Answer:
106.68 centimeters
Step-by-step explanation:
40.64 cm/16 in = x cm/42 in
Cross multiplying, we get:
16x = 40.64(42)
16x = 1706.88
x = 106.68 centimeters
What is the equation of a circle with center (-4,7) and a radius 6
Answer:
( x +4)^2 + ( y-7)^2 = 36
Step-by-step explanation:
We can write the equation of a circle as
( x-h)^2 + ( y-k)^2 = r^2
where ( h,k) is the center and r is the radius
( x- -4)^2 + ( y-7)^2 = 6^2
( x +4)^2 + ( y-7)^2 = 36
Answer:
(x+4)[superscript]2 + (y-7)[superscript]2 = 36
Compute each matrix sum or product if it is defined. If an expression is undefined. Explain why. Let A = (3 4 0 -4 -1 4), B = (8 1 -4 -5 2 -4), C = (1 -1 3 1) and D = (3 -2 4 5).
- 2A, B - 2A, AC, CD
Compute the matrix product -2A.
A. -2A =
B. The expression-2A is undefined because A is not a square matrix.
C. The expression-2A is undefined because matrices cannot be multiplied by numbers.
D. The expression 2A is undefined because matrices cannot have negative coefficients.
Answer:
-2A = (-6, -8, 0, 8, 2, -8)
B - 2A = (2, -7, -4, 3, 4, -12)
AC is undefined.
CD = (3, 2, 12, 5)
Step-by-step explanation:
Given the matrices:
A = (3 4 0 -4 -1 4)
B = (8 1 -4 -5 2 -4)
C = (1 -1 3 1)
D = (3 -2 4 5)
We are required to compute the following
-2A, B - 2A, AC, CD
For -2A:
-2(3 4 0 -4 -1 4)
= (-6, -8, 0, 8, 2, -8)
For B - 2A:
Because B - 2A = B + (-2A), we have:
(8 1 -4 -5 2 -4) + (-6, -8, 0, 8, 2, -8)
(2, -7, -4, 3, 4, -12)
For AC:
(3 4 0 -4 -1 4)(1 -1 3 1)
This is undefined.
For CD:
(1 -1 3 1)(3 -2 4 5)
= (3, 2, 12, 5)
What is the nearest 100 of 1730
Answer:
1700
Step-by-step explanation:
pls thnx and mark me brainliest
Find the missing term in the
geometric sequence.
13,[ ? ],208
Answer:
110.5
Step-by-step explanation:
208=13+(3-1)d
208=13+2d
-13. -13
195=2d
÷2. ÷2
97.5=d. (d means difference)
13(first term)+97.5=110.5
Answer: 676
Step-by-step explanation: r/13=208/r
r²=2704
r=52
13x52=676
A cylindrical grain silo, with a flat top, is 30 feet tall and has a radius of 12 feet. It is full to the top with shelled corn. If the density of shelled corn averages 45 pounds/cubic foot, what does the corn in the silo weigh to the nearest pound
Answer:
610805 pounds
Step-by-step explanation:
The volume of grain in the silo will be calculated as equal to the volume of the cylinder formed by the silo
Height of the silo [tex]l[/tex] = 30 ft
radius of the silo r = 12 ft
volume of a cylinder = [tex]\pi r^{2} l[/tex]
substituting, we have
V = 3.142 x [tex]12^{2}[/tex] x 30 = 13573.44 cubic feet
We know that density ρ = weight/volume
density of the grains in the silo = 45 pound/cubic feet
therefore,
weight of grains = density x volume
weight of grains = 45 x 13573.44 = 610804.8 ≅ 610805 pounds
Two faces of a six-sided die are painted red, two are painted blue, and two are painted yellow. The die is rolled three times, and the colors that appear face up on the first, second, and third rolls are recorded. (a) Find the probability of the event that exactly one of the colors that appears face up is red.
Answer:
12/27
Step-by-step explanation:
Step 1
We find all the total number of possible outcomes of rolling two faces of a six-sided die are painted red, two are painted blue, and two are painted yellow.
Where
R = Red
B = Blue
Y = Yellow
RRR, BBB, YYY, RBY, RYB, YBR, YRB, BRY, BYR, BBY, BBR, YYB, RRY, RRB, BYB, BRB, YRY, YBY, RYR, RBR,YRR, BRR, RBB, RYY, BYY,YBB, YYR
We have 27 Total outcomes for this 6 faced die
Step 2
The event that exactly one of the colors that appears face up is red.
