What happens to the concentration of hydron What happens to the pH of a buffer when a small amount of acid is added? It will decrease by 10 points. It will increase by 10 points. It will stay about the same.ium ions as the pH of a solution increases? Disabled A. hydronium ion concentration increases Student Selected Incorrect B. hydronium ion concentration stays the same Disabled C. hydronium ion concentration decreases
Answer:
B
Explanation:
the concentration will be the same disabled
Why is there a huge diversity of substances?
A. Atoms can combine in many ways to form various compounds
and molecules.
B. Any element can combine with any other element.
C. Atoms break apart to form new types of atoms during chemical
reactions.
D. There is an unlimited number of elements.
A. Atoms can combine in many ways to form various compounds
and molecules.
2.67 Determine the density (g/mL) for each of the following:
a. A 20.0-mL sample of a salt solution has a mass of 24.0 g.
The density (g/mL) for a 20.0-mL sample of a salt solution has a mass of 24.0 g is 1.2 g/ml.
What is density?Density is the mass per unit volume. Density is a scalar quantity. It is denoted by d and the symbol for density is given as rho, a Greek symbol. Density is calculated as mass divided by volume.
Mass is the quantity of matter in a physical body. The product of the molar mass of the compound and the moles of the substance are defined as mass.
Volume is the space occupied by a three-dimensional object. Volume is calculated by dividing mass by density.
Given, the 20.0-mL sample of a salt solution, which is the volume.
The mass of the solution is 24.0 g
To calculate the density
mass/volume
24.0 / 20.0 = 1.2 g/ml
Thus, the density of the given salt solution is 1.2 g/ml.
To learn more about density, refer to the link:
https://brainly.com/question/17851361
#SPJ2
All of the different types of electromagnetic radiation (light, x-rays, ultraviolet
radiation, and so on) make up the
atomic spectrum
electromagnetic spectrum.
sunlight
spectral lines,
Answer:
bleh
Explanation:
Suppose you need to prepare 21.0 mL of formate buffer with a ratio of 4 of [sodium formate]/[formic acid] by mixing 0.10 M formic acid and 0.10 M sodium formate. How many milliliters of sodium formate do you need to measure to make this buffer (assuming the rest is formic acid)
Answer: A volume of 20.49 milliliters of sodium formate do you need to measure to make this buffer (assuming the rest is formic acid).
Explanation:
Given: Total volume of the buffer = 21.0 mL
[tex]\frac{[HCOONa]}{[HCOOH]} = 4[/tex] ... (1)
It is assumed that the volume of HCOONa is x. Hence, volume of HCOOH is (21.0 - x) mL.
Hence,
[HCOONa] = Molarity [tex]\times[/tex] Volume
= 0.10 [tex]\times[/tex] x
= 0.1x mmol
Similarly, [HCOOH] = Molarity [tex]\times[/tex] Volume
= 0.10 [tex]\times[/tex] (21.0 - x) mmol
Using equation (1),
[tex]\frac{[HCOONa]}{[HCOOH]} = 4\\\frac{0.1x}{(21.0 - x)} = 4\\0.1x = 84.0 - 4x\\4.1x = 84.0\\x = 20.49 mL[/tex]
As x is the volume of sodium formate. Hence, 20.49 mL of sodium formate is required to make the buffer.
Thus, we can conclude that a volume of 20.49 milliliters of sodium formate do you need to measure to make this buffer (assuming the rest is formic acid).
Calculate the mass of water produced when 9.57 g of butane reacts with excess oxygen.
Express your answer to three significant figures and include the appropriate units.
Answer:
14.9 g
Explanation:
Step 1: Write the balanced equation
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 9.57 g of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
9.57 g × 1 mol/58.12 g = 0.165 mol
Step 3: Calculate the moles of H₂O produced from 0.165 moles of C₄H₁₀
0.165 mol C₄H₁₀ × 5 mol H₂O/1 mol C₄H₁₀ = 0.825 mol H₂O
Step 4: Calculate the mass corresponding to 0.825 mol of H₂O
The molar mass of H₂O is 18.02 g/mol.
0.825 mol × 18.02 g/mol = 14.9 g
1. When the following oxidation-reduction reaction in acidic solution is balanced, what is the
lowest whole-number coefficient for Rb*(aq)?
Rb(s) + Sr?+(aq) → Rb+ (aq) + Sr(s)
The most stable conformation of the following compound has
A. An axial methyl group and an axial ethyl group.
B. An axial methyl group and an equatorial ethyl group.
C. An axial tert-butyl group.
D. An equatorial methyl group and an equatorial ethyl group.
E. An equatorial methyl group and an axial ethyl group.
Answer:
The most stable conformation of the following compound has
A. An axial methyl group and an axial ethyl group.
B. An axial methyl group and an equatorial ethyl group.
C. An axial tert-butyl group.
D. An equatorial methyl group and an equatorial ethyl group.
E. An equatorial methyl group and an axial ethyl group.
Explanation:
The most stable conformation in the cyclohexane ring is the one in which both the substituents are in the equatorial position.
