Answer:
Any one of these three works:
plane MOU
plane MNU
plane NOU
Step-by-step explanation:
A plane can be named by a single letter, such as L in this problem, or by any three non-collinear points that lie on the plane. Non-collinear points are points that do not all lie in a single line.
Points M, N, O, and U lie on plane L, so you can choose any 3 of the 4 points to name the plane with, but make sure all 3 points are non-collinear.
To name plane L with points, you cannot use points MNO together since they are collinear, but you can name it using point U plus any two of the points M, N, and O.
plane L can be named
plane MOU
plane MNU
plane NOU
Do not name it plane MNO
[tex] \frac{ {9x}^{2} - {(x}^{2} - 4) {}^{2} }{4 + 3x - {x}^{2} } [/tex]
pls help me need help asap
Answer:
[tex] { x^2+3x-4} [/tex]
Step-by-step explanation:
Factor top and bottom.
The numerator is a difference of two squares, and the denominator is a quadratic.
[tex] \frac{ {9x}^{2} - {(x}^{2} - 4)^{2} }{4 + 3x - {x}^{2} } [/tex]
= [tex]\frac{ (3x+x^2-4)(3x-x^2+4) }{(1+x)(4-x)}[/tex]
= [tex] \frac{ (x-1)(x+4) (1+x)(4-x) }{(1+x)(4-x)} [/tex]
If x does not equal -1 and does not equal 4, we can cancel the common factors in italics to give
= [tex] { (x-1)(x+4)} [/tex]
= [tex] { x^2+3x-4} [/tex]
Answer:
The answer is
x² + 3x - 4Step-by-step explanation:
[tex] \frac{9 {x}^{2} - ( { {x}^{2} - 4})^{2} }{4 + 3x - {x}^{2} } [/tex]
To solve the expression first factorize both the numerator and the denominator
For the numerator
9x² - ( x² - 4)²
Expand the terms in the bracket using the formula
( a - b)² = a² - 2ab + b²
(x² - 4) = x⁴ - 8x² + 16
So we have
9x² - (x⁴ - 8x² + 16)
9x² - x⁴ + 8x² - 16
- x⁴ + 17x² - 16
Factorize
that's
(x² - 16)(-x² + 1)
Using the formula
a² - b² = ( a + b)(a - b)
We have
(x² - 16)(-x² + 1) = (x + 4)(x - 4)( 1 - x)(1 + x)
For the denominator
- x² + 3x + 4
Write 3x as a difference
- x² + 4x - x + 4
Factorize
That's
- ( x - 4)(x + 1)
So we now have
[tex] \frac{(x + 4)(x - 4)( 1 - x)(1 + x)}{ - (x - 4)(x + 1)} [/tex]
Simplify
[tex] \frac{ - (x + 4)(1 - x)(1 + x)}{x + 1} [/tex]
Reduce the expression by x + 1
That's
-( x + 4)( 1 - x)
Multiply the terms
We have the final answer as
x² + 3x - 4Hope this helps you
Mildred’s salary has increased from £24,600 to £25,338. By what percentage has her salary increase?
Answer:
The answer is 3%Step-by-step explanation:
To find the percentage increase we use the formula
[tex]Percentage \: change = \frac{ change}{original \: quantity} \times 100[/tex]
To find the change subtract the smaller quantity from the bigger one
From the question
original price = $24,600
Current price = $ 25,338
Change = $25,338 - $ 24,600
Change = $ 738
So the percentage increase is
[tex] \frac{738}{24600} \times 100[/tex]
[tex] = \frac{3}{100} \times 100[/tex]
We have the final answer as
Percentage increase = 3%Hope this helps you
Find the value of x. A. 53–√ m B. 241−−√ m C. 6 m D. 6+35–√ m
Answer:
x = 2√41 mStep-by-step explanation:
Since the triangle is a right angled triangle we can use Pythagoras theorem to find the missing side x
Using Pythagoras theorem we have
a² = b² + c²
where a is the hypotenuse
From the question x is the hypotenuse
So we have
[tex] {x}^{2} = {8}^{2} + {10}^{2} [/tex][tex] {x}^{2} = 64 + 100[/tex][tex] {x}^{2} = 164[/tex]Find the square root of both sides
We have the final answer as
x = 2√41 mHope this helps you
Answer:
2 sqrt(41) =c
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
8^2 + 10^2 = c^2
64+ 100 = c^2
164 = c^2
take the square root of each side
sqrt(164) = sqrt(c^2)
sqrt(4*41) = c
2 sqrt(41) =c
Jorge’s monthly bill from his Internet service provider was $25. The service provider charges a base rate of $15 per month plus $1 for each hour that the service is used. Find the number of hours that Jorge was charged for that month.
