Answer:
5 moles
Explanation:
First, write out the balanced equation:
2Al + Fe₂O₃ → Al₂O₃ + 2Fe
Reaction ratio of Al to Fe₂O₃ is:
2 : 1
This means 2 moles of Al will react with 1 mole of Fe₂O₃
Al: 5 mol
Fe₂O₃: 3 mol
Multiply the reaction to get moles of both reactants you have:
2 : 1 (×⁵/₂) = 5 : ⁵/₂
2 : 1 (×3) = 6 : 3
In other words, 5 moles of Al will react with ⁵/₂ moles of Fe₂O₃;
And 3 moles of Fe₂O₃ will react with 6 moles of Al;
But, we do not have 6 moles of Al, therefore only the 5 moles of Al available will react;
5 moles of Al reacts with ⁵/₂ moles of Fe₂O₃, as we can see from the ratios we calculated above, the remaining ¹/₂ mole of Fe₂O₃ will not react;
We say that Al is the limiting reactant because all the Al will react but all the Fe₂O₃ does not (i.e. it is in excess);
Next and last, the reaction ratio of Al to Fe is:
2 : 2 or, more simply 1 : 1
This means the moles of Al that reacts is the equal to the moles of Fe produced from the reaction;
We've established that 5 moles of Al will react with ⁵/₂ moles of Fe₂O₃, so 5 moles of Fe will also be produced (since the ratio is 1 : 1);
You could also work this out using the moles of Fe₂O₃ that react;
The reaction ratio of Fe₂O₃ to Fe:
1 : 2
So the moles of Fe produced is 2× the moles of Fe₂O₃;
If ⁵/₂ moles of Fe₂O₃ reacts, then simply multiply this by 2 which is 5 moles
helo in this please I'm so kunfused
OPTION C is the correct answer.
Fossil fuels are considered to be:
a.
irreplaceable resources
c.
renewable resources
b.
nonrenewable resources
d.
hazardous wastes
Please select the best answer from the choices provided
A
B
C
D
In explosive combustion the rapid expansion of --------------- causes explosion and the production of ------------------
Answer:
Volume; high temperature and pressure
Explanation:
In an explosive combustion the rapid expansion of the volume causes explosion and the production of high temperature and pressure.
The substance is usually in a confined place and the expansion usually reaches a breaking point in which it is expelled from the space usually accompanied with a loud noise and high amount of temperature and pressure change thereby releasing its gas constituents.
Given the translation (0,5), translate ordered pairs (9, 0) and (2,-4).
Answer:
(9,5) and (2,1)
Explanation:
3 upper M n upper O subscript 2 (s) plus 4 upper A l (s) right arrow 2 upper A l subscript 2 upper O subscript 3 (g) plus 3 upper M n (s). What is the enthalpy of the reaction?
Answer: The enthalpy of the reaction is -1791.31 kJ.
Explanation:
Enthalpy change is the difference between the enthalpies of products and the enthalpies of reactants each multiplied by its stoichiometric coefficients. It is represented by the symbol [tex]Delta H^o_{rxn}[/tex]
[tex]\Delta H^o_{rxn}=\sum (n \times \Delta H^o_{products})-\sum (n \times \Delta H^o_{reactants})[/tex] .....(1)
For the given chemical reaction:
[tex]3MnO_2(s)+4Al(s)\rightarrow 2Al_2O_3(s)+3Mn(s)[/tex]
The expression for the enthalpy change of the reaction will be:
[tex]\Delta H^o_{rxn}=[(2 \times \Delta H^o_f_{(Al_2O_3(s))}) + (3 \times \Delta H^o_f_{(Mn(s))})] - [(3 \times \Delta H^o_f_{(MnO_2(s))}) + (4 \times \Delta H^o_f_{(Al(s))})][/tex]
Taking the standard heat of formation values:
[tex]\Delta H^o_f_{(Al_2O_3(s))}=-1675.7kJ/mol\\\Delta H^o_f_{(Al(s))}=0kJ/mol\\\Delta H^o_f_{(MnO_2(s))}=-520.03kJ/mol\\\Delta H^o_f_{(Mn(s))}=0kJ/mol[/tex]
Plugging values in the above expression:
[tex]\Delta H^o_{rxn}=[(2 \times (-1675.7))+(3 \times 0)] - [(3 \times (-520.03))+(4 \times 0)]\\\\\Delta H^o_{rxn}=-1791.31 kJ[/tex]
Hence, the enthalpy of the reaction is -1791.31 kJ.
calculate the pressure in atm of .68 mol of H at 298K and occupying 4.5 L
Answer:
3.7 atm
General Formulas and Concepts:
Atomic Structure
MolesGas Laws
Ideal Gas Law: PV = nRT
P is pressureV is volumen is number of molesR is gas constantT is temperatureExplanation:
Step 1: Define
Identify variables
[Given] n = 0.68 mol H
[Given] T = 298 K
[Given] V = 4.5 L
[Given] R = 0.0821 L · atm · mol⁻¹ · K⁻¹
[Solve] P
Step 2: Find Pressure
Substitute in variables [Ideal Gas Law]: P(4.5 L) = (0.68 mol)(0.0821 L · atm · mol⁻¹ · K⁻¹)(298 K)Multiply [Cancel out units]: P(4.5 L) = (0.055828 L · atm · K⁻¹)(298 K)Multiply [Cancel out units]: P(4.5 L) = 16.6367 L · atmIsolate P [Cancel out units]: P = 3.69705 atmStep 3: Check
Follow sig fig rules and round. We are given 2 sig figs as our lowest.
3.69705 atm ≈ 3.7 atm
1. What is the volume of 4.00g of aluminum at STP?
Answer:
22.4cm³
Explanation:
Avogadro's law shows that Avogadro's volume is 22.4
Porrrrrrffffffaaaaaavvvvvvooooorrrrrrr
Answer:
2.2)solido
2.3)Sólido cristalino
2.4)Sólido amorfo
Using the periodic table, choose the more reactive nonmetal.
Br or As
Reactivity of non-metals depend on their ability to gain electrons. So, smaller is the size of a non-metal more readily it will attract electrons because then nucleus will be more closer to valence shell. ... Hence, Br is the non-metal which will be more reactive than At.
Answer:
br is more reactive than as
If you have 3 moles of a gas at a pressure of 2.5 atm and a volume of 8 liters, what is the temperature?
a. 57.86 K
b. 0.81 K
c. 25 K
d. 81.26 K
Answer:
d
Explanation:
pv=nrt
2.5×1.01×10^5×8×10^-3=3×8.31×T
T=
The value of the temperature can be determined by ideal gas law and the temperature will be 0.81 K.
What is temperature ?The average kinetic energy of particular atoms and molecules in a system is measured by the temperature.
What is ideal gas Law?
Ideal gas law explain the relationship between pressure. temperature and volume.
Ideal gas law can be expressed as, PV=nRT.
where, P is pressure. V is volume , n is number of moles ,R is gas constant and T is temperature. It is given that, n= 3 mole, P = 2.5 atm, V = 8 L, T=?, R = 8.31.
Calculation of temperature by using ideal gas law is shown as:
Now, put the values of given data in ideal gas law equation.
T = PV/nR
=2.5×8/3×8.32
= 0.81 K
Therefore, the temperature will be 0.81K.
To know more about ideal gas law and temperature click here.
https://brainly.com/question/13821925.
#SPJ2
Identify the total number of moles involved in the reaction
2C4H10(g) + 13 O2(g) – 10 H2O(g) + 8 CO2(g)
Answer:
33 moles
Explanation:
The given chemical reaction is 2C₄H₁₀(g) + 13 O₂(g) → 10H₂O(g) + 8CO₂(g)
The number of moles of each reactant are as follows;
Butane, C₄H₁₀ = 2 moles of (g) + 13 (g) → 10H₂O(g) + 8CO₂(g)
Oxygen gas, O₂ = 13 moles
Water, H₂O = 10 moles
Carbon dioxide, CO₂ = 8 moles
The total number of moles, n = (2 + 13 + 10 + 8) = 33
∴ The total number of moles involved in the reaction, n = 33 moles.
Do you think it matters if you
report 150 grams as 150
grams or 150.0 grams? Do
they mean the same thing?
Why or why not?
Answer:
yes I do think they mean the same thing
Explanation:
150 grams and 150 grams is the same thing and adding 0 to the end of a decimal does not change its value, you could even put 150.0000000 grams and it would still be equivalent to the other numbers
calculate the mass m of 6.50 moles n of kbr m
Answer:
773.51495 grams
Explanation:
1 moles KBr to grams = 119.0023 grams
6.5*119.0023 = 773.51495 grams
La aparición del microscopio ha permitido la creación de nuevas áreas de estudio, tanto en la___________________________
Answer:
En la mejora de la investigación y la medicina.
Explicación:
La aparición del microscopio ha permitido la creación de nuevas áreas de estudio, tanto en la mejora de la investigación como en la medicina. La invención del microscopio nos permite crecer y desarrollarnos en el campo de la investigación y el estudio. Con este microscopio, los científicos pudieron descubrir la estructura de la célula, así como las partículas subatómicas que están presentes dentro del átomo. Gracias a este microscopio, los científicos pudieron crecer y desarrollarse en el campo de la creación de nuevos medicamentos.
Magnesium is added to dilute hydrochloric acid. This makes bubbles of hydrogen and a colorless solution of magnesium chloride. Write down the name of one of the products of this reaction.
Answer:
The products are already in the question Hydrogen gas and Magnesium Chloride
Explanation:
2Mg +2HCl₂ = 2MgCl₂ + H₂ balanced equation if you need it
When any metal react with acid then salt and hydrogen gas is formed. Hydrogen gas and Magnesium Chloride are formed when Magnesium is added to dilute hydrochloric acid.
What is chemical reaction?Chemical reaction is a process in which two or more than two molecules collide in right orientation and energy to form a new chemical compound. The mass of the overall reaction should be conserved. There are so many types of chemical reaction reaction like combination reaction, double displacement reaction.
The products are Hydrogen gas and Magnesium Chloride. The balanced equation can be written as
Mg +2HCl[tex]\rightarrow[/tex] MgCl₂ + H₂
This makes bubbles of hydrogen and a colorless solution of magnesium chloride.
Therefore Hydrogen gas and Magnesium Chloride are formed when Magnesium is added to dilute hydrochloric acid.
Learn more about the chemical reactions, here:
https://brainly.com/question/3461108
#SPJ2
Vinegar, which contains acetic acid, is used in foods and has few safety concerns. Hydrochloric acid is used in chemistry labs and requires the use of safety goggles and gloves. Why do the safety concerns for these two acids differ? 2 ... Acetic acid is a weak acid, and hydrochloric acid is a strong acid.
Answer:
acid
Explanation:
A chemist mixed two substances together: a blue powder with no smell and a colorless liquid with a strong smell. Their repeating groups of atoms are shown below on the left. After they were mixed, the chemist analyzed the results and found two substances. One ending substance had the repeating group of atoms shown below on the right. Is the ending substance the same substance as the blue powder? What happened to the atoms of the starting substances when the ending substances formed
Answer:
Vanished completely.
Explanation:
The atoms of starting substances are transformed into the ending substances because the starting substances mixed with each other and turn into new substances. The starting substances i.e. reactants vanished completely when the ending substances means products are formed completely so we can say that the vanishing of ending substance happened when the ending substances are formed.
How many grams of silver nitrate will be needed to produce 8.6 g of silver?
Answer:
13.5g of AgNO3 will be needed
Explanation:
Silver nitrate, AgNO3 contains 1 mole of silver, Ag, per mole of nitrate. To solve this problem we need to convert the mass of Ag to moles. Thee moles = Moles of AgNO3 we need. With the molar mass of AgNO3 we can find the needed mass:
Moles Ag-Molar mass: 107.8682g/mol-
8.6g * (1mol / 107.8682g) = 0.0797 moles Ag = Moles AgNO3
Mass AgNO3 -Molar mass: 169.87g/mol-
0.0797 moles Ag * (169.87g/mol) =
13.5g of AgNO3 will be neededPlease somone help me with a chemistry question brainliest to whoever answers correctly and 20 points
Answer:
Polar
Explanation:
Electronegativity Difference:
0.7 Non-Polar Covalent = 0 0 < Polar Covalent < 2 Ionic (Non-Covalent) ≥ 2
A chemist has three different acid solutions. The first acid solution contains 15 % 15% acid, the second contains 35 % 35% and the third contains 80 % 80% . They want to use all three solutions to obtain a mixture of 190 190 liters containing 30 % 30% acid, using 2 2 times as much of the 80 % 80% solution as the 35 % 35% solution. How many liters of each solution should be used
Answer:
First solution = 133L
Second solution = 19L
Third solution = 38L
Explanation:
As we want to make 190L of a 30%=0.3 solution we can write:
190L*0.3 = a*0.15 + b*0.35 + c*0.80
Where a, b and c are the volume of first, second and third acid solutions, respectively.
The volume of c is twice volume of b:
c = 2b
And the volume of the 3 solutions is equal to 190L:
190L = a+b+c
190L = a+3b
190L*0.3 = (190-3b)*0.15 + b*0.35 + 2b*0.80
57 = 28.5-0.45b+0.35b+1.6b
28.5 = 1.5b
b = 19L
c = 2*19L
c = 38L
a = 190L - 19L - 38L
a = 133L
Adding a catalyst to a system at equilibrium lowers the activation energy required by a system, which system, which shifts the equilibrium position toward the products.
True or false?
Answer: False
Explanation: Took the test
Answer:
False
Explanation:
Suppose that you want to make 12 g of lithium oxide.
What are the minimum masses of lithium and oxygen you will need?
A. Li= 5.6 g O2= 6.4 g
B. Li 6.5 g O2= 4.6 g
C. Li= 0.6 g O2 46.4 g
D. Li= 15.6 g O2 6.4 g
Answer:
A. Li= 5.6 g O2= 6.4 g
Explanation:
Lithium oxide, Li2O, is an oxide that contains 2 moles of Li and 1 mole of O per mole of oxide. To solve this question we must find the mass of each atom in the molecule as follows:
2Li = 2*6.941g/mol = 13.882g/mol
O = 1*16g/mol = 16g/mol
Molar mass Li2O:
16+13.882 = 29.882g/mol
The mass of lithium is:
12g * (13.882g/mol / 29.882g/mol) = 5.6g Li
And the mass of oxygen:
12g * (16g/mol / 29.882g/mol) = 6.4g O
Right answer is:
A. Li= 5.6 g O2= 6.4 gWhich of these is correct?
Answer:
1.89 nol Cu(NO3)2
Explanation:
if you calculate it it will be 1.89
what two factors affect the pressure in a solid
There are four main factors that can affect the reaction rate of a chemical reaction:
Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. ...
Physical state of the reactants and surface area. ...
Temperature. ...
Presence of a catalyst.
please make me brainlist answer
can someone answer this please
A circuit is set up with two parallel resistors, each of a resistance of 250Ω.
b. If another resistor of resistance 300Ω is added in series with these two parallel resistors, what is the total
resistance?
c. If a voltage of 120V is put across the circuit in b, what will the current be in the circuit?
Answer:
425 and 0.28A
Explanation:
Resistance for resistors in parallel
1/ R = 1/250 +1/250
=0.008
R = 1/ 0.008 = 125
Total resistance
R= 125+ 300
=425
...
V= IR
I= V/R
I = 120/425
= 0.28 A
will give brainliest. In the Solubility lab, sugar was the and water was the solute / solution O solution / solute solute / solvent solvent/solute
Answer:
Sugar was the solute and water was the solvent.
The table shows the specific heat of four substances—brick, dry soil, paper, and water. If all four substances were exposed to sunlight for the same amount of time, which substance would heat up the fastest?
Answer:
Brick
Explanation:
.................
Which represents a balanced nuclear equation?
1) 23/11Na ——>24/11Mg+1/1H
2) 24/11Na ——>24/12Mg+0/-1e
3) 24/13Al ——>24/12Mg+0/-1e
4) 23/12Mg ——>24/12Mg+1/0n
Answer:
The correct option is 2.
Explanation:
In a nuclear reaction balanced we have that:
1. The sum of the mass number (A) of the reactants (r) is equal to the sum of the mass number of the products (p) [tex] \Sigma A_{r} = \Sigma A_{p} [/tex]
2. The sum of the atomic number (Z) of the reactants is also equal to the sum of the atomic number of the products [tex]\Sigma Z_{r} = \Sigma A_{p}[/tex]
So, let's evaluate each option.
1) [tex]^{23}_{11}Na \rightarrow ^{24}_{11}Mg + ^{1}_{1}H[/tex]
The mass number of the reactant is:
[tex]A_{r} = 23 [/tex]
The sum of the mass number of the products is:
[tex] A_{p} = 24 + 1 = 25 [/tex]
This is not the correct option because it does not meet the first condition ([tex] \Sigma A_{r} = \Sigma A_{p}[/tex]).
2) [tex]^{24}_{11}Na \rightarrow ^{24}_{12}Mg + ^{0}_{-1}e[/tex]
The mass number of the reactant and the products is:
[tex]A_{r} = 24 [/tex]
[tex] A_{p} = 24 + 0 = 24 [/tex]
Now, the atomic number of the reactants and the products are:
[tex]Z_{r} = 11 [/tex]
[tex] Z_{p} = 12 + (-1) = 11 [/tex]
This nuclear reaction is balanced since it does meet the two conditions for a balanced nuclear equation, ([tex] \Sigma A_{r} = \Sigma A_{p}[/tex] and [tex] \Sigma Z_{r} = \Sigma Z_{p}[/tex]).
3) [tex]^{24}_{13}Al \rightarrow ^{24}_{12}Mg + ^{0}_{-1}e[/tex]
The mass number of the reactant and the products is:
[tex]A_{r} = 24 [/tex]
[tex] A_{p} = 24 + 0 = 24 [/tex]
Now, the atomic number of the reactants and the products are:
[tex]Z_{r} = 13 [/tex]
[tex] Z_{p} = 12 + (-1) = 11 [/tex]
This reaction does not meet the second condition ([tex] \Sigma Z_{r} = \Sigma Z_{p}[/tex]) so this is not a balanced nuclear equation.
4) [tex]^{23}_{12}Mg \rightarrow ^{24}_{12}Mg + ^{1}_{0}n[/tex]
The mass number of the reactant and the products is:
[tex]A_{r} = 23 [/tex]
[tex] A_{p} = 24 + 1 = 25 [/tex]
This reaction is not a balanced nuclear equation since it does not meet the first condition ([tex] \Sigma A_{r} = \Sigma A_{p}[/tex]).
Therefore, the correct option is 2.
I hope it helps you!
If a student has 125 mL of a 4.00 M CuSO4 solution and needs a 1.50 M solution, what volume do they need to dilute it to?
Answer:
333.3mL
Explanation:
Using the formula as follows:
C1V1 = C2V2
Where;
C1 = initial concentration (M)
C2 = final concentration (M)
V1 = initial volume (mL)
V2 = final volume (mL)
According to the information provided in this question,
C1 = 4.00M
C2 = 1.50M
V1 = 125mL
V2 = ?
Using C1V1 = C2V2
4 × 125 = 1.5 × V2
500 = 1.5V2
V2 = 500/1.5
V2 = 333.3mL
Therefore, the CuSO4 solution needs to be diluted to 333.3mL to make 1.50 M solution.