Answer:
Explanation:
/ means divided by
* means multiply
1. formula is
partial pressure = no of moles(gas 1)/ no of moles(total)
0.30 mol CO/0.60 mol CO2 + 0.30 mol CO + 0.10 mol H20 ->
.3/(.6+.3+.1) =
.3/1 =
.3 =
partial pressure of CO
2.
.3 * .8 atm = .24
khanacademy
quizlet
The partial pressure of the CO is 0.24 atm if the total pressure of the mixture was 0.80 atm.
Dalton's Law of Partial pressureDalton's Law of partial pressure states that the total pressure exerted by non reacting gaseous mixture at a constant temperature and given volume is equal to the sum of partial pressure of all gases.
Dalton's Law of partial pressure using mole fraction of gas
Partial pressure of carbon monoxide (CO) = Mole fraction of carbon monoxide (CO) × Total pressure
Now, we have to find the first mole fraction of CO
Mole fraction of carbon monoxide (CO) = [tex]\frac{\text{moles of solute}}{\text{total moles of solute}}[/tex]
= [tex]\frac{\text{moles of CO}}{\text{moles of CO}_2 + \text{moles of CO} + \text{moles of H}_{2}O}[/tex]
= [tex]\frac{0.30}{0.60 + 0.30 + 0.10}[/tex]
= [tex]\frac{0.30}{1}[/tex]
= 0.3
Now, put the value in above equation, we get that
Partial pressure of carbon monoxide (CO)
= Mole fraction of carbon monoxide (CO) × Total pressure
= 0.3 × 0.8
= 0.24 atm
Thus, the partial pressure of the CO is 0.24 atm is the total pressure of the mixture was 0.80 atm.
Learn more about the Dalton's Law of partial Pressure here: https://brainly.com/question/14119417
#SPJ2
how many moles of H2 and N2 can be formed by the decomposition of 0.145 mol of ammonia, NH3 ?
Answer:
Explanation:
The moles of H2 and N2 are as follows respectively, 0.3915mol of H2 and 0.1305 mol of N2.
0.2175,0.0725 moles of [tex]H_2[/tex] and [tex]N_2[/tex] can be formed by the decomposition of 0.145 mol of ammonia, [tex]NH_3[/tex]
The reaction for the decomposition of ammonia is as follows:-
[tex]N_2+3H_2 \rightarrow 2NH_3[/tex]
Calculate the mole of [tex]H_2[/tex] and [tex]N_2[/tex] as follows:-
[tex]Mole\ of \ H_2=0.145\ mol\ NH_3\times\frac{3\ mol\ H_2}{2\ mol\ NH_3} \\\\=0.2175\ mol\ H_2[/tex]
[tex]Mole\ of \ N_2=0.145\ mol\ NH_3\times\frac{1\ mol\ N_2}{2\ mol\ NH_3} \\\\=0.0725\ mol\ H_2[/tex]
Hence, the number of moles of [tex]H_2[/tex] and [tex]N_2[/tex] are 0.2175 mol, and 0.0725 mol.
To know more about:-
https://brainly.com/question/12996575
If you drip an ink drop into a cup of water and wait for a few seconds, all the water will be colored with the ink. This experiment is an example of facilitated diffusion ?
true
false
Answer:
false, it is not an example of facilitated diffusion
Answer:
TrueExplanation:
When a drop of ink added into the water gradually moves in the whole quantity of water due to this entire water turns into blue color. This is nothing but the diffusion of ink particles into the water molecules. This is because water, as well as ink molecules, are in random motion due to the motion of ink substance.
According to the EPA Lead and Copper Rule (LCR), the action level for Pb in drinking water (the level at which threat to human health requires public notification and action towards mitigation) is 15 ppb. If you were to add enough phosphate to the system
saturated with respect to Pb3(PO4)2(s), would the [Pb2+] be below the action limit?
Answer:
The right answer is "105.17 ppb".