Answer:
10 hours for the month
Step-by-step explanation:
What you know: The total amount Jorge was charged for the month was $25
The base rate is $15
He gets charged $1 per each hour
Setting it up:
15+1h=25
(the 15 is the base rate, plus the 1 dollar per hour (h) which both add to the total of 25 dollars for the month)
Subtract 15 from both sides of the equation to get your variable by itself
1h=10
then divide the 1 on both sides to get h (hours) by itself
h=10
And there's your answer, 10 is the number of hours that Jorge was charged for the month
Hopefully this helped :))
Answer:
10
Step-by-step explanation:
$25 - $15 = $10
and its $1 per hour so the answer is 10hrs
when the point ( k, 3 ) lies on each of these lines, find the value of k y= 3x+1 , y= 4x-2 , y=1/2x - 1 and 2x+3y=4
Answer:
see explanation
Step-by-step explanation:
Since (k, 3) lies on each of the lines, the point satisfies the equations.
Substitute x = k, y = 3 into each and solve for k
y = 3x + 1
3 = 3k + 1 ( subtract 1 from both sides )
2 = 3k ( divide both sides by 3 )
k = [tex]\frac{2}{3}[/tex]
-------------------------------------------------------
y = 4x - 2
3 = 4k - 2 ( add 2 to both sides )
5 = 4k ( divide both sides by 4 )
k = [tex]\frac{5}{4}[/tex]
--------------------------------------------------------
y = [tex]\frac{1}{2}[/tex] x
3 = [tex]\frac{1}{2}[/tex] k ( multiply both sides by 2 to clear the fraction )
k = 6
---------------------------------------------------------
2x + 3y = 4
2k + 3(3) = 4
2k + 9 = 4 ( subtract 9 from both sides )
2k = - 5 ( divide both sides by 2 )
k = - [tex]\frac{5}{2}[/tex]
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
The two inequalities that show the solution to these equations are n ≥ 55 and y ≥ 6
Step-by-step explanation:
We are given two inequalities that we have to solve. We can solve these inequalities as if we are solving for the variable.
n/5 ≥ 11
Multiply by 5 on both sides.
n ≥ 55
Now, let's do the second one.
-3y ≤ -18
Divide by -3 on both sides. When we divide by a negative in inequalities, then the sign is going to flip to its other side. So, this sign (≤) becomes this sign (≥)
y ≥ 6
Multiply and simplify. (1 − 5i)(1 − 2i) A) 1 + 7i B) 9 − 7i C) 1 − 7i D) − 9 − 7i
Answer:
The product renders: [tex]-9-7\,i[/tex]
Step-by-step explanation:
Recall that the product of the imaginary unit i by itself renders -1
Now proceed with the product of the two complex numbers using distributive property:
[tex](1-5\,i)\,(1-2\,i)=1-2\,i-5\,i+10\,i^2=1-7\,i-10=-9-7\,i[/tex]
A line passes (-8,-2) and has a slope of 5/4. Write an equation in Ax + By=C
Answer:
5x-4y = -32
Step-by-step explanation:
First write the equation in point slope form
y-y1 = m(x-x1)
y - -2 = 5/4 ( x- -8)
y+2 = 5/4 (x+8)
Multiply each side by 4 to clear the fraction
4( y+2 )= 4*5/4 (x+8)
4y +8 = 5(x+8)
4y+8 = 5x+40
Subtract 4y from each side
8 = 5x-4y +40
Subtract 40 from each side
-32 = 5x-4y
5x-4y = -32
Answer:
The answer is
5x - 4y = -32Step-by-step explanation:
To write an equation of a line given a point and slope use the formula
y - y1 = m( x - x1)
where
m is the slope
( x1 , y1) is the point
From the question
slope = 5/4
point (-8 , -2)
So the equation of the line is
[tex]y + 2 = \frac{5}{4} (x + 8)[/tex]Multiply through by 4
4y + 8 = 5( x + 8)
4y + 8 = 5x + 40
5x - 4y = 8 - 40
We have the final answer as
5x - 4y = -32Hope this helps you
Find the missing the side of the triangle A. 130−−−√ m B. 179−−−√ m C. 42–√ m D. 211−−−√ m
Answer:
The answer is option AStep-by-step explanation:
Since the triangle is a right angled triangle we can use the Pythagoras theorem to find the missing side
Using the Pythagoras theorem
That's
[tex] {a}^{2} = {b}^{2} + {c}^{2} [/tex]
From the question
x is the hypotenuse or the longest side of the triangle
Substituting the values into the above formula we have
[tex] {x}^{2} = {9}^{2} + {7}^{2} [/tex]
[tex] {x}^{2} = 81 + 49[/tex]
[tex] {x}^{2} = 130[/tex]
Find the square root of both sides
We have the final answer as
x = √130 mHope this helps you
To get from home to work, Felix can either take a bike path through the rectangular park or ride his bike along two sides of the park. How much farther would Felix travel by riding along two sides of the park than he would by taking the path through the park?
