Geometry pls help !!! Find the value of AB.
AB = [?]

Geometry Pls Help !!! Find The Value Of AB.AB = [?]

Answers

Answer 1

Answer:

AB = 16 Units

Step-by-step explanation:

In the given figure, CD is the diameter and AB is the chord of the circle.

Since, diameter of the circle bisects the chord at right angle.

Therefore, AE = 1/2 AB

Or AB = 2AE...(1)

Let the center of the circle be given by O. Join OA.

OA = OD = 10 (Radii of same circle)

Triangle OAE is right triangle.

Now, by Pythagoras theorem:

[tex] OA^2 = AE^2 + OE^2 \\

10^2 = AE^2 + 6^2 \\

100= AE^2 + 36\\

100-36 = AE^2 \\

64= AE^2 \\

AE = \sqrt{64}\\

AE = 8 \\

\because AB = 2AE..[From \: equation\: (1)] \\

\therefore AB = 2\times 8\\

\huge \purple {\boxed {AB = 16 \: Units}} [/tex]


Related Questions

To the nearest tenth, what is the area of the figure shown in the image? Segment BF is a line of symmetry of the pentagon ABCDE. Use 3.14 for pi. A. 30.3 in.^2 B. 33.0 in.^2 C. 39.3 in.^2 D. 48.3 in.^2 Please include ALL work! <3

Answers

Answer:

C, 39.3 in²

Step-by-step explanation:

Lets first find the area of the rectangle part of the house.

To find the area of a rectangle its base × height.

So its 6×4=24 in².

Now lets find the area of the top triangle.

Area for a triangle is (base × height)/2.

The height is 3 inches, because its 7-4. While the base is 6 inches.

(6×3)/2=9 in².

To find the area of the half circle the formula, (piR²)/2.

The radius of the circle is 2 because its half of the diamter which is 4.

(pi2²)/2=6.283 in².

Now we just need to add up the area of every part,

24+9+6.283=39.283in²

hich statement best describes the domain and range of p(x) = 6–x and q(x) = 6x? p(x) and q(x) have the same domain and the same range. p(x) and q(x) have the same domain but different ranges. p(x) and q(x) have different domains but the same range. p(x) and q(x) have different domains and different ranges.

Answers

Answer:

[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.

Step-by-step explanation:

[tex]p(x) = 6-x[/tex] and

[tex]q(x) = 6x[/tex]

First of all, let us have a look at the definition of domain and range.

Domain of a function [tex]y =f(x)[/tex] is the set of input value i.e. the value of [tex]x[/tex] for which the function [tex]f(x)[/tex] is defined.

Range of a function [tex]y =f(x)[/tex] is the set of output value i.e. the value of [tex]y[/tex] or [tex]f(x)[/tex] for the values of [tex]x[/tex] in the domain.

Now, let us consider the given functions one by one:

[tex]p(x) = 6-x[/tex]

Let us sketch the graph of given function.

Please find attached graph.

There are no values of [tex]x[/tex] for which p(x) is not defined so domain is All real numbers.

So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Its range is also All Real Numbers

So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

[tex]q(x) = 6x[/tex]

Let us sketch the graph of given function.

Please find attached graph.

There are no values of [tex]x[/tex] for which [tex]q(x)[/tex] is not defined so domain is All real numbers.

So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Its range is also All Real Numbers

So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]

Hence, the correct answer is:

[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.

How many variable terms are in the expression 3x3y + 5x2 − 4y + z + 9?

Answers

Answer:

4

Step-by-step explanation:

"4" is the number of variable terms that are in the expression 3x3y + 5x2 _ 4y + z + 9. The four variable terms in the expression are "xy", "x^2", "y" and "z". I hope that this is the answer that you were looking for and the answer has actually come to your desired help. If you need any clarification, you can always ask.

AB||CD. Find the measure of

Answers

Answer:

135 degrees

Step-by-step explanation:

3x+15 = 5x - 5 because of the alternate interior angles theorem.