Explanation:
According to the question,
The amount of [tex]Pb^{2+}[/tex] in ppb will be:
= [tex]0.5076\times 10^{-6}\times 207.2\times 106[/tex]
= [tex]105.17 \ ppb[/tex]
Thus, the amount of [tex]Pb^{2+}[/tex] is above action limit.
explain in details how triacylglycerol have an advantage over carbohydrates as stored fuel
Answer:
As stored fuels, triacylglycerols have two significant advantages over polysaccharides such as glycogen and starch. The carbon atoms of fatty acids are more reduced than those of sugars, and oxidation of triacylglycerols yields more than twice as much energy, gram for gram, as that of carbohydrates.
Explanation:
A fusion reaction releases energy because the binding energy of the resulting nucleus:______.
a. is released in the process.
b. is equal to the binding energy of the original nuclei.
c. is absorbed in the process.
d. is less than the binding energy of the original nuclei.
e. is greater than the binding energy of the original nuclei.
Answer:
a. is released in the process
Explanation:
In fusion reaction the nucleus is unstable so it releases its binding energy resulting in decreasing its mass so it becomes more stable.
Hydrogen chloride decomposes to form hydrogen and chlorine, like this:
2HCl(g) + H2(g) â Cl2(g)
Also, a chemist finds that at a certain temperature the equilibrium mixture of hydrogen chloride, hydrogen, and chlorine has the following composition:
compound pressure at equilibrium
HCl 84.4 atm
H2 77.9 atm
Cl2 54.4
Required:
Calculate the value of the equilibrium constant for this reaction. Round your answer to significant digits.
Solution :
Given :
Partial pressure of HCl, [tex]$P_{HCl}$[/tex] = 84.4 atm
Partial pressure of [tex]H_2[/tex], [tex]$P_{H_2}$[/tex] = 77.9 atm
Partial pressure of [tex]Cl_2[/tex], [tex]$P_{Cl_2}$[/tex] = 54.4 atm
Reaction :
[tex]$2HCl (g) \leftrightharpoons H_2(g) + Cl_2(g)$[/tex]
Using equilibrium concept,
[tex]$k_p=\frac{(P_{H_2})(P_{Cl_{2}})}{(P_{HCl})^2}$[/tex]
[tex]$k_p=\frac{77.9 \times 54.4}{(84.4)^2}$[/tex]
[tex]$k_p=0.594$[/tex]
[tex]k_p=0.59[/tex] (in 2 significant figures)
or [tex]k_p=5.9 \times 10^{-1}[/tex]
Hypercalcemia sign and symptoms severe symptoms
Answer:
Hypercalcemia can cause stomach upset, nausea, vomiting and constipation. Bones and muscles. In most cases, the excess calcium in your blood was leached from your bones, which weakens them. This can cause bone pain and muscle weakness.
Some symptoms are:
Fatigue, bone pain, headaches.
Nausea, vomiting, constipation, decrease in appetite.
Forgetfulness.
Lethargy, depression, memory loss or irritability.
Muscle aches, weakness, cramping and/or twitches.
Analyze the data and determine the actual concentration of calcium chloride in the solution. Show all calculations and report in % wt/v concentration.
Known; Mass of CaCl2 present in original solution, based on actual yield= 1.77g moles
CaCl2 present in original solution, based on actual yield= 1.77g/molar mass of CaCl2=1.77g/110.98g/mol=0.016 moles
Total Volume of solution =V, which is 80ml
Answer:
2.21% wt/v
Explanation:
The mass/volume percentage, %wt/v, is an unit of concentration used in chemistry defined as 100 times the ratio of the mass of solute in g (In this case, CaCl2 = 1.77g) and the volume of solution in mL = 80mL
The %wt/v of this solution is:
%wt /v = 1.77g / 80mL * 100
%wt/v = 2.21% wt/v
9.7300x10^2 + 9.8700x10^3
? × 10^?
Answer:
19.6 x 10⁵
1.96 x 10⁶
I hope it's helps you
Question 14
2 pts
A chemist wants to make 100 mL of a 0.500 M solution of NaCl. They have a
stock solution of 1.2 M NaCl. How much of the original stock solution do they
need to make their new dilute solution?
Explanation:
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 1.2 M
Molarity of diluted solution (M₂) = 0.5 M
Volume of diluted solution (V₂) = 100 mL
Volume of stock solution needed (V₁) =?The volume of stock solution needed can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂1.2 × V₁ = 0.5 × 100
1.2 × V₁ = 50
Divide both side by 1.2
V₁ = 50 / 1.2
V₁ ≈ 42 mLThus, 42 mL of the stock solution is needed.
Learn more: https://brainly.com/question/24219233
Answer:
They need 41.7 mL of the original stock solution.
Explanation:
We can use the following equation for dilutions:
Cc x Vc = Cd x Vd
Where Cc and Vc are the concentration and volume values in the concentrated condition, whereas Cd and Vd are the concentration and volume values in the diluted condition.
The concentrated solution is the original stock solution, and it has:
Cc = 1.2 M
The diluted solution must be:
Cd = 0.500 M
Vd = 100 mL
So, we have to calculate Vc. For this, we replace the data in the equation:
[tex]V_{c} = \frac{C_{d} V_{d} }{C_{c} } = \frac{(0.500 M)(100 mL)}{1.2 M} = 41.7 mL[/tex]
Therefore, 41.7 mL of 1.2 M original stock solution are required to make 100 mL of a diluted solution with a concentration of 0.500 M.
A cyclopropane-oxygen mixture is used as an anesthetic. If the partial pressure of cyclopropane in the mixture is 330 mmHg and the partial pressure of the oxygen is 1.0 atm, what is the total pressure of the mixture in torr
Answer:
1090 Torr
Explanation:
Step 1: Given data
Partial pressure of cyclopropane (pC₃H₆): 330 mmHg (330 Torr)Partial pressure of oxygen (pO₂): 1.0 atmStep 2: Convert pO₂ to Torr
we will use the conversion factor 1 atm = 760 Torr.
1.0 atm × 760 Torr/1 atm = 760 Torr
Step 3: Calculate the total pressure of the mixture (P)
The total pressure of the mixture is the sum of the partial pressures of the gases.
P = 330 Torr + 760 Torr = 1090 Torr
Do the tests performed to identify DNA exclude the presence of RNA?
DNA and RNA can also be ISOLATED from the same biological sample.
So the answer is no, both DNA and RNA are together.
Answer:
so the answer is no
both DNA and RNA are together.
Explanation:
DNA and RNA can also be ISOLATED from the same. biological sample
Rank the compounds NH3, CH4, and PH3 in order of decreasing boiling point. Choices: A) NH3 > CH4 > PH3 B) CH4 > NH3 > PH3 C) NH3 > PH3 > CH4 D) CH4 > PH3 > NH3 E) PH3 > NH3 > CH4
Answer:
C) NH3 > PH3 > CH4
Explanation:
The boiling point of a substance depends on the nature of intermolecular interaction between the molecules of the substance. The greater the magnitude of intermolecular interaction between the molecules of the substance, the higher the boiling point of the substance.
Both NH3 and PH3 have intermolecular hydrogen bonding between their molecules. However, since nitrogen is more electronegative than phosphorus, the magnitude of intermolecular hydrogen bonding in NH3 is greater than in PH3 hence NH3 has a higher boiling point than PH3.
CH4 molecules only have weak dispersion forces between them hence they exhibit the lowest boiling point.