Answer:
c=5.9/6(G)
Step-by-step explanation:
first find the 2 distances.
a^2+b^2=c^2 c=2.4+.7
7^2+2.4^2=c^2 c=3.1
.49+5.85=c^2
c^2=6.34
c=√6.34
c=2.51.
next subtract the two distances to find the difference.
c=2.51-3.1
c=.59
so the distance would be .59 which can be rounded up to .60/G
explanation on how I knew the answer.
Im reviewing for the math 8th grade staar.
evaluate 15.2% of a 726 + 12.8% of 673
Answer:
196.496
Step-by-step explanation:
0.152x726+0.128x673
110.352+86.144
=196.496
Michael is using a number line to evaluate the expression –8 – 3. A number line going from negative 12 to positive 12. A point is at negative 8. After locating –8 on the number line, which step could Michael complete to evaluate the expression?
Answer:
move to the left 3 more spaces
Step-by-step explanation:
you are at -8 already. Therefore, you (-3) more spaces, so you go to the left three more spaces. Use the saying keep change change to help with this.
Keep the first number sign, change the next sign, and the next sign.
Answer:
d
Step-by-step explanation:
Coordinate plane with two lines graphed. The equations of the lines are y equals negative two-thirds x plus four and the other line is y equals two-thirds x. Determine the number of solutions the system of linear equations has and the solution(s) to the equations represented by these two lines? The system of equations has 0 solutions, because the graph has no point of intersection. The system of equations has infinite number of solutions and all real numbers satisfy both equations. The system of equations has 1 solution and it is (3, 2). The system of equations has 1 solution and it is (3, 0).
Answer:
Step-by-step explanation:
y = -2/3x + 4
y = 2/3x
2/3x = -2/3x + 4
4/3x = 4
4x = 12
x = 3
y = 2/3(3)
y = 2
(3,2) one solution
option 3
a broker gets rs 20000 as commission from sale of a piece of land which costs rs 8000000. Find the rate of commission.
Answer:
0.25%
Step-by-step explanation:
Rate of commission
= (commission*100)/cost of land
=( 20000*100)/8000000
= 2000000/8000000
=2/8
= 0.25%
really urgent...i need the working also ...pls help me
Answer:
See below.
Step-by-step explanation:
In each case, you are looking for time. We know speed is distance divided by time. Lets start with the speed formula.
speed = distance/time
Now we solve it for time. Multiply both sides by time and divide both sides by speed.
speed * time = distance
time = distance/speed
Time is distance divided by speed. In each problem, you have a speed and a distance. Divide the distance by the speed to to find the time.
1) speed = 44.1 km/h; distance = 150 km
time = distance/speed = 150 km/(44.1 km/h) =
= 3.401 hours = 3 hours + 0.401 hour * 60 min/hour = 3 hours 24 minutes
2) speed = 120 km/h; distance = 90 km
time = distance/speed = 90 km/(120 km/h) =
= 0.75 hours = 0.75 hour * 60 min/hour = 45 minutes
3) speed = 125 m/s; distance = 500 m
time = distance/speed = 500 m/(125 m/s) =
= 4 seconds
solve the following: - 3 raised to 1 by 5 the whole raised to 4 (3^1/5)^4
Answer:
8.30256
Step-by-step explanation:
Step 1: Write out expression
[tex]((-3)^{\frac{1}{5} })^{4(3^{\frac{1}{5} })^4[/tex]
Step 2: Use BPEMDAS to evaluate
[tex](-1.24573)^{4(3^{\frac{1}{5} })^4[/tex]
[tex](-1.24573)^{4(1.24573)^4[/tex]
[tex](-1.24573)^{4(2.40822)[/tex]
[tex](-1.24573)^{9.6329}[/tex]
= 8.30256
And we have our answer!
