW YOUR WORK PLEASE:)
Answer: Amount in 5 years( if compounded quarterly) = $11,768.40
Amount in 5 years( if compounded monthly = $11782.54
Step-by-step explanation:
Formula for accumulated amount in t years at annual rate of r% compounded quarterly: [tex]A=P(1+\dfrac{r}{4})^{4t}[/tex]
Formula for accumulated amount in t years at annual rate of r% compounded monthly: [tex]A=P(1+\dfrac{r}{12})^{12t}[/tex], where P= principal amount.
Given: P= $9000, r= 5.4%= 0.054, t= 5 years
Amount in 5 years if compounded quarterly =[tex]9000(1+\dfrac{0.054}{4})^{4\times5}[/tex]
[tex]=9000(1.0135)^{20}\\\\=9000(1.30760044763)\approx11768.40[/tex]
i.e. Amount in 5 years( if compounded quarterly) = $11,768.40
Amount in 5 years if compounded monthly =[tex]9000(1+\dfrac{0.054}{12})^{12\times5}[/tex]
[tex]=9000(1.0045)^{60}\\\\=9000(1.309171267)\approx11782.54[/tex]
i.e. Amount in 5 years( if compounded monthly = $11782.54
4 + (-13)
Yajmmsmssjsjsjjsnssnsnnsnsxxdddddddd
Answer:
-9
Step-by-step explanation:
4 + (-13)
=> 4 - 13
=> -9
Laura is bowling 5 games. Her first 4 scores were 135, 144, 116, and 132.
To end up with an average score of at least 136.8, what is the lowest score Laura will need in the fifth game?
Answer:
it doesnt add up. the question doesnt make sense.
Step-by-step explanation:
Answer:
157
Step-by-step explanation:
To find the average score, add all individual scores and divide the sum by the number of individual scores.
She has 5 individual scores. Let's say her scores are A, B, C, D, and E.
average score = (A + B + C + D + E)/5
Now we plug in the average and the 4 known scores for A through D, and we solve for E.
average score = (A + B + C + D + E)/5
136.8 = (135 + 144 + 116 + 132 + E)/5
E = 157
Answer: 157
Is -5/6 Real, Rational, Irrational, Integer, Whole, or real number?
Answer:
Rational
Step-by-step explanation:
Rational number consists of
Whole NumbersNatural NumbersIntegersNegative NumbersFractionsDecimals-5/6 is a Fraction and we can also simply it to a Decimal.
Hope this helps ;) ❤❤❤
Geometry pls help !!! Find the value of AB.
AB = [?]
Answer:
AB = 16 Units
Step-by-step explanation:
In the given figure, CD is the diameter and AB is the chord of the circle.
Since, diameter of the circle bisects the chord at right angle.
Therefore, AE = 1/2 AB
Or AB = 2AE...(1)
Let the center of the circle be given by O. Join OA.
OA = OD = 10 (Radii of same circle)
Triangle OAE is right triangle.
Now, by Pythagoras theorem:
[tex] OA^2 = AE^2 + OE^2 \\
10^2 = AE^2 + 6^2 \\
100= AE^2 + 36\\
100-36 = AE^2 \\
64= AE^2 \\
AE = \sqrt{64}\\
AE = 8 \\
\because AB = 2AE..[From \: equation\: (1)] \\
\therefore AB = 2\times 8\\
\huge \purple {\boxed {AB = 16 \: Units}} [/tex]
Write down the name of the shape for question D. Please help!
Step-by-step explanation:
thats shape is a delta
:)
Answer:
arrow head
Step-by-step explanation:
What is the volume of a cube with side lengths that measure 8 cm?
Answer: 512 cm³
Explanation: Since the length, width, and height of a cube are all equal,
we can find the volume of a cube by multiplying side × side × side.
So we can find the volume of a cube using the formula v = s³.
In the cube in this problem, we have a side length of 8 cm.
So plugging into the formula, we have (8 cm)³
or (8 cm)(8 cm)(8 cm), which is 512 cm³.
So the volume of the cube is 512 cm³.
Answer:512[tex]cm^{3}[/tex]
Step-by-step explanation:
All sides are equal. Hence, volume =[tex]l^{3} = 8^{3} =512cm^{3}[/tex]
How does the multiplicity of a zero affect the graph of the polynomial function?
Select answers from the drop-down menus to correctly complete the statements
The zeros of a ninth degree polynomial function are 1 (multiplicity of 3), 2, 4, and 6 (multiplicity of 4).
The graph of the function will cross through the x-axis at only
The graph
will only touch (be tangent to) the x-us at
the x-axis
At the zero of 2, the graph of the function will choose...
Answer:
Step-by-step explanation:
Let the equation of a polynomial is,
[tex]y=(x-a)^2(x-b)^1(x-c)^3[/tex]
Zeroes of this polynomial are x = a, b and c.
For the root x = a, multiplicity of the root 'a' is 2 [given as the power of (x - a)]
Similarly, multiplicity of the roots b and c are 1 and 3.
Effect of multiplicity on the graph,
If the multiplicity of a root is even then the graph will touch the x-axis and if it is odd, graph will cross the x-axis.
Therefore, graph will cross x -axis at x = b and c while it will touch the x-axis for x = a.
In this question,
The given polynomial is,
[tex]y=(x-1)^3(x-2)^1(x-4)^1(x-6)^4[/tex]
Degree of the polynomial = 3 + 1 + 1 + 4 = 9
The graph of the function will cross through the x-axis at x = 1, 2, 4 only, The graph will touch to the x-axis at 6 only.
At the zero of 2 , the graph of the function will CROSS the x-axis.
12-(3-9) 3*3 help please
Step-by-step explanation:
42 is your answer according to bodmas
A spinner has five congruent sections, one each of blue, green, red, orange, and yellow. Yuri spins the spinner 10 times and records his results in the table. A 2-column table has 5 rows. The first column is labeled Color with entries blue, green, red, orange, yellow. The second column is labeled Number with entries 1, 2, 0, 4, 3. Which statements are true about Yuri’s experiment? Select three options. The theoretical probability of spinning any one of the five colors is 20%. The experimental probability of spinning blue is One-fifth. The theoretical probability of spinning green is equal to the experimental probability of spinning green. The experimental probability of spinning yellow is less than the theoretical probability of spinning yellow. If Yuri spins the spinner 600 more times and records results, the experimental probability of spinning orange will get closer to the theoretical probability of spinning orange.
Answer:
A. The theoretical probability of spinning any one of the five colors is 20%.
C. The theoretical probability of spinning green is equal to the experimental probability of spinning green.
E. If Yuri spins the spinner 600 more times and records results, the experimental probability of spinning orange will get closer to the theoretical probability of spinning orange.
These are the answers on edg 2020, just took the test.
Step-by-step explanation:
Answer:
a, c, e,
Step-by-step explanation:
:)
The average person lives for about 78 years. Does the average person live for at least 1,000,000, minutes? (Hint: There are 365 days in each year, hours in 24 each day, and 6o minutes in each hour.)
Answer:
YES
Step-by-step explanation:
1 million minutes = 1.9 years
An average man can live upto 78 years.
So, an average man can easily live upto 1,000,000.
Answer:
There will be (365 x 24 x 60) minutes each year.
and that is 525600.
and 525600 x 78 is 40,996,800.
so, It is definitely more than 1 million minutes.
Hop it helps!
Bye!
10
[tex] {10}^{4} = [/tex]
whats the answer..
Answer:
10,000
Step-by-step explanation:
The answer is 10*10*10*10 = 10,000
When the power is positive and in the numerator, the number of places moved or zeros added = the power. This has a power of 4. You add 4 zeros to 1 to get the answer.
The numerator of a fraction is 8 less than the denominator of a fraction. The value of the fraction is 3/5, find the value of the fraction.
Hello!
Answer:
[tex]\huge\boxed{\frac{12}{20}}[/tex]
To find the numerator and denominator, we can set up a proportion where:
x = denominator
x -8 = numerator
[tex]\frac{3}{5} = \frac{x-8}{x}[/tex]
Cross multiply:
[tex]3(x) = 5(x - 8)[/tex]
[tex]3x = 5x - 40[/tex]
Simplify:
[tex]3x - 5x = -40\\\\-2x = -40\\\\x = 20[/tex]
Substitute in this value of x to find the numerator and denominator:
[tex]\frac{(20) - 8}{(20)} = \frac{12}{20}[/tex]
Hope this helped you! :)
[tex] \LARGE{ \boxed{ \rm{ \orange{ Solution:}}}}[/tex]
Let the numerator be x
It is given that,
Denominator - 8 = NumeratorThen,
⇛ Denominator- 8 = x
⇛ Denominator = x + 8
According to condition -2)
⇛ Fraction = 3/5
⇛ x/x + 8 = 3/5
Cross multiplying,
⇛ 3(x + 8) = 5x
⇛ 3x + 24 = 5x
⇛ 24 = 5x - 3x
⇛ 24 = 24
Flipping it out,
⇛ 2x = 24
⇛ x = 24/2 = 12
Then,
⇛ x + 8 = 12 + 8 = 20
Numerator = 12Denominator = 20[tex] \large{ \therefore{ \boxed{ \rm{ \pink{Then, \: the \: fraction = \dfrac{12}{20} }}}}}[/tex]
━━━━━━━━━━━━━━━━━━━━
A thin metal plate, located in the xy-plane, has temperature T(x, y) at the point (x, y). Sketch some level curves (isothermals) if the temperature function is given by
T(x, y)= 100/1+x^2+2y^2
Answer:
Step-by-step explanation:
Given that:
[tex]T(x,y) = \dfrac{100}{1+x^2+y^2}[/tex]
This implies that the level curves of a function(f) of two variables relates with the curves with equation f(x,y) = c
here c is the constant.
[tex]c = \dfrac{100}{1+x^2+2y^2} \ \ \--- (1)[/tex]
By cross multiply
[tex]c({1+x^2+2y^2}) = 100[/tex]
[tex]1+x^2+2y^2 = \dfrac{100}{c}[/tex]
[tex]x^2+2y^2 = \dfrac{100}{c} - 1 \ \ -- (2)[/tex]
From (2); let assume that the values of c > 0 likewise c < 100, then the interval can be expressed as 0 < c <100.
Now,
[tex]\dfrac{(x)^2}{\dfrac{100}{c}-1 } + \dfrac{(y)^2}{\dfrac{50}{c}-\dfrac{1}{2} }=1[/tex]
This is the equation for the family of the eclipses centred at (0,0) is :
[tex]\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1[/tex]
[tex]a^2 = \dfrac{100}{c} -1 \ \ and \ \ b^2 = \dfrac{50}{c}- \dfrac{1}{2}[/tex]
Therefore; the level of the curves are all the eclipses with the major axis:
[tex]a = \sqrt{\dfrac{100 }{c}-1}[/tex] and a minor axis [tex]b = \sqrt{\dfrac{50 }{c}-\dfrac{1}{2}}[/tex] which satisfies the values for which 0< c < 100.
The sketch of the level curves can be see in the attached image below.
(II) Time intervals measured with a stopwatch typically have an uncertainty of about 0.2 s, due to human reaction time at the start and stop moments.What is the percent uncertainty of a hand-timed measurement of (a) 5.5 s, (b) 55 s, (c) 5.5 min?
Answer:
(a) 36.36%
(b) 0.36%
(c) 0.06%
Step-by-step explanation:
Given that the time intervals measured with a stopwatch have an uncertainty of about 0.2 s.
We want to know what is the percent uncertainty of a hand-timed measurement of:
(a) 5.5 s
Percentage = (0.2/5.5) × 100
≈ 36.36%
(b) 55 s
Percentage = (0.2/55)×100
≈ 0.36%
(c) 5.5 min
5.5 min = 5.5 × 60 s
= 330 s
Percentage = (0.2/330)×100
≈ 0.06%
Find three different numbers such that the
HCF of each pair of these numbers is greater
than 1 but the HCF of all three numbers is 1.
[Hint: For instance, the numbers 6, 10 and
15 satisfy the conditions.]
6, 10, 15
15,21,35
35, 55, 77
77, 91, 143
143, 187, 221
I can go on forever
There are different possibilities
A population culture begins with 20 strands of bacteria and then doubles every 4 hours. This can be modeled by , where t is time in hours. How many strands of bacteria are present at 20 hours?
Question 13 options:
A)
425 strands of bacteria
B)
567 strands of bacteria
C)
640 strands of bacteria
D)
375 strands of bacteria
Answer:
C) 640 strands of bacteria
Step-by-step explanation:
We are told in the question that the population doubles every 4 hours
Hence, formula to solve this question =
P(t) = Po × 2^t/k
From the question, we have the following information:
Beginning amount (Po) = 20 strands of bacteria
Rate(k) = 4 hours
Time(t) = 20 hours
Ending time (P(t)) = unknown
Ending amount = 20 × 2^20/4
= 20 × 2^5
= 20 × 320
= 640 strands of bacteria.
Therefore, the number of strands left after 20 hours is 640 strands of bacteria.