tính ΔH° của phả ứng sau ở 200°C
CO+1÷2O=CO2
ΔH°
An equilibrium mixture of PCl5(g), PCl3(g), and Cl2(g) has partial pressures of 217.0 Torr, 13.2 Torr, and 13.2 Torr, respectively. A quantity of Cl2(g) is injected into the mixture, and the total pressure jumps to 263.0 Torr at the moment of mixing. The system then re-equilibrates. The chemical equation for this reaction is
Answer:
p'PCl3 = 6.8 torr
p'Cl2 =26.4 torr
p'PCl5 =223.4 torr
Explanation:
An equilibrium mixture of PCl5(g), PCl3(g), and Cl2(g) has partial pressures of 217.0 Torr, 13.2 Torr, and 13.2 Torr, respectively. A quantity of Cl2(g) is injected into the mixture, and the total pressure jumps to 263.0 Torr at the moment of mixing. The system then re-equilibrates. The chemical equation for this reaction is
PCl3(g) + Cl2(g) ---> PCl5(g)
Calculate the new partial pressures after equilibrium is reestablished. [in torr]
pPCl3
pCl2
pPCl5
Step 1: Data given
Partial pressure before adding chlorine gas:
Partial pressure of PCl5 = 217.0 torr
Partial pressureof PCl3 = 13.2 torr
Partial pressureof Cl2 = 13.2 torr
A quantity of Cl2(g) is injected into the mixture, and the total pressure jumps to 263.0 Torr at the moment of mixing
Step 2: The equation
PCl3(g)+Cl2(g) ⇔ PCl5(g)
Step 3: The expression of an equilibrium constant before adding chlorine gas
Kp = pPCl5 / (pPCl3 * pCl2)
Kp = 217.0 / (13.2 * 13.2)
Kp = 1.245
Step 4: The expression of an equilibrium constant after adding chlorine gas
Partial pressure of PCl5 = 217.0 torr
Partial pressure of PCl3 = 13.2
Partial pressure of Cl2 = TO BE DETERMINED
Step 5: The total pressure of the system
Ptotal = pPCl5 + pPCl3 + pCl2
263.0 torr = 217.0 torr + 13.2 torr + pCl2
pCl2 = 263.0 - 217.0 -13.2 = 32.8 torr
Step 6: The initial pressure
The equation: PCl3(g)+Cl2(g) ⇔ PCl5(g)
pPCl3 = 13.2 torr
pCl2 = 32.8 torr
pPCl5 = 217.0 torr
Step 7: The pressure at the equilibrium
p'PCl3 = (13.2 -x) torr
p'Cl2 = (32.8 - x) torr
p'PCl5 = (217.0 + x) torr
Step 8: The equilibrium constant
'Kp = p'PCl5 / (p'PCl3 * p'Cl2)
1.245 = (217.0+x) / ((13.2-x)(32.8-x)
x = 6.40 torr
p'PCl3 = 13.2 -6.40 = 6.8 torr
p'Cl2 = 32.8 - 6.40 =26.4 torr
p'PCl5 = 217.0 + x) 6.4 = 223.4 torr
cuales son las caracteristicas de el livermorio
Answer:
Livermorium is a radioactive, artificially produced element about which little is known. It is expected to be a solid and classified as a metal. It is a member of the chalcogen group. Livermorium has four isotopes with known half-lives, all of which decay through alpha decay
Decide which of the following statements are true and which are false.
True False: Real gas molecules behave most ideally at low temperature and high pressure.
True False: Ideal gas molecules have small volumes and exert weak attractive forces on one another.
True False: At constant temperature, the heavier the gas molecules, the smaller the average velocity.
True False: In order for two separate 1.0 L samples of O2(g) and H2(g) to have the same average velocity, the O2(g) sample must be at a lower temperature than the H
2(g) sample.
True False: At constant temperature, the heavier the gas molecules, the larger the average kinetic energy.
True False: As temperature decreases, the average kinetic energy of a sample of gas molecules decreases.
Answer:
False
True
True
False
False
True
Explanation:
Ideal behavior of gases is observed at high temperature and low pressure when the gas molecules are isolated from each other.
According to the kinetic theory of gases, gases occupy negligible volume and do not exert significant attractive forces on each other.
The average velocity of gases at constant temperature depends on molecular mass. Heavier molecules possess smaller average velocity than lighter molecules at constant temperature.
At constant temperature, molecules of different gases have the same average kinetic energy but different average velocities since they have different molecular masses. So, the average kinetic energy of gas molecules only depends on temperature.
A 18.0 L gas cylinder is filled with 6.20 moles of gas. The tank is stored at 33 ∘C . What is the pressure in the tank?
Express your answer to three significant figures and include the appropriate units.
Answer:
8.65 atm
Explanation:
Using ideal law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (Latm/molK)
T = temperature (K)
According to the information given in this question;
V = 18.0 L
n = 6.20 moles
R = 0.0821 Latm/molK
T = 33°C = 33 + 273 = 306K
P = ?
Using PV = nRT
P × 18 = 6.20 × 0.0821 × 306
18P = 155.76
P = 155.76/18
P = 8.65 atm
How many milliliters of 0.204 Mol KMnO4 are needed to react with 3.24 g of iron(II) sulfate, FeSO4? The reation is as folows. 10FeSO4(aq) + 2 KMnO4(aq) = 5Fe2(SO4)3(aq) + 2MnSO4(aq) + K2SO4(aq) + 8H2O(l)
Answer:
Explanation:
nFeSo4=3.36/152
nkmno4=1/5nFeSO4
V=17.68 ml
How to prepared sodium chloride solution.
Explanation:
Dissolve 93.52g of NaCl in about 400mL of distilled water, then add more water until final volume is 800mL. If starting with a solution or liquid reagent: When diluting more concentrated solutions, decide what volume(V2) and molarity (M2) the final soluble should be.
Match each land resource to its use.
clay - used to make steel
iron ore - used to make batteries
salt - used to make pottery and tiles
aggregate - used in construction
graphite - used as a flavoring in food
i will give 10 points and brainliest!!!
Answer:
answer in picture
Explanation:
who much the velocity of a body when it travels 600m in 5 min
Answer:
2 m/s
Explanation:
Applying the formulae of velocity,
V = d/t............. Equation 1
Where V = Velocity of the body, d = distance, t = time
From the question,
Given: d = 600 m, t = 5 minutes = (5×60) = 300 seconds.
Substitute these values into equation 1
V = 600/300
V = 2 m/s.
Hence the velocity of the body when it travels is 2 m/s
Draw a relative energy diagram showing a conformational analysis of 2,2-dichloropropane along C1-C2 bond. Clearly label all staggered conformations and all eclipsed conformations with the corresponding Newman projections.
Answer:
^#))(899900000)My020
An ionic bond is a bond
Answer:
That involve the complete transfer of an electron from one atom of an element to another
Select all of the following statements that represent the differences between a voltaic cell and an electrolytic cell. Group of answer choices The electrodes will change in mass for only the electrolytic cell Reduction happens at the cathode for only the electrolytic cell The redox reaction is spontaneous for only voltaic cell Electrode with the lowest reduction potential is reduced in an electrolytic cell A potential is generated when the voltaic cell runs
Answer:
The electrodes will change in mass for only the electrolytic cellElectrode with the lowest reduction potential is reduced in an electrolytic cellA potential is generated when the voltaic cell runsThe following statements represent the differences between a voltaic cell and an electrolytic cell -
The redox reaction is spontaneous for only voltaic cell potential is generated when the voltaic cell runsThe process occurs spontaneously in the voltaic cells due to chemical reactions.electrolytic cell electrical energy is needed for the chemical reactions to occur.A potential is generated by a chemical reaction and for electrolytic cells, a potential is needed.
there is definitely an exchange of mass in a voltaic cellthe species with lower reduction potential always gets reduced and in any electrochemical cell reduction occurs at the cathode.The following statements represent the differences between a voltaic cell and an electrolytic cell -
The redox reaction is spontaneous for only voltaic cell potential is generated when the voltaic cell runsThus, The following statements represent the differences between a voltaic cell and an electrolytic cell -
The redox reaction is spontaneous for only voltaic cell potential is generated when the voltaic cell runsLearn more:
https://brainly.com/question/3614785
Write chemical equations and corresponding equilibrium expressions for each of the two ionization steps of carbonic acid. Part A Write chemical equations for first ionization step of carbonic acid. Express your answer as a chemical equation. Identify all of the phases in your answer.
Solution :
[tex]H_2CO_3[/tex] is considered a diprotic acid.
Sp it can dissociate in solution by giving two protons.