Need to find the Domain and Range
Answer:
D: {x∈R | -2 ≤ x ≤ 2 }
R: {y∈R | 0 ≤ y ≤ 4 }
Step-by-step explanation:
The domain ranges between -2 and 2
The range ranges between 0 and 4
someone please expain how to do this, i’m really confused.
Answer:
13
Step-by-step explanation:
Basically, we have to plug in 4 for r into g(r). Doing so gives us g(4) = 25 - 3 * 4 = 25 - 12 = 13.
Some more examples:
g(6) = 25 - 3 * 6 = 25 - 18 = 7
g(1) = 25 - 3 * 1 = 25 - 3 = 22
Answer:g(4)=13
Step-by-step explanation:
g(4)=25-3r
25-3(4)
25-12
g(4)=13
Two shaded identical rectangular decorative tiles are first placed (one each) at the top and at the base of a door frame for a hobbit's house, as shown in Figure 1. The distance from W to H is 45 inches. Then the same two tiles are rearranged at the top and at the base of the door frame, as shown in Figure 2. The distance from Y to Z is 37 inches. What is the height of the door frame, in inches?
Answer:
41 inches
Step-by-step explanation:
Let the point at the top of the door on the left be x
Wx + xH = 45
Let the point at the top of the door on the right be c
Yc + cZ = 37
We know the door is
xH + plus the width of the tile
The width of the tile is Yc
xH + Yc
On the right door
cZ + the height of the tile
cZ + Wx
Add the two doors together
xH + Yc + cZ + Wx = 2 times the height of the door
Rewriting
xH + Wx + Yc + cZ = 2 times the height of the door
45+ 37 = 2 times the door height
82 = 2 times the door height
Divide by 2
41 = door height
ux=x+y/k, solve for x
Answer:
x = y/( ku-1)
Step-by-step explanation:
Here in this question, we are asked to solve for x.
we have;
Ux = x+ u/ k
cross multiply;
k * Ux = x + y
kUx = x + y
kUx- x = y
x(KU-1) = y
x = y/( ku-1)
Pregunta N° 1: ¿Cuántas fracciones propias e irreductibles con denominador 24 existen? 1 punto A) 2 B) 4 C) 6 D) 8 E) 10 Pregunta N° 2: ¿Cuántas fracciones impropias e irreductibles con numerador 25 existen? 1 punto A) 19 B) 21 C) 25 D) 29 E) 33 Pregunta N° 3: La edad de Miguel es 4/5 de la edad de su novia. Si las edades de los dos suman 63 años, calcule la edad de la novia de Miguel. 1 punto A) 20 años B) 26 años C) 32 años D) 35 años E) 40 años Pregunta N° 4: Si son las 8 a. m., ¿qué fracción del día ha transcurrido? 1 punto A) 1 B) 2 C) 1/2 D) 1/3 E) 1/5
ayuden porfavor
Answer:
Pregunta 1: Opcion D. 8
Pregunta 2: Opción A. 19 (aunque lo correcto es decir que son 20)
Pregunta 3: 28 años (no está como opción)
Pregunta 4: Opción D. 1/3
Step-by-step explanation:
Las fracciones irreductibles son aquellas que después de dividirlas por un común divisor, una vez que no se pueden dividir más se dice que son irreducibles, por lo tanto no existe ningún número que sea divisor común del numerador y del denominador más que 1.
Fracciones irreductibles con común denominador 24.
Como máximo divisor tenemos el 24 y como mínimo el 1
entre 1/24 y 1 estarán nuestras fracciones o sea:
1/24 < x/24 < 1. Ahora convertimos el 1 en fracción de 24, lo que sería 24/24 para igualar el numerador en ambos lados de la ecuación, para poder determinar x
1/24 < x/24 < 24/24
Como vemos que x tiene que estar entre 1 y 24, las respuestas serán:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 y 23
Eliminamos los números divisores de 24, aquellos pares, y nos focalizamos en los que no podriamos dividir por nada con 24, o sea los números primos
5, 7, 11, 13, 17, 19, 23. Como nos falta el 1, obtenemos un total de 8 fracciones: 1/24, 5/24, 7/24, 11/24, 13/24, 17/24, 19/24, 23/24
Mismo procedimiento para el 25:
1/25 es una de las fracciones irreductibles. Pensamos en los valores de x
1/25 < x/25 < 25/25
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Los números divisibles por 25, son los multiplos de 5, asi que esas respuestas no irían. Las fracciones irreductibles son:
1/25, 2/25, 3/25, 4/25, 6/25, 7/25, 8/25, 9/25, 11/25, 12/25, 13/25, 14/25, 16/25, 17/25, 18/25, 19/25, 21/25, 22/25, 23/25 y 24/25 haciendo un total de
20. Por alguna razón está mal formulada la pregunta, son 20 pero no está como opción y como te piden fraccion impropia (numerador > denominador), contamos a partir de 26. FIjate que hasta el proximo entero que sería 50/25, también son 20 fracciones (irreductibles e impropias)
26/25, 27/25, 28/25, 29/25, 31/25, 32/25, 33/25, 34/25, 36/25, 37/25, 38/25, 39/25, 41/25, 42/25, 43/25, 44/25, 46/25, 47/25, 48/25, 49/25
Próxima pregunta:
Miguel tiene 4/5 de la edad de la novia, y ambas edades suman 63.