Among the given options,
option D An equatorial methyl group and an equatorial ethyl group.
When the substituents in the cyclohexane ring are in equatorial positions then, the steric repulsions will be reduced.
Answer is option D.
Trộn 100ml dung dịch H2SO4 0,03M với 200ml dung dịch HCl 0,03M và 0,001mol Ba(OH)2 0,05M . Hãy tính pH của dung dịch này?
Answer:
pH = 1.92Explanation:
[H+] = 0.1x0.03x2 + 0.2x0.03 = 0.012 mol
[OH-] = 0.001x0.05x2 = 0.0001 mol
=> [H+] dư = 0.012 - 0.0001 =0.0119 mol
pH = -log[H+] = 1.92
Write a formula for the ionic compound that forms from magnesium
and oxygen.
Answer:
MgO
Explanation:
Please help me name these organic compounds
Answer:
Aldehydes and Ketones
Both aldehydes and ketones contain a carbonyl group, a functional group with a carbon-oxygen double bond. The names for aldehyde and ketone compounds are derived using similar nomenclature rules as for alkanes and alcohols, and include the class-identifying suffixes -al and -one, respectively:

In an aldehyde, the carbonyl group is bonded to at least one hydrogen atom. In a ketone, the carbonyl group is bonded to two carbon atoms:


As text, an aldehyde group is represented as –CHO; a ketone is represented as –C(O)– or –CO–.
In both aldehydes and ketones, the geometry around the carbon atom in the carbonyl group is trigonal planar; the carbon atom exhibits sp2 hybridization. Two of the sp2 orbitals on the carbon atom in the carbonyl group are used to form σ bonds to the other carbon or hydrogen atoms in a molecule. The remaining sp2 hybrid orbital forms a σ bond to the oxygen atom. The unhybridized p orbital on the carbon atom in the carbonyl group overlaps a p orbital on the oxygen atom to form the π bond in the double bond.
Like the C=OC=O bond in carbon dioxide, the C=OC=O bond of a carbonyl group is polar (recall that oxygen is significantly more electronegative than carbon, and the shared electrons are pulled toward the oxygen atom and away from the carbon atom). Many of the reactions of aldehydes and ketones start with the reaction between a Lewis base and the carbon atom at the positive end of the polar C=OC=O bond to yield an unstable intermediate that subsequently undergoes one or more structural rearrangements to form the final product (Figure 1).
Figure 1. The carbonyl group is polar, and the geometry of the bonds around the central carbon is trigonal planar.
The importance of molecular structure in the reactivity of organic compounds is illustrated by the reactions that produce aldehydes and ketones. We can prepare a carbonyl group by oxidation of an alcohol—for organic molecules, oxidation of a carbon atom is said to occur when a carbon-hydrogen bond is replaced by a carbon-oxygen bond. The reverse reaction—replacing a carbon-oxygen bond by a carbon-hydrogen bond—is a reduction of that carbon atom. Recall that oxygen is generally assigned a –2 oxidation number unless it is elemental or attached to a fluorine. Hydrogen is generally assigned an oxidation number of +1 unless it is attached to a metal. Since carbon does not have a specific rule, its oxidation number is determined algebraically by factoring the atoms it is attached to and the overall charge of the molecule or ion. In general, a carbon atom attached to an oxygen atom will have a more positive oxidation number and a carbon atom attached to a hydrogen atom will have a more negative oxidation number. This should fit nicely with your understanding of the polarity of C–O and C–H bonds. The other reagents and possible products of these reactions are beyond the scope of this chapter, so we will focus only on the changes to the carbon atoms:
which of the following molecules would you expect to have a dipole moment of zero? a,CH2 Ch3
bH2C=0
cCH2cl
dNH3
Answer: The molecule [tex]CH_{3}-CH_{3}[/tex] is expected to have a dipole moment of zero.
Explanation:
The product of magnitude of the charge calculated in electrostatic units is called dipole moment.
Formula for dipole moment is as follows.
Dipole moment = Charge (in esu) [tex]\times[/tex] distance (in cm)
Non-polar molecules have zero dipole moment.
For example, [tex]CH_{3}-CH_{3}[/tex] is a non-polar molecule so its dipole moment is zero.
[tex]H_{2}C=O[/tex] is a polar molecule so it will have dipole moment.
[tex]CH_{2}Cl_{2}[/tex] is a polar molecule so it will have dipole moment.
[tex]NH_{3}[/tex] has nitrogen atom as more electronegative than hydrogen atom. So, net dipole moment will be in the direction of nitrogen atom.
Thus, we can conclude that the molecule [tex]CH_{3}-CH_{3}[/tex] is expected to have a dipole moment of zero.
For the neutralization reaction between pyridine and propanoic acid, draw curved arrows to indicate the direction of electron flow. Draw curved arrows to show the movement of electrons in this step of the mechanism.
Answer:
For the neutralization reaction between pyridine and propanoic acid, draw curved arrows to indicate the direction of electron flow.
Draw curved arrows to show the movement of electrons in this step of the mechanism.
Explanation:
According to Bronsted acid-base theory, an acid is a substance which is a proton donor.
Base is the proton acceptor.
In the given example, acid is propanoic acid and it loses the proton.
Pyridine is the base and it accepts the proton from propanoic acid.
The entire reaction is shown below:
Spell out the full name of the compounds
Help plz
Answer:
propanal
Explanation:
hope this helps :)
A chemist adds 370.0mL of a 1.41/molL potassium iodide KI solution to a reaction flask. Calculate the millimoles of potassium iodide the chemist has added to the flask. Be sure your answer has the correct number of significant digits.
Answer: The millimoles of potassium iodide the chemist has added to the flask is 522 millimoles.
Explanation:
Given: Volume of KI = 370.0 mL (1 mL = 0.001 L) = 0.37 L
Molarity of KI solution = 1.41 mol/L
Now, moles of KI (potassium iodide) is calculated as follows.
[tex]Moles = Volume \times Molarity \\= 0.37 L \times 1.41 M\\= 0.5217 mol[/tex]
Convert moles into millimoles as follows.
1 mol = 1000 millimoles
0.5217 mol = [tex]0.5217 mol \times \frac{1000 millimoles}{1 mol} = 521.7 millimoles[/tex]
This can be rounded off to the value 522 millimoles.
Thus, we can conclude that the millimoles of potassium iodide the chemist has added to the flask is 522 millimoles.
what is the chemical fomula for water
Answer:
H2O.....................
Determine whether or not each ion contributes to water hardness.
a. Ca2+
b. (HCO)3^-
c. K+
d. Mg2+
Answer: The ion that contribute to water hardness are:
--> a. Ca2+
--> b. (HCO)3^- and
--> c. Mg2+
While K+ DOES NOT contribute to water hardness.
Explanation:
WATER in chemistry is known as a universal solvent. This is so because it is polar in nature and dissolves most inorganic solutes and some polar organic solutes to form aqueous solutions. It is composed of elements such as hydrogen and oxygen in the combined ratio of 2:1.
Water is said to be HARD if it does not lather readily with soap. There are two types of water hardness:
--> Permanent hardness: This is mainly due to the presence of CALCIUM and MAGNESIUM ions in the form of soluble tetraoxosulphate(VI) and chlorides. These ions are removed by adding washing soda or caustic soda.
--> Temporary hardness: This is due to the presence of calcium HYDROGENTRIOXOCARBONATES. It can be removed by boiling and using slaked lime.
Therefore from the above given ions, Ca2+,(HCO)3^- and Mg2+ contributes to water hardness.
f. . A metal cylinder has a mass of 100.00 g is heated to 95.50 celcius and then put in 245.5 g of water whose initial temperature is 22.50 Celsius. The final temperature of the mixture is 24.17 Celsius what is the specific heat of the metal.
[tex]\large\colorbox{orange}{May Be Helpful ✌️ Dear ✌️}[/tex][tex]\large\colorbox{orange}{May Be Helpful ✌️ Dear ✌️}[/tex]
Name the following compound: Cuzs
O sulfur copperide (ll)
O sulfur copperide (1)
O copper(I) sulfide
copper(ll) sulfide
Answer:
THE ANSWER IS: copper(I) sulfide.
hope this helped <3
Explanation:
4. An exothermic reaction is accompanied by a decrease in entropy. How would this reaction be
classified?
A. spontaneous at all temperatures
B. nonspontaneous only at low temperatures
C. nonspontaneous at all temperatures
D. spontaneous only at low temperatures
Answer:
Spontaneous at only low temperature. I made a chart for my AP Chem class if you want to refer to it.
A chemistry student needs 15.0 g of methanol for an experiment. She has available 320. g of 44.4% w/w solution of methanol in water. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.
Answer:
33.8 g Solution
Explanation:
A chemistry student needs 15.0 g of methanol for an experiment. The concentration of ethanol in the solution is 44.4% w/w, that is, there are 44.4 g of methanol every 100 g of solution. The mass of solution that would contain 15.0 g of methanol is:
15.0 g Methanol × 100 g Solution/44.4 g Methanol = 33.8 g Solution
Since 33.8 g are required and 320. g are available, there is enough solution for the requirements.
What is the concentration of a solution in which 15 grams of sugar is dissolved in 0.2 L of water?
Answer:
0.2 M
Explanation:
Step 1: Given data
Mass of sugar (sucrose): 15 gVolume of water: 0.2 L (we will assume it is the volume of the solution)There are different ways to express the concentration of a solution. We will calculate molarity, which is one of the most used.
Step 2: Calculate the moles of sucrose
The molar mass of sucrose is 342.3 g/mol.
15 g × 1 mol/342.3 g = 0.044 mol
Step 3: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.044 mol/0.2 L = 0.2 M
Liquid nitrogen becomes a gas when it is poured out of its container. The nitrogen is
Answer:
aasjajiakjka
Explanation:
The combustion of ethylene proceeds by the reaction
C2H4 (g) + 3O2 (g) → 2CO2 (g) + 2H2O (g)
When the rate of disappearance of C2H4 is 0.13 M s-1, the rate of appearance of CO2 is ________ M s-1.
Which of the following amino acid residues would provide a side chain capable of increasing the hydrophobicity of a binding site?
A) aspartic acid
B) lysine
C) isoleucine
D) arginine
E) serine
Answer:
C) isoleucine
Explanation:
Isoleucine is among nine necessary amino acids in humans (found in dietary proteins). It has a variety of physiological activities, including aiding tissue repair, nitrogenous waste detoxification, immunological stimulation, and hormonal production promotion. When attached at a binding site, they are capable of providing a side chain thereby increasing the hydrophobicity at the binding site.
Group the elements into pairs that would most likely exhibit similar chemical properties. It does not matter which pair of elements is pair 1, pair 2, or pair 3, so long as the correct elements are paired.Pair 1 Pair 2 Pair 3 Answer Bank Mg St Kr Ne+
As P
Answer: Pair 1 has Mg and Sr, Pair 2 has Kr and Ne, Pair 3 has As and P.
Explanation:
A periodic table is a group of elements presented in a tabular form where elements are arranged in a series of 7 rows and 18 columns.
The vertical columns are known as groups and horizontal rows are known as periods.
The elements having similar chemical properties are arranged in one group.
Magnesium (Mg) is the 12th element of periodic table placed at Group 2 and Period 3
Strontium (Sr) is the 38th element of periodic table placed at Group 2 and Period 5
Krypton (Kr) is the 36th element of periodic table placed at Group 18 and Period 4
Neon (Ne) is the 10th element of periodic table placed at Group 18 and Period 2
Arsenic (As) is the 33rd element of periodic table placed at Group 15 and Period 4
Phosphorus (P) is the 15th element of periodic table placed at Group 15 and Period 3
As magnesium and strontium are present in the same group, they will have similar chemical properties. Similarly, krypton and neon will form the second pair. Likewise, arsenic and phosphorus will form a pair.
Hence, Pair 1 has Mg and Sr, Pair 2 has Kr and Ne, Pair 3 has As and P.
Calculate the concentration of a solution with 0.8g of NaCl in 280mL of water.
Answer: The molarity of NaCl solution is 0.0489 M
Explanation:
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
[tex]\text{Molarity of solution}=\frac{\text{Given mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (mL)}}[/tex] .....(1)
We are given:
Given mass of NaCl = 0.8 g
Molar mass of NaCl = 58.44 g/mol
Volume of the solution = 280 mL
Putting values in equation 1, we get:
[tex]\text{Molarity of solution}=\frac{0.8\times 1000}{58.44\times 280}\\\\\text{Molarity of solution}=0.0489M[/tex]
Hence, the molarity of NaCl solution is 0.0489 M
what is the maximum number of grams of sodium chloride that you could dissolve in 500 grams of water at 20 C
Answer:
178.5g of NaCl is the maximum amount that can be dissolved
Explanation:
Solubility is defined as the maximum amount of solute that can be dissolved in aAt 20°C, the solubility of NaCl is 35.7g per 100g of water at 20°C. That means the maximum amount that can be dissolved of NaCl is:
500g water * (35.7g NaCl / 100g water) =
178.5g of NaCl is the maximum amount that can be dissolvedOne of the most common causes of inaccurate melting point ranges is rapid heating of the compound. Under these circumstances, how will the observed MP range compare to the true MP range
Answer:
INCREASE in the difference between the melting point measured and the true melting temperature.
Explanation:
Melting point of a compound is defined as the temperature at which the soils compound changes into liquid at the atmospheric pressure. There are different circumstances that can lead to inaccurate melting point. These include:
--> presence of impurities in the compound,
--> Molecular composition,
--> Force of attraction, and
--> Rapid heating of the compound.
Under the circumstances of rapid heating of the compound, there would be an increase in the melting point range when compared with the true melting point range of the compound.
The higher the heating rate, the more rapid the rise in oven temperature, increasing the difference between the melting point measured and the true melting temperature.
3. Calculate the answers to the appropriate number of significant figures. e) 43.678 x 64.1 = f) 1.678/0.42 =