RBY, RYB, YBR, YRB, RBB, RYY, BBR,
BRB, BRY, YRY, BYR, YYR
Total number of Possible outcomes where EXACTLY one of the colours that appears face up is red = 12
The probability of the event that exactly one of the colors that appears face up is red = Number of possible outcomes/ Total number of outcomes
= 12/27
if the sin 30 = 1/2, then which statement is true?
Answer:
cos 60° = 1/2 because the angles are complements.
Step-by-step explanation:
Angles One angle is 4º more than three times another. Find
the measure of each angle if
a. they are complements of each other.
b. they are supplements of each other.
[tex] \Large{ \boxed{ \bf{ \color{purple}{Solution:}}}}[/tex]
Let the smaller angle be x
Then, Larger angle would be x + 4°
Case -1:❍ They are complementary angles.
This means, they add upto 90°So,
➙ x + x + 4° = 90°
➙ 2x + 4° = 90°
➙ 2x = 86°
➙ x = 86°/2 = 43°
Then, x + 4° = 47°
So, Our required answer:
Smaller angle = 43°Larger angle = 47°Case -2:❍ They are supplementary angles.
This means, they add upto 180°So,
➙ x + x + 4° = 180°
➙ 2x + 4° = 180°
➙ 2x = 176°
➙ x = 176°/2 = 88°
Then, x + 4° = 92°
So, Our required answer:
Smaller angle = 88°Larger angle = 92°✌️ Hence, solved !!
━━━━━━━━━━━━━━━━━━━━
A paint machine dispenses dye into paint cans to create different shades of paint. The amount of dye dispensed into a can is known to have a normal distribution with a mean of 5 milliliters (ml) and a standard deviation of 0.4 ml. Answer the following questions based on this information. Find the dye amount that represents the 9th percentile of the distribution.
Answer:
4.464 ml
Step-by-step explanation:
Given that:
mean (μ) = 5 mm, standard deviation (σ) = 0.4 ml
The z score is a score in statistics used to determine by how many standard deviation the raw score is above or below the mean. If the z score is positive then the raw score is above the mean and if the z score is negative then the raw score is below the mean It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, the 9th percentile (0.09) corresponds to a z score of -1.34
[tex]z=\frac{x-\mu}{\sigma}\\\\-1.34=\frac{x-5}{0.4}\\\\x-5=-0.536\\\\x=5-0.536\\\\x=4.464[/tex]
The dye amount that represents the 9th percentile of the distribution is 4.464 ml
Simplify 6m^2-5m-3+3m+4+9m^2
Answer: 15m²-2m+1
Step-by-step explanation:
To simplify, you want to combine like terms.
15m²-2m+1
Answer:
[tex]\huge\boxed{15m^2-2m+1}[/tex]
Step-by-step explanation:
[tex]6m^2-5m-3+3m+4+9m^2\\\\\text{combine like terms}\\\\=(6m^2+9m^2)+(-5m+3m)+(-3+4)\\\\=(6+9)m^2+(-5+3)m+1\\\\=15m^2-2m+1[/tex]
Assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. Find the probability that a given score is less than 1.99 and draw a sketch of the region.
Answer:
Step-by-step explanation:
To find this probability, we shall be using the z-score route
Mathematically ;
z-score = (x -mean)/SD
From the question, x = 1.99, mean = 0 and SD = 1
So z = (1.99-0)/1 = 1.99
So the probability we want to calculate is;
P(z<1.99)
This value can be obtained from the standard normal distribution table.
P(z < 1.99) = 0.9767
The sketch of the region is as shown as in the attachment.
Compute the least-squares regression line for the given data set. Use a TI-84 calculator. Round final answers to four decimal places, as needed.
x 5 7 6 2 1
y 4 3 2 5 1
Regression line equation: ŷ = _______ + _______ x.
Answer:
Y = 2.843+ 0.037 X
Step-by-step explanation:
Let the equation of the straight line to be fitted to the data , be Y = a+b X where a and b are to be evaluated. The normal equations fro determining a and b are
∑Y = na +b ∑X
∑XY = a∑X + b∑X²
We now calculate ∑X, ∑Y , ∑X², and ∑XY
X Y XY X²
5 4 20 25
7 3 21 49
6 2 12 36
2 5 10 4
1 1 1 1
21 15 64 115
Thus the normal equation becomes
5a + 21b =15
21a +115b = 64
Solving these two equations simultaneously we get
105 a + 441b = 315
105a + 575b = 320
134b= 5
b= 0.037 , a= 2.843
Hence the equation for the required straight line is
Y = 2.843+ 0.037 X
Each cylinder is 12 cm high with a diameter of 8 cm.
Calculate the volume of each cylinder.
Use 3 as a value for π
Give your answer using the correct units.