Plantiemos la siguiente ecuacion donde x es la edad de la novia
4/5x + x = 63
9/5x = 63
x = 63 . 5/9 (como 9/5 pasa al otro lado de la igualdad dividiendo, damos vuelta la fraccion multiplicandola)
x = 35
Si la novia tiene 35 años y la edad de Miguel es 4/5 de esa edad
4/5 .35 = (35 .4) /5 = 28
Es raro porque no está la respuesta como tal.
Próxima pregunta:
Al ser las 8 am, quiere decir que han pasado 8 horas de que empezó el día
y el día tiene 24 horas.
8 horas transcurridas / 24 horas totales = 1/3
Sarah has $20 saved. She gets $10 per week for her allowance, and she saves her allowance for the next 3 weeks. At the end of the week, she gets $150 in birthday money. How much money will she have after the 3 weeks? Which of the following sets of equations represents this problem?
Answer:
$200
Step-by-step explanation:
We know that she already has $20. And we know that every week, for three weeks she gets $10.
20+3(10)+150=m
We add all of this up, and we find that at the end of 3 weeks Sarah has $200 saved.
What is the rule for the transformation below?
=================================================
Explanation:
The translation notation T(-5, 3) looks like an ordered pair point, but it is not. Instead, it is a rule to tell you how to shift any point left/right and up/down. The first number is the left/right shifting as its done along the x axis. The negative value means we shift left, so we shift 5 units to the left. The positive 3 in the y coordinate place means we shift 3 units up.
We see this shifting happen when we go from
A = (-1, -1) to A ' = (-6, 2) B = (2, 3) to B ' = (-3, 6)C = (5, -3) to C ' = (0, 0)The translation notation T(-5, 3) is the same as writing [tex](x,y) \to (x-5, y+3)[/tex] which may be a more descriptive notation to use, and it would avoid confusion with ordered pair point notation.
The marketing department at Quality Home Improvement Center (QHIC) uses simple linear regression analysis to predict home upkeep expenditure on the basis of home value. Predictions of home upkeep expenditures are used to help determine which homes should be sent advertising brochures promoting QHIC's products and services.
Full question :
The Tasty Sub Shop Case:
A business entrepreneur uses simple linear regression analysis to predict the yearly revenue for a potential restaurant site on the basis of the number of residents living near the site. The entrepreneur then uses the prediction to assess the profitability of the potential restaurant site.
And
The QHIC Case:
The marketing department at Quality Home Improvement Center (QHIC) uses simple linear regression analysis to predict home upkeep expenditure on the basis of home value. Predictions of home upkeep expenditures are used to help determine which homes should be sent advertising brochures promoting QHIC’s products and services.
Discuss the difference in the type of prediction in both cases and provide rational of the reasons that these predictions were used.
Answer and explanation:
In the first case, The Tasty Sub Shop Case, the entrepreneur aims to utlilize the predicted values from his regression analysis in ascertaining profit of his potential business. He does this using the values from number of residents in the area(independent variables) to predict the revenue for his business(dependent variables). His predictions using the number of residents in the area are largely because the residents in the area are his target consumers and are the ones to buy food from his restaurant and increase his revenue.
In the other case, the marketing department in QHIC utilizes the predicted values in determining their customers who need to be aware of their products. They get the predicted values(home upkeep expenditure and dependent variable) by plotting their relationship with home value(independent variable) and then use predicted values of home upkeep expenditures in determining their customers who they will market their products to. They do this because predicting home upkeep expenditures will enable them determine what homes can afford or will need their products and services.
one utilizes his predictions at ascertaining profit while the other uses his predictions in determining potential customer base to market products to. The first case is making a revenue/ profitability prediction while the other is making a market prediction
I NEED HELP ANSWERING THESE QUESTIONS FIRST ANSWER GET BRAINLIEST!