Chemical equations for the first step of carbonic acid is :
First ionization
[tex]$H_2CO_3(aq) + H_0(1) \rightleftharpoons H_.O^+(aq) + HCO_3^-(aq)$[/tex]
Equilibrium constant expression is
[tex]$K_{a}_{1}=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}$[/tex]
Second ionization -
[tex]$HCO_3^-(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CO_3^{2-}(aq)$[/tex]
Equilibrium constant expression is
[tex]$K_{a2}=\frac{[H_3O^+][CO_3^{2-}]}{[HCO_3^-]}$[/tex]
Leo carefully pipets 50.0 mL of 0.500 M NaOH into a test tube. She places the test tube
into a small beaker to keep it from spilling and then pipets 75.0 mL of 0.250 M HCl into
another test tube. When Leo reaches to put this test tube of acid into the beaker along
with test tube of base she accidentally knocks the test tubes together hard enough to
break them and their respective contents combine in the bottom of the beaker. Is the
solution formed from the contents of the two test tubes acidic or basic? What is the pH of
the resulting solution?
Please answer below questions one by one to assist you receive full credits
(Alternatively, you can discard my hints below, solve the problem using your own way
and send me the picture/copy of your complete work through email)
The mole of NaOH before mixing is
mol (save 3 significant figures)
The mole of HCl before mixing is
mol (save 4 significant figures)
After mixing, the solution is
(choose from acidic or basic)
The total volume of mixture is
L (save 3 significant figures)
The concentration of [OH-] is
M (save 3 significant figures)
The concentration of [H'l is
M (save 3 significant figures)
Let's consider the neutralization reaction between HCl and NaOH.
NaOH + HCl ⇒ NaCl + H₂O
To determine the pH of the resulting mixture, we need to determine the reactant in excess. First, we will calculate the reacting moles of each reactant.
NaOH: 0.0500 L × 0.500 mol/L = 0.0200 mol
HCl: 0.0750 L × 0.250 mol/L = 0.0188 mol
Now, let's determine the reactant in excess and the remaining moles of that reactant.
NaOH + HCl ⇒ NaCl + H₂O
Initial 0.0200 0.0188
Reaction -0.0188 -0.0188
Final 1.20 × 10⁻³ 0
The volume of the mixture is 50.0 mL + 75.0 mL = 125.0 mL. Then, 1.20 × 10⁻³ moles of NaOH are in 125.0 mL of solution. The concentration of NaOH is:
[NaOH] = 1.20 × 10⁻³ mol/0.1250 L = 9.60 × 10⁻³ M
NaOH is a strong base according to the following equation.
NaOH ⇒ Na⁺ + OH⁻
The concentration of OH⁻ is 1/1 × 9.60 × 10⁻³ M = 9.60 × 10⁻³ M.
The pOH is:
pOH = -log [OH⁻] = -log 9.60 × 10⁻³ = 2.02
We will calculate the pH using the following expression.
pH = 14.00 - pOH = 14.00 - 2.02 = 11.98
The pH is 11.98. Since pH > 7, the solution is basic.
You can learn more about neutralization here: https://brainly.com/question/16255996
why is repetition important in science?
Answer:
the repetition principle is important in scientific research, because the observational indexes are random variables,which requires a certain amount of samples to reveal their changing regularity
Consider the preparation of methyl benzoate by reacting benzoic acid with methanol using sulfuric acid as a catalyst. Reaction scheme of benzoic acid with methanol, conc. sulfuric acid, and heat over the arrow, and methyl benzoate and water as products. Calculate the molar masses of the reactant and product. Report molar masses to 1 decimal place. Molar mass of benzoic acid g/mol Molar mass of methyl benzoate
Answer:
See explanation
Explanation:
The molecular mass is the sum of the relative atomic masses of all the atoms in the molecule.
The relative atomic mass of reactants and products are calculated as follows;
Benzoic acid is C7H6O2 hence the molar mass of benzoic acid is ;
7(12) + 6(1) + 2(16) = 84 + 6 + 32 = 122.0 g/mol
Methyl benzoate is C8H8O2
8(12) + 8(1) + 2(16) = 96 + 8 + 32 = 136.0 g/mol
Compounds such as butane and isobutane that have the same molecular formula but differ in the order in which the atoms are connected are called ____________
a. trans isomers
b. cis isomers
c. conventional isomers
d. constitutional isomers
Answer:
One compound, called n-butane, where the prefix n- represents normal, has its four carbon atoms bonded in a continuous chain. The other, called isobutane, has a branched chain. Different compounds that have the same molecular formula are called isomers.
Answer:
d. constitutional isomers
Explanation:
i hope it will help