Answer:
Volume = 576cm^3Step-by-step explanation:
[tex]h = 12 cm\\d = 8cm\\r =d/2 = 8/2 =4\\V = ?\\V =\pi r^2h\\\\V= 3 \times 4^2\times12\\V = 576 cm^3[/tex]
What is the solution of the linear equation? LaTeX: 5k\:+\:3.8\:=\:3k\:+\:95 k + 3.8 = 3 k + 9 Group of answer choices 26 6.4 .065 2.6
Answer:
[tex]k = 2.6[/tex]
Step-by-step explanation:
Given
[tex]5k + 3.8 = 3k + 9[/tex]
Required
Solve
[tex]5k + 3.8 = 3k + 9[/tex]
Collect like terms
[tex]5k -3k+ 3.8 = 3k -3k + 9[/tex]
[tex]2k+ 3.8 = 9[/tex]
Subtract 3.8 from both sides
[tex]2k+ 3.8 - 3.8= 9 - 3.8[/tex]
[tex]2k= 9 - 3.8[/tex]
[tex]2k = 5.2[/tex]
Divide through by 2
[tex]k = 5.2/2[/tex]
[tex]k = 2.6[/tex]
Which of the following correlation values represents a perfect linear relationship between two quantitative
variables? Select all that apply.
A. 0
B. 9
c. -1
D. 1
E. .5
Answer:
C. -1
D. 1
Step-by-step explanation:
A perfect linear relationship is indicated by a correlation with a magnitude of 1. The sign of the correlation coefficient is the sign of the slope of the line describing the relationship. It may be positive or negative.
The appropriate choices are ...
C. -1
D. 1
Answer:
c=-1
d=1
Step-by-step explanation:
Carla drove her truck 414 miles on 18 gallons of gasoline. How many miles did she drive per gallon?
Answer:
23 miles per gallon
Step-by-step explanation:
414 miles = 18 gallons
=> 18/18 gallons = 414/18 miles
=> 1 gallon = 23 miles
So, she drove 23 miles per gallon.
What is the value of x for the given equation?
4 – 2(x + 7) = 3(x + 5)
X=
Answer:
-5
Step-by-step explanation:
Need Assitance
*Show Work*
Answer:
66 2/3 %
Step-by-step explanation:
First find the students not in the 8th grade
24 - 8 = 16
16 students are not in the 8th grade
Take the fraction of the students not in the 8th grade over the total
16/24 = 2/3
Change to a decimal
.66666666666
Multiply by 100 to change to a percent
66.666666%
66 2/3 %
Answer:
66.67% of students are not in eighth grade
Step-by-step explanation:
8/24=1/3
1/3=0.33333333333
1-0.33333333333=0.66666666667
0.66666666667=66.67%
A group of fitness club members lose a combined total of 28 kilograms in 1 week. There are approximately 2.2 pounds in 1 kilogram. Assuming the weight loss happened at a constant rate, about how many pounds did the group lose each day?
Answer:
8.8 pounds
Step-by-step explanation:
Given the following :
Combined weight loss which occurred within a week = 28 kg
Number of days in a week = 7 days
1 kilogram (kg) = 2.2 pounds
Combined weight loss in pounds that occurs within a week:
Weight loss in kg × 2.2
28kg * 2.2 = 61.6 pounds
Assume weight loss occurred at a constant rate :
Weight lost by the group per day :
(Total weight loss / number of days in a week)
(61.6 pounds / 7)
= 8.8 pounds daily
Answer:
88
Step-by-step explanation:
Found the answer and I am doing the quiz rn lel
the coefficient of 6x
Answer:
The coefficient is 6
Step-by-step explanation:
The coefficient is the number in front of the variable
The variable is x
The coefficient is 6
Answer:
6
Step-by-step explanation: The coefficient of this would be the real number that is in front of a variable that is not a variable like x, and that number is 6. So, the coefficient of 6x is 6.
average of 2721 2557 2999 2278 4339
Answer:
Step-by-step explanation:
So we know that the average of numbers is all of the numbers added up and divided by the total amount of numbers.
2721
+ 2557
-------------------
5278
.... AND SO ON.........
=14,894 is all of the number added together!!!
Then we count up the numbers= 5
14,894/5
=2978.8
I hope this helps!!!