Answer:
3 - b=12
4- b=14.1
Step-by-step explanation:
Area of the bookshelf=864 square inches
the book shelf is a rectangular prism
if we have height=4b, width=3b, length=b
then the area=length * width
A=(l*w)*2 ( we have 2 shelves)
864=(b*3b)*2
864=6b²
b²=864/6=144
b=√144= 12 inches
4- to cover the sides :
(height * length)*2 ( we have 2 sides)
(4b*b)×2=1600
8b²=1600
b²=1600/8=200
b=√200=14.1
Answer:
Question #3: b = 12 in
Question #4: b = 14.1 in
Step-by-step explanation:
Please see in the image attached the actual proportions that the furniture manufacturer uses to build the furniture in question:
Height = 4 b
Width = 3 b
Depth = b
So for question #3, given that the customer wants a total surface of the shaded shelves to be 864 [tex]in^2[/tex]
we can write that one wants twice the area of each rectangle of width 3 b and depth b to total 864:
[tex]2\,(3b\,*\,b)=864\\6 b^2=864\\b^2=864/6\\b^2=144\\b=12\,\,in[/tex]
Question # 4:
The total lateral surface to be covered by the silk is 1600 [tex]in^2[/tex], therefore if we consider the surface of each lateral plank as:
Area of each lateral plank :
[tex](4b)\,(b) = 4\,b^2[/tex]
Then twice these is: [tex]8\, b^2[/tex]
So we can solve for be requesting that these total surface equal the amount of silk:
[tex]8\,b^2=1600\\b^2=1600/8\\b^2=200\\b=\sqrt{200} \\b\approx 14.1421\,\,in[/tex]
which rounded to the nearest tenth of an inch gives:
[tex]b\approx 14.1\,\,in[/tex]
According to data from the U.S. Department of Education, the average cost y of tuition and fees at public four-year institutions in year x is approximated by the equation where x = 0 corresponds to 1990. If this model continues to be accurate, during what year will tuition and fees reach $4000?
Answer:
Graphing Calculator
Step-by-step explanation:
A stone is thrown downward straightly its speed at speed of 20 second what and it reaches the ground at 40 metre second what will be the height of building
Answer:
[tex]\Huge \boxed{\mathrm{61.22 \ m}}[/tex]
Step-by-step explanation:
A stone is thrown downward straightly with the velocity of 20 m/s and it reaches the ground at the velocity of 40 m/s. What will be the height of building? (Question)
The initial velocity ⇒ 20 m/s
The final velocity ⇒ 40 m/s
We can apply a formula to solve for the height of the building.
[tex](V_f)2 - (V_i)^2 =2gh[/tex]
[tex]V_f = \sf final \ velocity \ (m/s)[/tex]
[tex]V_i = \sf initial \ velocity \ (m /s)[/tex]
[tex]g = \sf acceleration \ due \ to \ gravity \ (m/s^2 )[/tex]
[tex]h = \sf height \ (m)[/tex]
Plugging in the values.
Acceleration due to gravity is 9.8 m/s².
[tex](40)^2 - (20)^2 =2(9.8)h[/tex]
Solve for [tex]h[/tex].
[tex]1600 - 400 =19.6h[/tex]
[tex]1200 =19.6h[/tex]
[tex]\displaystyle h=\frac{1200}{19.6}[/tex]
[tex]h= 61.22449[/tex]
The height of the building is 61.22 meters.
Hey, please help solve the question.
Answer:
75%=x-125
90%=x+250
subtract the second from the first
15%=375
100%=?
100%×375/15
100%=2500marked price is 2500
2500+250=2750
90%=2750
100%=?
cost price=3055.56
find the exterior angle of a triangle whose interior opposite angles are 43 degree and 27 degree
Answer:
[tex]\huge\boxed{Exterior\ angle = 70\°}[/tex]
Step-by-step explanation:
The measure of exterior angle is equal to the sum of opposite interior angles.
So,
Exterior angle = 43+27
Exterior angle = 70°
In the diagram of the right triangle shown find the value of c.
Answer:
Hey there!
20^2+25^2=c^2
400+625=c^2
1025=c^2
Square root 1025 is the correct answer, so option C.
Let me know if this helps :)
Answer: B
Step-by-step explanation: