Answer:
$12,78
Step-by-step explanation:
$142 × 0,15 = $21,3
$21,3 × 0,6 = $12,78
Consider the function f(x) = (x − 3)2(x + 2)2(x − 1). The zero has a multiplicity of 1. The zero −2 has a multiplicity of .
Answer:
The zero 1 has a multiplicity of 1.
The zero -2 has a multiplicity of 2.
Hope this clears up any confusion :)
Step-by-step explanation:
Answer:
The zero 1 has a multiplicity of 1.
The zero −2 has a multiplicity of 2 .
Step-by-step explanation:
You have 9kg of oats and cup scales that gears of 50g and 200g. How − in three weighings− can you measure 2kg of the oats?
Answer: You will need 8 cup scales
Step-by-step explanation:
kg=1000 grams
2000/250=8
How would the margin of error change if the sample size increased from 200 to 400 students? Assume that the proportion of students who say yes does not change significantly.
Answer:
(MOE) the Margin of Error will decrease by the square root of 2
Step-by-step explanation:
The Margin of Error (MOE) is an inverse function of sample size n ( more precisely of the square root of sample size ). That relation means changes in sample size ( keeping constant other variables of the distribution) will imply opposite changes in the Margin of Error. If we double the sample size increasing it from 200 up to 400, the Margin of Error will decrease by the square root of 2
Suppose that a password for a computer system must have at least 8, but no more than 12, characters, where each character in the password is a lowercase English letter, an uppercase English letter, a digit, or one of the six special characters ∗, >, <, !, +, and =.
a) How many different passwords are available for this computer system?
b) How many of these passwords contain at least one occurrence of at least one of the six special characters?
c) Using your answer to part (a), determine how long it takes a hacker to try every possible password, assuming that it takes one nanosecond for a hacker to check each possible password.
Part a)
There are 52 letters (26 lowercase and 26 uppercase), 10 digits, and 6 symbols. There are 52+10+6 = 68 different characters to choose from.
If there are 8 characters for this password, then we have 68^8 = 4.5716 * 10^14 different passwords possible.If there are 9 characters, then we have 68^9 = 3.1087 * 10^16 different passwordsIf there are 10 characters, then we have 68^10 = 2.1139 * 10^18 different passwordsIf there are 11 characters, then we have 68^11 = 1.4375 * 10^20 different passwordsIf there are 12 characters, then we have 68^12 = 9.7748 * 10^21 different passwordsAdding up those subtotals gives
68^8+68^9+68^10+68^11+68^12 = 9.9207 * 10^21
different passwords possible.
Answer: Approximately 9.9207 * 10^21======================================================
Part b)
Let's find the number of passwords where we don't have a special symbol
There are 52+10 = 62 different characters to pick from
If there are 8 characters for this password, then we have 62^8 = 2.1834 * 10^14 different passwords possible. If there are 9 characters, then we have 62^9 = 1.3537 * 10^16 different passwords If there are 10 characters, then we have 62^10 = 8.3930 * 10^17 different passwords If there are 11 characters, then we have 62^11 = 5.2037 * 10^19 different passwords If there are 12 characters, then we have 62^12 = 3.2263 * 10^21 different passwordsAdding those subtotals gives
62^8+62^9+62^10+62^11+62^12 = 3.2792 * 10^21
different passwords where we do not have a special character. Subtract this from the answer in part a) above
( 9.9207 * 10^21) - (3.2792 * 10^21) = 6.6415 * 10^21
which represents the number of passwords where we have one or more character that is a special symbol. I'm using the idea that we either have a password with no symbols, or we have a password with at least one symbol. Adding up those two cases leads to the total number of passwords possible.
Answer: Approximately 6.6415 * 10^21======================================================
Part c)
The answer from part a) was roughly 9.9207 * 10^21
It will take about 9.9207 * 10^21 nanoseconds to try every possible password from part a).
Divide 9.9207 * 10^21 over 1*10^9 to convert to seconds
(9.9207 * 10^21 )/(1*10^9) = 9,920,700,000,000
This number is 9.9 trillion roughly.
It will take about 9.9 trillion seconds to try every password, if you try a password per second.
------
To convert to hours, divide by 3600 and you should get
(9,920,700,000,000)/3600 = 2,755,750,000
So it will take about 2,755,750,000 hours to try all the passwords.
------
Divide by 24 to convert to days
(2,755,750,000)/24= 114,822,916.666667
which rounds to 114,822,917
So it will take roughly 114,822,917 days to try all the passwords.
------
Then divide that over 365 to convert to years
314,583.334246576
which rounds to 314,583
It will take roughly 314,583 years to try all the passwords
------------------------------
Answers:9.9 trillion seconds2,755,750,000 hours114,822,917 days314,583 yearsAll values are approximate, and are roughly equivalent to one another.
A) 9,920,671,339,261,325,541,376 different passwords are available for this computer system.
B) 875,353,353,464,234,606,592 of these passwords contain at least one occurrence of at least one of the six special characters.
C) It would take 314,582.42 years for a hacker to try every possible password.
To determine how many different passwords are available for this computer system; how many of these passwords contain at least one occurrence of at least one of the six special characters; and how long it takes a hacker to try every possible password, assuming that it takes one nanosecond for a hacker to check each possible password, the following calculations must be performed:
26 + 26 + 10 + 6 = 68 A) 68 ^ 12 + 68 ^ 11 + 68 ^ 10 + 68 ^ 9 + 68 ^ 8 = X 9,920,671,339,261,325,541,376 = XB)6 x (68^11) + 6 x (68^10) + 6 x (68^9) + 6 x (68^8) + 6 x (68^7) = X875,353,353,464,234,606,592 = XC)1 nanosecond = 1,66667e-11 minutes9,920,671,339,261,325,541,376 nanoseconds = 165344522321.02209473 minutes165344522321.02209473 minutes = 2755742038.6837015152 hours2755742038.6837015152 hours = 114822584.94515423477 days114822584.94515423477 days = 314582.4245072719059 years
Learn more in https://brainly.com/question/19912049
If the nth term is nn+1, then the (n+1)st term is:
Answer:
[tex]\large \boxed{\sf C. \ (n+1)^{n+1}+1}[/tex]
Step-by-step explanation:
[tex]n^n+1[/tex]
Plug in the value for n as n+1 in the nth term to find the (n+1)st term.
[tex](n+1)^{n+1}+1[/tex]
Answer:
[tex]\boxed{Option \ 3}[/tex]
Step-by-step explanation:
=> [tex]n^n+1[/tex]
Given that n = n+1
So,
=> [tex](n+1)^{n+1}+1[/tex]
the terms in this sequence increase by the same amount each time. _19_ _ 34_ a) work out the missing terms.
Answer:
The sequence is 14, 19, 24, 29, 34, 39.
Step-by-step explanation:
Let's call the common difference (the difference between two consecutive terms) as d. We see that the second term is 19 and the 5th term is 34 and since 5 - 2 = 3, we add d 3 times to 19 to get 34 so therefore:
19 + 3d = 34
3d = 15
d = 5 so the first term is 19 - 5 = 14, the third would be 19 + 5 = 24, the fourth would be 24 + 5 = 29 and the sixth would be 34 + 5 = 39.
An evergreen nursery usually sells a certain shrub after 9 years of growth and shaping. The growth rate during those 9 years is approximated by
dh/dt = 1.8t + 3,
where t is the time (in years) and h is the height (in centimeters). The seedlings are 10 centimeters tall when planted (t = 0).
(a) Find the height after t years.
h(t) =
(b) How tall are the shrubs when they are sold?
cm
Answer:
(a) After t years, the height is
18t² + 3t + 10
(b) The shrubs are847 cm tall when they are sold.
Step-by-step explanation:
Given growth rate
dh/dt = 1.8t + 3
dh = (18t + 3)dt
Integrating this, we have
h = 18t² + 3t + C
When t = 0, h = 10cm
Then
10 = C
So
(a) h = 18t² + 3t + 10
(b) Because they are sold after every 9 years, then at t = 9
h = 18(9)² + 3(9) + 10
= 810 + 27 + 10
= 847 cm
Consider the polynomial 2x5 + 4x3 - 3x8
Part A The polynomial in standard form is:
Part B: The degree of the polynomial is:
Part C: The number of terms in the polynomial is:
Part D: The leading term of the polynomials:
Part E: The leading coefficient of the polynomial is:
Answer:
Step-by-step explanation:
Considering the polynomial 2x⁵ + 4x³ - 3x⁸. The polynomial is not yet in standard form. For a polynomial to be in standard form, the power of the variables must decrease as we progress to the right of the expression.
A) The polynomial in standard form is therefore - 3x⁸ + 2x⁵ + 4x³. We can see that the power are reducing as we move through each terms i.e from 8 to 5 then to 3.
B) The degree of a polynomial is the maximum degree among all the terms of the polynomial. The term that has the maximum degree is -3x⁸. Hence, the degree of the polynomial is 8
C) There are only 3 terms in the polynomial given. The terms are separated by mathematical signs. The terms if the polynomial are 2x⁵, 4x³ and - 3x⁸.
D) The leading term of the polynomial is the term that comes first after rewriting the polynomial in standard format. Given the standard from of the polynomial given as -3x⁸ + 2x⁵ + 4x³, the leading term will be - 3x⁸
E) Given the leading term to be - 3x⁸, the leading coefficient of the polynomial will be the coefficient of the leading term. The coefficient of -3x⁸ is -3
can you please help ?
Answer:
69
Step-by-step explanation:
The order of operations is PEMDAS; parentheses, exponents, multiplication and division, and finally addition and subtraction.
We know that x is the first row, and if there are 30 spots in the first row, then x=30. Using this information, all we have to do now is plug in 30 for x and solve.
[tex]\frac{5(x)}{2} -6[/tex]
[tex]\frac{5(30)}{2}-6[/tex]
[tex]\frac{150}{2}-6[/tex]
[tex]75-6[/tex]
[tex]69[/tex]
se pueden calcular las edades de Juanita y de su madre si se sabe que:
1) actualmente la suma de sus edades es 44 años
2) dentro de 11 años la edad de juanita será la mitad de la edad de su mamá
Responder:
Juanita = 11, madre = 33
Explicación paso a paso:
Dado lo siguiente:
Suma de sus edades = 44
En 11 años, Juanita tendrá la mitad de la edad de su madre
Sea la edad de la madre = my la edad de juanita = j
m + j = 44 - - - - (1)
(j + 11) = 1/2 (m + 11)
j + 11 = 1/2 m + 5,5; j - 1/2 m = - 5,5; 2j - m = - 11
2j - m = - 11 - - - - (2)
Desde (1): m = 44 - j
Sustituyendo m = 44- j en (2)
2j - (44 - j) = - 11
2j - 44 + j = - 11
3j = - 11 + 44
3j = 33
j = 11
De 1)
m + j = 44
m + 11 = 44
m = 44 - 11
m = 33
The range of values for x?
Answer:
x = 32
but
I would say anything from 30 to 33
but truly i have no clue about the range
Step-by-step explanation:
3x-9=87 (because 180 -93 =87)
3x = 96
x = 32
Answer:
it is 32
Step-by-step explanation:
Factor 4x^2-22x+30.
Answer:
4x^2-22x+30
=2(2x^2 - 11x + 15)
=2(2x^2 -6x -5x +15)
= 2 { 2x(x-3) - 5(x-3) }
= 2 (x-3) (2x - 5)
Step-by-step explanation:
Hey, there!!!
The answer is option B
here, we have;
=4x^2-22x+30
=4x^2-(10+12)x+30
= 4x^2-10x-12x+30
now, taking common,
=2x(2x-5) -6(2x-5)
= 2(x-3)(2x-5).
Hope it helps
Jayden, who burns 345 calories in 45 min
while hiking is preparing for a 6 hour hike.
He uses a special supplement beverage
pack that provides water, needed
electrolytes, and 310 calories. The goal is to
replace roughly 1/3 of the calories burned
while carrying as light a load as possible.
How many packs should he take?
This question is solved using proportions.
First, we find how many calories he will burn in the hike.Then, we find how many calories he will need to replace, and the number of packs needed.Doing this, we get that he should take 3 packs.
How many calories he burns in the hike?
In 45 minutes, he burns 345 calories. How many calories in 6*60 = 360 minutes?
45 minutes - 345 calories
360 minutes - x calories
Applying cross multiplication:
[tex]45x = 345*360[/tex]
[tex]x = \frac{345*360}{45}[/tex]
[tex]x = 2760[/tex]
He burns 2760 calories in the hike.
How many calories he wants to replace?
Roughly 1/3, so he have to find one third of 2760, that is:
[tex]\frac{2760}{3} = 920[/tex]
How many packs?
One pack recovers 310 calories, how many packs for 920 calories?
1 pack - 310 calories
x packs - 920 calories
Applying cross multiplication:
[tex]310x = 920[/tex]
[tex]x = \frac{920}{310}[/tex]
[tex]x = 2.97[/tex]
Rounding up, he should take 3 packs.
A similar question is found at https://brainly.com/question/14426926
what are the comparison symbols for 5/6 and 2/5, 4/10 and 7/8, and 3/12 and 1/4
Answer like this: Example
=
<
>
Answer:
5/6 > 2/44/10 < 7/83/12 = 1/4Step-by-step explanation:
The comparison will be the same if you subtract the right side and compare to zero:
a/b ?? c/d . . . . . . . using ?? for the unknown comparison symbol
a/b - c/d ?? 0 . . . . subtract the fraction on the right
(ad -bc)/bd ?? 0 . . . combine the two fractions
ad - bc ?? 0 . . . . . . multiply by bd to make the job easier
__
5/6 and 2/5
5(5) -6(2) = 25 -12 > 0 ⇒ 5/6 > 2/5
4/10 and 7/8
4(8) -10(7) = 48 - 70 < 0 ⇒ 4/10 < 7/8
3/12 and 1/4
3(4) -12(1) = 0 ⇒ 3/12 = 1/4
_____
Of course, you can use your calculator (or your memory) to change each of these to a decimal equivalent. The comparison should be easy at that point.
0.833 > 0.400
0.400 < 0.875
0.250 = 0.250
The graph shown below expresses a radical function that can be written in the form f(x)=a(x+k)^1/n + c. What does the graph tell you about the value of n in this function?
Answer: n is a positive odd number.
Step-by-step explanation:
Ok, we know that the function is something like:
f(x)=a(x+k)^1/n + c
In the graph we can see two thigns:
All the values of the graph are positive values (even for the negative values of x), but in the left side we can see that the function decreases and is different than the right side.
So this is not an even function, then n must be an odd number (n odd allows us to have negative values for y = f(x) that happen when x + k is negative).
Also, we can see that the function increases, if n was a negative number, like: n = -N
we would have:
[tex]f(x) = \frac{a}{(x+k)^{1/N}} + c[/tex]
So in this case x is in the denominator, so as x increases, we would see that the value of y decreases, but that does not happen, so we can conclude that the value of n must be positive.
Then n is a positive odd number.
Answer:
D) Positive Even Integer
Step-by-step explanation:
just did it
LOOK AT CAPTURE AND ASNWER 100 POINTS
Answer:
132 degrees
Step-by-step explanation:
Looking at angle A and angle B, they are alternate interior angles. That means they are congruent to one another. Knowing that, we can set up an equation A=B
We can now fill A and B with their given equations
5x-18=3x+42
Now we solve
2x=60
x=30
Now that we know x is 30, we can replace it in the equation for A
5x-18
5(30)-18
150-18
132 degrees
Answer:
132
Step-by-step explanation:
ANGLE A = ANGLE B
(INTERIOR ALTERNATE ANGLES)
5x - 18 = 3x + 42
2x = 60
x = 30
angle a = 150 - 18
= 132
6x - 10 = 4(x + 3) x = ? x = 9 x = 10 x = 11 x = 12
Answer:
x=11
Step-by-step explanation:
Answer:
x = 11
Step-by-step explanation:
6x - 10 = 4(x+3)
6x - 10 = 4*x + 4*3
6x - 10 = 4x + 12
6x - 4x = 12 + 10
2x = 22
x = 22/2
x = 11
check:
6*11 - 10 = 4(11+3)
66 - 10 = 4*14 = 56
What is the slope of the line showed?
Answer:
2
Step-by-step explanation:
The formula for the slope of a line is rise over run. We know that the slope of the line will be positive because the line is going up from left to right.
Rise is the change on the y-axis, going up and down. Run is the change on the x-axis, going from left to right.
Let's start from the origin (0,0). To reach the next point on the line, we have to go up two points (rise) and over one point (run).
Slope = rise/run
Slope = 2/1
Slope = 2
Hope that helps.
Answer:
slope=2
Step-by-step explanation:
take two points from graph (0,0) and (1,2)
m=y2-y1/x2-x1
m=2-0/1-0
m=2
Your friend Stacy has given you the following algebraic expression: "Subtract 20
times a number n from twice the cube of the number. What is the expression that your
friend is saying?
Answer:
Expression = 2n³ - 20n
Step-by-step explanation:
Find:
Expression
Computation:
Assume given number is 'n'
Cube of number = n³
Twice of cube = 2n³
Subtract number = 20n
Expression = 2n³ - 20n
2,17,82,257,626,1297 next one please ?
The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule [tex]n^4+1[/tex]. The next number would then be fourth power of 7 plus 1, or 2402.
And the harder way: Denote the n-th term in this sequence by [tex]a_n[/tex], and denote the given sequence by [tex]\{a_n\}_{n\ge1}[/tex].
Let [tex]b_n[/tex] denote the n-th term in the sequence of forward differences of [tex]\{a_n\}[/tex], defined by
[tex]b_n=a_{n+1}-a_n[/tex]
for n ≥ 1. That is, [tex]\{b_n\}[/tex] is the sequence with
[tex]b_1=a_2-a_1=17-2=15[/tex]
[tex]b_2=a_3-a_2=82-17=65[/tex]
[tex]b_3=a_4-a_3=175[/tex]
[tex]b_4=a_5-a_4=369[/tex]
[tex]b_5=a_6-a_5=671[/tex]
and so on.
Next, let [tex]c_n[/tex] denote the n-th term of the differences of [tex]\{b_n\}[/tex], i.e. for n ≥ 1,
[tex]c_n=b_{n+1}-b_n[/tex]
so that
[tex]c_1=b_2-b_1=65-15=50[/tex]
[tex]c_2=110[/tex]
[tex]c_3=194[/tex]
[tex]c_4=302[/tex]
etc.
Again: let [tex]d_n[/tex] denote the n-th difference of [tex]\{c_n\}[/tex]:
[tex]d_n=c_{n+1}-c_n[/tex]
[tex]d_1=c_2-c_1=60[/tex]
[tex]d_2=84[/tex]
[tex]d_3=108[/tex]
etc.
One more time: let [tex]e_n[/tex] denote the n-th difference of [tex]\{d_n\}[/tex]:
[tex]e_n=d_{n+1}-d_n[/tex]
[tex]e_1=d_2-d_1=24[/tex]
[tex]e_2=24[/tex]
etc.
The fact that these last differences are constant is a good sign that [tex]e_n=24[/tex] for all n ≥ 1. Assuming this, we would see that [tex]\{d_n\}[/tex] is an arithmetic sequence given recursively by
[tex]\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}[/tex]
and we can easily find the explicit rule:
[tex]d_2=d_1+24[/tex]
[tex]d_3=d_2+24=d_1+24\cdot2[/tex]
[tex]d_4=d_3+24=d_1+24\cdot3[/tex]
and so on, up to
[tex]d_n=d_1+24(n-1)[/tex]
[tex]d_n=24n+36[/tex]
Use the same strategy to find a closed form for [tex]\{c_n\}[/tex], then for [tex]\{b_n\}[/tex], and finally [tex]\{a_n\}[/tex].
[tex]\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}[/tex]
[tex]c_2=c_1+24\cdot1+36[/tex]
[tex]c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2[/tex]
[tex]c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3[/tex]
and so on, up to
[tex]c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)[/tex]
Recall the formula for the sum of consecutive integers:
[tex]1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2[/tex]
[tex]\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)[/tex]
[tex]\implies c_n=12n^2+24n+14[/tex]
[tex]\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}[/tex]
[tex]b_2=b_1+12\cdot1^2+24\cdot1+14[/tex]
[tex]b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2[/tex]
[tex]b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3[/tex]
and so on, up to
[tex]b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)[/tex]
Recall the formula for the sum of squares of consecutive integers:
[tex]1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6[/tex]
[tex]\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)[/tex]
[tex]\implies b_n=4n^3+6n^2+4n+1[/tex]
[tex]\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}[/tex]
[tex]a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1[/tex]
[tex]a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2[/tex]
[tex]a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3[/tex]
[tex]\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1[/tex]
[tex]\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4[/tex]
[tex]\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)[/tex]
[tex]\implies a_n=n^4+1[/tex]
The numbers 1,2,3,4,5,6,7,8,9. How would you put them in each of a square block to create the sum on each line to make the number 15. The sum of each diagonals should also be 15.
Answer:
Here's one way:
4 9 2
3 5 7
8 1 6
Step-by-step explanation:
You catch an expected number of 1.51.5 fish per hour. You can catch a fish at any instant of time. Which distribution best characterizes the number of fish you catch in one hour of fishing
Answer:
The distribution is Poisson distribution
Step-by-step explanation:
From the question we are told that
An expected number of fish was caught per hour is 1.5
The distribution that best characterize the number of fish you catch in one hour of fishing is the Poisson distribution
This because generally the Poisson distribution is a distribution that shows the number of times a given event will occur within a defined period of time
A vending machine company wants to check three of its machines to determine if they are properly dispensing 12 ounces of coffee. Their data is given below α = 0.01.
Row Machine A Machine B Machine C
1 11.5 10.3 11.1
2 12.1 9.7 11.3
3 11.6 10.4 11.9
4 12.0 10.7 11.5
5 11.1 9.9 11.7
6 12.2 10.1 11.3
H0: μA = μB = μC
Ha: Not all means are equal
One-way ANOVA: Machine A, Machine B, Machine C
Source DF SS MS F P
Factor 2 8.363 4.182 31.73 0.000
Error 15 1.977 0.132
Total 17 10.340
P-value: _____
Decision: _____
Is there a significant difference between the vending machines A, B, and C? Use α=0.05.
A. No, there is no significant difference between the means.
B. Yes, there is a significant difference between the means.
C. The F-test cannot be used to answer whether or not there is a significant difference between the means.
Answer:
The correct option is B.
Step-by-step explanation:
The hypothesis to determine whether the vending machines are properly dispensing 12 ounces of coffee is:
H₀: [tex]\mu_{A}=\mu_{B}=\mu_{C}[/tex]
Hₐ: Not all means are equal.
The ANOVA output is as follows:
One-way ANOVA: Machine A, Machine B, Machine C
Source DF SS MS F P
Factor 2 8.363 4.182 31.73 0.000
Error 15 1.977 0.132
Total 17 10.340
The significance level is α = 0.05.
The p-value of the model is:
p-value = 0.000
Decision rule:
If the p-value of the test is less than the significance level then the null hypothesis will be rejected.
p-value = 0.000 < α = 0.05
The null hypothesis will be rejected.
Conclusion:
There is a significant difference between the means.
Thus, the correct option is B.
for the first one the answer are
add 5 to both sides
subtract 5 from both sides
add 1/2x to both sides
subtract 1/2 from both sides
the second one is
multiply both sides by 1/5
dived both sides by 1/5
multiply both sides by 6/7
dived both sides by 6/7
Answer:
1. add 1/2x to both sides
a. you want to combine the like terms. in this case, it is the x variable.
you are left with 7/6x = 5
2. multiply by 6/7
a. the reciprocal of 7/6 will cancel out the values
WILL GIVE BRAINLYEST AND 30 POINTS Which of the followeing can be qritten as a fraction of integers? CHECK ALL THAT APPLY 25, square root of 14, -1.25, square root 16, pi, 0.6
Answer:
25 CAN be written as a fraction.
=> 250/10 = 25
Square root of 14 is 3.74165738677
It is NOT POSSIBLE TO WRITE THIS FULL NUMBER AS A FRACTION, but if we simplify the decimal like: 3.74, THEN WE CAN WRITE THIS AS A FRACTION
=> 374/100
-1.25 CAN be written as a fraction.
=> -5/4 = -1.25
Square root of 16 CAN also be written as a fraction.
=> sqr root of 16 = 4.
4 can be written as a fraction.
=> 4 = 8/2
Pi = 3.14.........
It is NOT POSSIBLE TO WRITE THE FULL 'PI' AS A FRACTION, but if we simplify 'pi' to just 3.14, THEN WE CAN WRITE IT AS A FRACTION
=> 314/100
.6 CAN be written as a fraction.
=> 6/10 = .6
PLEASE HELPPPP
A standard I.Q. test produces normally distributed results with a mean of 100 and a standard deviation of 15 for the city of New York. Out of approximately 8,400,000 citizens, how many of these people would have I.Q.s below 67?
Answer:
approx 193200
Step-by-step explanation:
As known for normal distribution is correct the rule 95.4% of the results are situation within mean+-2*s ( where s is a standard deviation)
So the border is 100+-2*15=70 and that is approx=67.
95.4% of 84000000 citizens are= 8 400 000*0.954=8013600 persons
So the residual number of the citizens =8400000-8013600=386400 citizens
Because of the simmetry of normal distribution to find the number of the citizens that have IQ below 67 we have to divide 386400 by 2.
N=386000/2=193200
The function y=-2(x-3)2 + 4 shows the daily profit (in hundreds of dollars)
of a hot dog stand, where xis the price of a hot dog (in dollars). Find and
interpret the zeros of this function.
Select two answers: one for the zeros and one for the interpretation.
O A. Zeros at x = 3 1/2
B. The zeros are the hot dog prices at which they sell o hot dogs.
C. Zeros at x = 2 and x = 3
D. The zeros are the hot dog prices that give $0.00 profit (no profit).
Answer:
D. The zeros are the hot dog prices that give $0.00 profit (no profit).
Step-by-step explanation:
Given the function y=-2(x-3)² + 4
The zeros of the function are the points at which the graph of the function crosses the x axis if plotted. y is the daily profit (in hundreds of dollars) and x is the price of the hot dog. To find the zeros, we substitute x = 0 and solve.
Therefore: y=2(x-3)² + 4
0 = 2(x-3)² + 4
-2(x² - 6x + 9) + 4 = 0
-2x² + 12x - 18 + 4 = 0
2x² - 12x + 18 - 4 = 0
2x² - 12x + 14 = 0
2(x² - 6x + 7) = 0
x² - 6x + 7 = 0
Solving the quadratic equation gives:
x = 3 + √2 and x = 3 - √2
This means that the graph crosses x at 3 + √2 and 3 - √2.
The zeros of the function are 3 + √2 and 3 - √2. The zeros of the function is the point where y = 0, that is the point that the hot dog prices that give $0.00 profit (no profit).
write the equation of a horizontal ellipse with a major axis of 18, and minor axis of 10, and a center at (-4, 5).
See the attached picture
[tex]\bold{\text{Answer:}\quad \dfrac{(x+4)^2}{81}+\dfrac{(y-5)^2}{25}=1}[/tex]
Step-by-step explanation:
A "horizontal" ellipse means that the x-radius is bigger than the y-radius. Thus, x is the major axis and y is the minor axis.
The equation of an ellipse is: [tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex] where
(h, k) is the center of the ellipsea is the radius on the x-axisb is the radius on the y-axisIt is given that the center is at (-4, 5) --> h = -4, k = 5
It is given that the major axis has a length of 18 --> x-radius = 9
It is given that the minor axis has a length of 10 --> y-radius = 5
Input those values into the equation of an ellipse to get:
[tex]\dfrac{(x-(-4))^2}{9^2}+\dfrac{(y-5)^2}{5^2}=1[/tex]
Simplify to get:
[tex]\dfrac{(x+4)^2}{81}+\dfrac{(y-5)^2}{25}=1[/tex]
A certain dataset of systolic blood pressure measurements has a mean of 80 and a standard deviation of 3. Assuming the distribution is bell-shaped and we randomly select a measurement:
a) What percentage of measurements are between 71 and 89?
b) What is the probability a person's blood systolic pressure measures more than 89?
c) What is the probability a person's blood systolic pressure being at most 75?
d) We should expect 15% of patients have a blood pressure below what measurement?
e) Would it be unusual for 3 patients to have a mean blood pressure measurement of more than 84? Explain.
Answer:
Explained below.
Step-by-step explanation:
Let X = systolic blood pressure measurements.
It is provided that, [tex]X\sim N(\mu=80,\sigma^{2}=3^{2})[/tex].
(a)
Compute the percentage of measurements that are between 71 and 89 as follows:
[tex]P(71<X<89)=P(\frac{71-80}{3}<\frac{X-\mu}{\sigma}<\frac{89-80}{3})[/tex]
[tex]=P(-3<Z<3)\\=P(Z<3)-P(Z<-3)\\=0.99865-0.00135\\=0.9973[/tex]
The percentage is, 0.9973 × 100 = 99.73%.
Thus, the percentage of measurements that are between 71 and 89 is 99.73%.
(b)
Compute the probability that a person's blood systolic pressure measures more than 89 as follows:
[tex]P(X>89)=P(\frac{X-\mu}{\sigma}>\frac{89-80}{3})[/tex]
[tex]=P(Z>3)\\=1-P(Z<3)\\=1-0.99865\\=0.00135\\\approx 0.0014[/tex]
Thus, the probability that a person's blood systolic pressure measures more than 89 is 0.0014.
(c)
Compute the probability that a person's blood systolic pressure being at most 75 as follows:
Apply continuity correction:
[tex]P(X\leq 75)=P(X<75-0.5)[/tex]
[tex]=P(X<74.5)\\\\=P(\frac{X-\mu}{\sigma}<\frac{74.5-80}{3})\\\\=P(Z<-1.83)\\\\=0.03362\\\\\approx 0.034[/tex]
Thus, the probability that a person's blood systolic pressure being at most 75 is 0.034.
(d)
Let x be the blood pressure required.
Then,
P (X < x) = 0.15
⇒ P (Z < z) = 0.15
⇒ z = -1.04
Compute the value of x as follows:
[tex]z=\frac{x-\mu}{\sigma}\\\\-1.04=\frac{x-80}{3}\\\\x=80-(1.04\times3)\\\\x=76.88\\\\x\approx 76.9[/tex]
Thus, the 15% of patients are expected to have a blood pressure below 76.9.
(e)
A z-score more than 2 or less than -2 are considered as unusual.
Compute the z score for [tex]\bar x[/tex] as follows:
[tex]z=\frac{\bar x-\mu}{\sigma/\sqrt{n}}[/tex]
[tex]=\frac{84-80}{3/\sqrt{3}}\\\\=2.31[/tex]
The z-score for the mean blood pressure measurement of 3 patients is more than 2.
Thus, it would be unusual.
Complete each ordered pair so that it is a solution of the given linear equation.
x - 4y = 4; (_,3), (4,_)
Answer: (16,3) and (4,0)
Step-by-step explanation:
Using the equation x-4y=4 is asking what is the value of x if the value of y is 3. So plot it into the equation and solve for x.
x-4(3)=4 multiply the left side
x - 12 = 4 add 12 to both sides
x= 16
You will now have the coordinates (16,3)
In the second pair it gives the x coordinate which is 4 but we need to solve for y.
4 - 4y=4 subtract 4 from both sides
-4 -4
-4y = 0 Divide both sides by 4
y = 0
The ordered pair will be (4,0)