Given the function, Calculate the following values:
Answer:
[tex]f(-2)=33\\f(-1)=12\\f(0)=1\\f(1)=0\\f(2)=9[/tex]
Step-by-step explanation:
[tex]f(x)=5x^{2} -6x+1\\f(-2)=5(-2)^{2} -6(-2)+1\\f(-2)=5(4)+12+1\\f(-2)=20+13\\f(-2)=33[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(-1)=5(-1)^{2} -6(-1)+1\\f(-1)=5(1)+6+1\\f(-1)=5+7\\f(-1)=12[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(0)=5(0)^{2}-6(0)+1\\f(0)=5(0)-0+1\\f(0)=0+1\\f(0)=1[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(1)=5(1)^{2}-6(1)+1\\f(1)=5(1)-6+1\\f(1)=5-5\\f(1)=0[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(2)=5(2)^{2}-6(2)+1\\f(2)=5(4)-12+1\\f(2)=20-11\\f(2)=9[/tex]
Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.
Answer:
1/8, 3/8
Step-by-step explanation:
Let x and y represent the two fractions. Then we are given ...
x + y = 1/2
x + 5y = 2
Subtracting the first equation from the second, we get ...
(x +5y) -(x +y) = (2) -(1/2)
4y = 3/2 . . . . . simplify
y = 3/8 . . . . . . divide by 4
x = 1/2 -3/8 = 1/8
The two numbers are 1/8 and 3/8.
Factor completely 6x - 18.
6(x + 3)
6(x-3)
6X (-18)
Prime
Answer:
6(x-3)
Step-by-step explanation:
the common number for 6 and 18 is 6 so if you extract that from the expression then it turns to 6(x-3) which cannot be factored further
Answer:
Option B: 6(x - 3)
Step-by-step explanation:
In one city, 35% of all aluminum cans distributed will be recycled each year. A juice company distributes 110,000 cans. The number still in use after time t, in years, is given by
Answer: [tex]n(t) = 110000(0.35)^t[/tex]
Step-by-step explanation:
Given: Rate of of all aluminum cans distributed will be recycled each year. = 35%
= 0.35
Total cans distributed = 110,000
Now , the number of cans recycled in 1 year = 110,000 ×0.35
The number of cans recycled in 2 years = 110,000 ×0.35 ×0.35 = 110,000 ×(0.35)²
..so on
The number of cans recycled in t years = [tex]110000(0.35)^t[/tex]
Let n(t) be the number still in use after time t, in years:
Then, [tex]n(t) = 110000(0.35)^t[/tex]
Complete the table for the given rule.
Rule: y = 6x – 4
х. Y
1
3
10
Answer:
a y = 2
b.y = 14
c. y =56
Step-by-step explanation:
a .6 (1)- 4=2
y=2
b. 6 (3)- 4
=18-4
y=14
c. 6 (10) - 4
= 60 - 4 =56
The Venn diagram shows 3 type numbers odd even in prime
algebra pyramid please answer !! be the first to be marked as a brainliest .
Answer:
The first pyramid:
63x
39x 24x
23x 16x 8x
The second pyramid:
162x
82x 80x
4x 78x 2x
The third pyramid:
12a+2b
9a+b 3a+b
9a b 3a
The fourth pyramid:
-19a
-5a -14a
3a -8a -6a
Step-by-step explanation:
All that an alegbra pyramid is is adding the two terms below it.
So you can see how I added the terms that lied below each number, such as in number 1: I added 23x and 16x to get me 39x, and I added 16x and 8x to get me 24.
Hope this helped!
A passenger train traveled 180 miles in the same amount of time it took a freight train to travel 120 miles. The rate of the freight train was 15 miles per hour slower than the rate of the passenger train. Find the rate of the passenger train.
Answer:
The passenger train is moving at 45 miles per hour
Step-by-step explanation:
Let the amount of time it took the two trains to travel the distance = t.
Since the two trains traveled the distance at the same time,
Rate of the passenger train =[tex]\frac{180}{t}[/tex]
Rate of the freight train = [tex]\frac{120}{t}[/tex]
Where t is in hours.
From the problem, we can see that the rate of the freight train was 15 miles per hour slower than the rate of the passenger train. Mathematically, we can represent this as
[tex]\frac{120}{t}= \frac{180}{t}-15[/tex]
from the above equation, we can now get our value for t as
[tex]\frac{120-180}{t}=-15\\\frac{-60}{t}=-15\\t=4 hours[/tex]
We have our time of travel for the two trains as 4 hours.
The rate of the passenger train can now be calculated by 180/4 = 45 miles per hour
Question 2: Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
Answer:
?
Step-by-step explanation:
Answer:
33
Step-by-step explanation:
Let "x" be the number of nickels, of dimes, and of quarters.
The value of the nickels is 5x cents.
The value of the dimes is 10x cents
The value of the quarters is 25x cents.
Equation:
Value of nickels + Value of dimes + Value of quarters =1320 cents
5x + 10x + 25x = 1320
Sove for "x". Then you will know the number of each coin.