20 = 2x

x = 10

3(10) + 15 = 30+15 = 45

Remember that a line has a measure of 180 degrees. So we can just subtract the angle we found from 180 degrees to get BFG.

180-45 = 135.

A professor at a local community college noted that the grades of his students were normally distributed with a mean of 74 and standard deviation of 10. The professor has informed us that 6.3 percent of his students received A's while only 2.5 percent of his students failed the course and received F's.
a. What is the minimum score needed to make an A?
b. What is the maximum score among those who received an F?
c. If there were 5 students who did not pass the course, how many students took the course?

Answers

Answer:

a)  z (score) 1,53

b)  z ( score) - 1,96

c) 200 students

Step-by-step explanation:

Normal Distribution N ( 74;10)

a) From z-table, and for 6,3 %  ( 0,063 ) we find the z (score) 1,53

Note : 6,3 % or 0,063 is the area under the curve, the minimum score neded to get A

b) To fail   2,5 %  ( 0,025 ) from z-table  get - 1,96

c) If the group of  student who did not pass the course (5) correspond to 2,5 % then by simple rule of three

5                 2,5

x ?               100

x = 500/2,5

x = 200

If the coefficient of correlation is 0.8, the percentage of variation in the dependent variable explained by the variation in the independent variable is

Answers

Answer:

The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.

Step-by-step explanation:

A coefficient of correlation of 0.8 means that dependent variable changes in 0.8 when independent variable changes in a unit. Hence, the percentage of such variation ([tex]\%R[/tex]) is:

[tex]\%R = \frac{\Delta y}{\Delta x}\times 100\,\%[/tex]

Where:

[tex]\Delta x[/tex] - Change in independent variable, dimensionless.

[tex]\Delta y[/tex] - Change in dependent variable, dimensionless.

If [tex]\Delta x = 1.0[/tex] and [tex]\Delta y = 0.8[/tex], then:

[tex]\%R = 80\,\%[/tex]

The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.

Which equation will solve the following word problem? Jared has 13 cases of soda. He has 468 cans of soda. How many cans of soda are in each case? 13(468) = c 468c = 13 468/13 = c 13 = c/468

Answers

Answer:

c = 468 / 13

Step-by-step explanation:

If c is the number of cans of soda in each case, we know that the number of cans in 13 cases is 13 * c = 13c, and since the number of cans in 13 cases is 468 and we know that "is" denotes that we need to use the "=" sign, the equation is 13c = 468. To get rid of the 13, we need to divide both sides of the equation by 13 because division is the opposite of multiplication, therefore the answer is c = 468 / 13.

Answer:

468/13 = c

Step-by-step explanation: Further explanation :

[tex]13 \:cases = 468\:cans\\1 \:case\:\:\:\:= c\: cans\\Cross\:Multiply \\\\13x = 468\\\\\frac{13x}{13} = \frac{468}{13} \\\\c = 36\: cans[/tex]

The sequence below represents Marisa’s fine at the library for each day that she has an overdue book: $0.50, $0.65, $0.80, $0.95, $1.10, ... Which equation represents Marisa’s library fine as a function of a book that is n days overdue? f(n) = 0.15n f(n) = 0.50n f(n) = 0.15n + 0.35 f(n) = 0.50n + 0.15

Answers

Answer:

f(n) = 0.15n + 0.35

Step-by-step explanation:

The sequence of the problem above is an arithmetic sequence

For an nth term in an arithmetic sequence

F(n) = a + ( n - 1)d

where a is the first term

n is the number of terms

d is the common difference

To find the equation first find the common difference

0.65 - 0.5 = 0.15 or 0.80 - 0.65 = 0.15

The first term is 0.5

Substitute the values into the above formula

That's

f(n) = 0.5 + (n - 1)0.15

f(n) = 0.5 + 0.15n - 0.15

The final answer is

f(n) = 0.15n + 0.35

Hope this helps you

Answer:

The correct option is: f(n) = 0.15n + 0.35

Step-by-step explanation:

Took the math test on edge

The height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. When graphed, the function gives a line with a slope of −0.4. See the figure below. Suppose that the height of the candle after 11 hours is 16.6 centimeters. What was the height of the candle after 6 hours?

Answers

Answer:

height of the candle after 6 hours= 18.6 centimeters

Step-by-step explanation:

the function gives a line with a slope of −0.4.

the height of the candle after 11 hours is 16.6 centimeters.

after 6 hours, the height will be

But slope= y2-y1/x2-x1

Y2 is the unknown

Y1 = 16.6

X1= 11 hours

X2= 6 hours

y2-y1/x2-x1= -0.4

(Y2-16.6)/(6-11)= -0.4

(Y2-16.6)/(-5)= -0.4

(Y2-16.6)= -5( -0.4)

(Y2-16.6)= 2

Y2 = 2+16.6

Y2 = 18.6 centimeters

height of the candle after 6 hours= 18.6 centimeters

A baseball player has a batting average (probability of getting on base per time at bat) of 0.215. Based on this: What is the probability that they will get on base more than 6 of the next 15 at bats

Answers

Answer:

[tex]\mathbf{P(x>6) = 0.0265}[/tex]

Step-by-step explanation:

Given that:

A baseball player has a batting average (probability of getting on base per time at bat) of 0.215

i.e

let x to be the random variable,

consider [tex]x_1 = \left \{ {{1} \atop {0}} \right.[/tex]  to be if the baseball player has a batting average or otherwise.

Then

p(x₁ = 1) = 0.125

What is the probability that they will get on base more than 6 of the next 15 at bats

So

[tex]\mathtt{x_i \sim Binomial (n,p)}[/tex]

where; n =  15 and p = 0.125

P(x>6) = P(x ≥ 7)

[tex]P(x>6) = \sum \limits ^{15}_{x=7} ( ^{15 }_x ) \ (0.215)^x \ (1 - 0.215)^{15-x}[/tex]

[tex]P(x>6) = 1 - \sum \limits ^{6}_{x=7} ( ^{15 }_x ) \ (0.215)^x \ (1 - 0.215)^{15-x}[/tex]

[tex]P(x>6) = 1 - \sum \limits ^{6}_{x=0} ( ^{15 }_x ) \ (0.215)^x \ (1 - 0.215)^{15-x}[/tex]

[tex]P(x>6) = 1 -0.9735[/tex]

[tex]\mathbf{P(x>6) = 0.0265}[/tex]

A study was conducted to determine whether magnets were effective in treating pain. The values represent measurements of pain using the visual analog scale. Assume that both samples are independent simple random samples from populations having normal distributions. Use a significance level to test the claim that those given a sham treatment have pain reductions that vary more than the pain reductions for those treated with magnets.
n xbar s
Sham 20 0.41 1.26
Magnet 20 0.46 0.93

Answers

Answer and Step-by-step explanation: The null and alternative hypothesis for this test are:

[tex]H_{0}: s_{1}^{2} = s_{2}^{2}[/tex]

[tex]H_{a}: s_{1}^{2} > s_{2}^{2}[/tex]

To test it, use F-test statistics and compare variances of each treatment.

Calculate F-value:

[tex]F=\frac{s^{2}_{1}}{s^{2}_{2}}[/tex]

[tex]F=\frac{1.26^{2}}{0.93^{2}}[/tex]

[tex]F=\frac{1.5876}{0.8649}[/tex]

F = 1.8356

The critical value of F is given by a F-distribution table with:

degree of freedom (row): 20 - 1 = 19

degree of freedom (column): 20 - 1 = 19

And a significance level: α = 0.05

[tex]F_{critical}[/tex] = 2.2341

Comparing both values of F:

1.856 < 2.2341

i.e. F-value calculated is less than F-value of the table.

Therefore, failed to reject [tex]H_{0}[/tex], meaning there is no sufficient data to support the claim that sham treatment have pain reductions which vary more than for those using magnets treatment.

For the regression equation, Ŷ = +20X + 200 what can be determined about the correlation between X and Y?

Answers

Answer:

There is a positive correlation between X and Y.

Step-by-step explanation:

The estimated regression equation is:

[tex]\hat Y=20X+200[/tex]

The general form of a regression equation is:

[tex]\hat Y=b_{yx}X+a[/tex]

Here, [tex]b_{yx}[/tex] is the slope of a line of Y on X.

The formula of slope is:

[tex]b_{yx}=r(X,Y)\cdot \frac{\sigma_{y}}{\sigma_{x}}[/tex]

Here r (X, Y) is the correlation coefficient between X and Y.

The correlation coefficient is directly related to the slope.

And since the standard deviations are always positive, the sign of the slope is dependent upon the sign of the correlation coefficient.

Here the slope is positive.

This implies that the correlation coefficient must have been a positive values.

Thus, it can be concluded that there is a positive correlation between X and Y.

In tests of a computer component, it is found that the mean time between failures is 520 hours. A modification is made which is supposed to increase the time between failures. Tests on a random sample of 10 modified components resulted in the following times (in hours) between failures. 518 548 561 523 536 499 538 557 528 563 At the 0.05 significance level, test the claim that for the modified components, the mean time between failures is greater than 520 hours. Use the P-value method of testing hypotheses.
H0:
H1:
Test Statistic:
Critical Value:
Do you reject H0?
Conclusion:
If you were told that the p-value for the test statistic for this hypothesis test is 0.014, would you reach the same decision that you made for the Rejection of H0 and the conclusion as above?

Answers

Answer:

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

Step-by-step explanation:

Mean x`= 518 +548 +561 +523 + 536 + 499+  538 + 557+ 528 +563 /10

x`= 537.1

The Variance is  = 20.70

H0 μ≤ 520

Ha μ > 520

Significance level is set at ∝= 0.05

The critical region is t ( with df=9) for a right tailed test is 1.8331

The test statistic under H0 is

t=x`- x/ s/ √n

Which has t distribution with n-1 degrees of freedom which is equal to 9

t=x`- x/ s/ √n

t = 537.1- 520 / 20.7 / √10

t= 17.1 / 20.7/ 3.16227

t= 17.1/ 6.5459

t= 2.6122

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

Convert 6 feet to miles ( round five decimal places

Answers

Answer:

0.00114

Step-by-step explanation:

Divide length value by 5280

If 5x + 2 =12x- 5, then x = ?

Answers

Answer:

x = 1

Step-by-step explanation:

First, move all the variables to one side by subtracting 5x on both sides:

5x + 2 = 12x - 5

2 = 7x - 5

Add 5 to both sides:

7 = 7x

1 = x

Answer:

x=1

Step-by-step explanation:

5x + 2 =12x- 5

Subtract 5x from each side

5x-5x + 2 =12x-5x- 5

2 = 7x-5

Add 5 to each side

2+5 = 7x-5+5

7 = 7x

Divide each side by 7

7/7 = 7x/7

1 =x

Find an equation for the surface consisting of all points P in the three-dimensional space such that the distance from P to the point (0, 1, 0) is equal to the distance from P to the plane y

Answers

Answer:

x^2 +4y +z = 1

Step-by-step explanation:

Surface consisting of all points P to point (0,1,0) been equal to the plane y =1

given point, p (x,y,z ) the distance from P to the plane (y)

| y -1 |

attached is the remaining part of the solution

PLEASE HELP WILL GIVE BRAINLIEST AND THX Which ratios have a unit rate of 3? Choose all that apply. 15/2 cups: 2 1/2 cups 1 cup: 1/4 cups 2/3 cups: 1 cup 3 3/4 cups: 2 cups 2 cups: 2/3 cups 2 1/2 cups: 5/6 cups

Answers

Answer:

15/2 cups: 2 1/2 cups

2 cups: 2/3 cups

2 1/2 cups: 5/6 cups

Step-by-step explanation:

Take and divide each by the smaller number

15/2 cups: 2 1/2 cups

First put in improper fraction form

15/2 : 5/2

Divide each by 5/2

15/2 ÷ 5/2  : 5/2 ÷5/2

15/2 * 2/5  : 1

3 :1   yes

1 cup: 1/4 cups

Divide each by 1/4 ( which is the same as multiplying by 4)

1*4  : 1/4 *1

4 : 1    no

2/3 cups: 1 cup

Divide each by 2/3  ( which is the same as multiplying by 3/2)

2/3 * 3/2  : 1 * 3/2

1 : 3/2   no

3 3/4 cups: 2 cups

Change to improper fraction

( 4*3+3)/4  : 2

15/4    : 2

Divide each side by 2

15/8  : 2/2

15/8   : 1    no

2 cups: 2/3 cups

Divide each side by 2/3 ( which is the same as multiplying by 3/2)

2 * 3/2 : 2/3 *3/2

3  : 1   yes

2 1/2 cups: 5/6 cups

Change to an improper fraction

( 2*2+1)/2 : 5/6

5/2  : 5/6

Divide each side by 5/6( which is the same as multiplying by 6/5)

5/2 * 6/5  : 5/6 * 6/5

3  : 1   yes

The 15/2 cups: 2 1/2 cups, 2 cups: 2/3 cups, and 2 1/2 cups: 5/6 cups have a unit rate of 3

What is the ratio?

It is defined as the comparison between two quantities that how many times the one number acquires the other number. The ratio can be presented in the fraction form or the sign : between the numbers.

For checking: 15/2 cups: 2 1/2 cups

= (15/2)/(5/2)       [2(1/2) = 5/2]

= 3

For checking:  1 cup: 1/4 cups

= 1/(1/4)

= 4

For checking: 2/3 cups: 1 cup

=(2/3)/1

= 2/3

For checking: 3 3/4 cups: 2 cups

= (15/4)(2)

= 15/8

For checking: 2 cups: 2/3 cups

= (2)/(2/3)

= 3

For checking: 2 1/2 cups: 5/6 cups

= (5/2)/(5/6)

= 3

Thus, the 15/2 cups: 2 1/2 cups, 2 cups: 2/3 cups, and 2 1/2 cups: 5/6 cups have a unit rate of 3

Learn more about the ratio here:

brainly.com/question/13419413

#SPJ2

A company finds that the rate at which the quantity of a product that consumers demand changes with respect to price is given by the​ marginal-demand function Upper D prime (x )equals negative StartFraction 5000 Over x squared EndFraction where x is the price per​ unit, in dollars. Find the demand function if it is known that 1006 units of the product are demanded by consumers when the price is ​$5 per unit.

Answers

Answer:

q =  5000/x  + 6

Step-by-step explanation:

D´= dq/dx  =  - 5000/x²

dq = -( 5000/x²)*dx

Integrating on both sides of the equation we get:

q = -5000*∫ 1/x²) *dx

q = 5000/x + K   in this equation x is the price per unit and q demanded quantity and K integration constant

If when  1006 units are demanded when the rice is 5 then

x = 5     and   q = 1006

1006  =  5000/5 +K

1006 - 1000 = K

K = 6

Then the demand function is:

q =  5000/x  + 6

If x and y are two positive real numbers such that x 2 +4y 2 =17 and xy =2, then find the value of x- 2y. a. 3 b. 4 c. 8 d. 9

Answers

Answer: The value of x- 2y is a. [tex]\pm 3[/tex].

Step-by-step explanation:

Given:  x and y are two positive real numbers such that [tex]x^2+4y^2=17[/tex]   and [tex]xy= 2[/tex] .

Consider [tex](x-2y)^2=x^2-2(x)(2y)+(2y)^2\ \ \ [(a+b)^2=(a^2-2ab+b^2)][/tex]

[tex]=x^2-4xy+4y^2[/tex]

[tex]=x^2+4y^2-4(xy)[/tex]

Put  [tex]x^2+4y^2=17[/tex]   and [tex]xy= 2[/tex] , we get

[tex](x-2y)^2=17-4(2)=17-8=9[/tex]

[tex]\Rightarrow\ (x-2y)^2=9[/tex]

Taking square root on both sides , we get'

[tex]x-2y= \pm3[/tex]

Hence, the value of x- 2y is a. [tex]\pm 3[/tex].

What is the x-value of point A?

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

x = 5

▹ Step-by-Step Explanation

The x-axis and y-axis are labeled on the graph. The x-axis is the horizontal axis. Between 4 and 6, there is a missing number. That number should be 5, leaving us with an x-value of 5 for Point A.

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

Answer:

The x value is 5

Step-by-step explanation:

The x value is the value going across

Starting where the two axis meet, we go 5 units to the right

That is the x value

Let A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%. Lauren says that both events are independent because P(A) + P(B) = P(A and B) Shawn says that both events are not independent because P(A)P(B) ≠ P(A and B) Which statement is an accurate statement? Lauren is incorrect because the sum of the two events is not equal to the probability of both events occurring. Shawn is incorrect because the product of the two events is equal to the probability of both events occurring. Lauren is correct because two events are independent if the probability of both occurring is equal to the sum of the probabilities of the two events. Shawn is correct because two events are independent if the probability of both occurring is not equal to the product of the probabilities of the two events.

Answers

Answer:

Shawn is correct because two events are independent if the probability of both occurring is equal to the product of the probabilities of the two events.

Step-by-step explanation:

We are given that A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%.

Now, it is stated that the two events are independent only if the product of the probability of the happening of each event is equal to the probability of occurring of both events.

This means that the two events A and B are independent if;

P(A) [tex]\times[/tex] P(B) = P(A and B)

Here, P(A) = 0.58, P(B) = 0.36, and P(A and B) = 0.94

So, P(A) [tex]\times[/tex] P(B) [tex]\neq[/tex] P(A and B)

      0.58 [tex]\times[/tex] 0.36 [tex]\neq[/tex] 0.94

This shows that event a and event B are not independent.

So, the Shawn statement that both events are not independent because P(A)P(B) ≠ P(A and B) is correct.

Answer:

Shawn is correct

Step-by-step explanation:

A manufacturer knows that their items have a lengths that are skewed right, with a mean of 5.1 inches, and standard deviation of 1.1 inches. If 49 items are chosen at random, what is the probability that their mean length is greater than 4.8 inches? How do you answer this with the answer rounded 4 decimal places?

Answers

Answer:

0.9719

Step-by-step explanation:

Find the mean and standard deviation of the sampling distribution.

μ = 5.1

σ = 1.1 / √49 = 0.157

Find the z score.

z = (x − μ) / σ

z = (4.8 − 5.1) / 0.157

z = -1.909

Use a calculator to find the probability.

P(Z > -1.909)

= 1 − P(Z < -1.909)

= 1 − 0.0281

= 0.9719

The probability of the randomly used item mean length is greater than 4.8 inches is 0.9719

What is Probability?

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true.

What is Standard deviation?

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values.

What is Mean?

The arithmetic mean is found by adding the numbers and dividing the sum by the number of numbers in the list.

Given,

Mean = 5.1 inches

Standard deviation = 1.1 inches

Sample size = 49

New mean = 4.8

Z score = Difference in mean /(standard deviation / [tex]\sqrt{sample size}[/tex])

Z score = [tex]\frac{4.8-5.1}{1.1/\sqrt{49} }=-1.909[/tex]

Z score = -1.909

Then the probability

P(Z>-1.909)

=1-P(Z>-1.909)

=1-0.0281

=0.9719

Hence, The probability of the randomly used item mean length is greater than 4.8 inches is 0.9719

Learn more about Probability, Standard deviation and Mean here

https://brainly.com/question/14935665

#SPJ2

Choose the correct ray whose endpoint is B.

Answers

Answer:

The second option.

Step-by-step explanation:

The first option consists of a line that extends at both opposite sides to infinity, with no precise end.

The third option is a ray that has an endpoint of A, and extends to infinity towards B.

The fourth option is a line segment. It has two endpoints, B and A.

The second portion is a ray that has an endpoint B, and extends towards A in one direction, to infinity.

The answer is the 2nd option.

(x-2) is a factor of x^2-3x^2+kx+14. The value of k is?​

Answers

Answer:

k = 5

Step-by-step explanation:

I will assume that your polynomial is

x^2 - 3x^2 + kx + 14

If x - a is a factor of this polynomial, then a is a root.

Use synthetic division to divide (x - 2) into x^2 - 3x^2 + kx + 14:

 2      /      1     -3     k     14

                        2     -2    2k - 4

         -------------------------------------

               1        -1    (k - 2)   2k - 10

If 2 is a root (if x - 2 is a factor), then the remainder must be zero.

Setting 2k - 10 = to zero, we get k = 5.

The value of k is 5 and the polynomial is x^2 - 3x^2 + 5x + 14

What is the length of the arc on a circle with radius 16 inches intercepted by a 45° angle?

Answers

Find the circumference:

Circumference = 2 x PI x radius:

Circumference = 2 x 3.14 x 16 = 100.48 inches.

A full circle is 360 degrees, a 45 degree angle is 1/8 of a full circle.

Arc length = 100.48 / 8 = 12.56 inches.

The dance team is selling headbands to raise
money for dance team jackets. They need
to sell 1,260 headbands. The headbands must
be divided equally among the three coaches.
Each coach is in charge of 10 dancers. If all
the headbands must be sold, how many
headbands will each dancer on the team
need to sell?

Answers

Answer:

42  headbands per dancer

Step-by-step explanation:

Selling 1260 headband

Divide by the three coaches

1260/3

420 per coach

Divide by each dancer under a coach

420/10 = 42

Each dancer must sell 42 headbands

Use the following cell phone airport data speeds​ (Mbps) from a particular network. Find the percentile corresponding to the data speed 4.9 Mbps.

0.2 0.8 2.3 6.4 12.3 0.2 0.8 2.3 6.9 12.7 0.2 0.8 2.6 7.5 12.9 0.3 0.9 2.8 7.9 13.8
0.6 1.5 0.1 0.7 2.2 6.1 12.1 0.6 1.9 5.5 11.9 27.5 0.6 1.7 3.3 8.3 13.8 1.3 3.5 9.8
14.6 10.1 14.7 11.8 14.8

Answers

Answer:

Thus percentile lies between 53.3% and 55.6 %

Step-by-step explanation:

First we arrange the data in ascending order . Then find the number of the values corresponding to the given value. Then equate it with the number of observations and x and then multiply it to get the percentile. n= P/100 *N

where n is the ordinal rank of the given value

N is the number of values in ascending order.

The data in ascending order is

0.1 0.2 0.2 0.2 0.3 0.6 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.3

1.5 1.7 1.9 2.2 2.3 2.3 2.6 2.8 3.3 3.5 5.5 6.1 6.4 6.9 7.5 7.9 8.3 9.8 10.1 11.8 11.9 12.1 12.3 12.7 12.9 13.8 13.8 14.6 14.7 14.8 27.5

Number of observation = 45

4.9 lies between 3.3 and 5.5

x*n = 24 observation x*n = 25 observation

x*45= 24 x*45= 25

x= 0.533 x= 0.556

Thus percentile lies between 53.3% and 55.6 %

2⁶ × 2⁵ how do i simplify this?​

Answers

Answer:

2^11

Step-by-step explanation:

since the bases are the same, we can add the exponents

a^b * a^c = a^(b+c)

2^6 * 2^5

2^(6+5)

2^11

find the greatest common factor of 108d^2 and 216d

Answers

Answer:

Below

Step-by-step explanation:

If d is a positive number then the greatest common factor is 108d.

To get it isolate d and d^2 from the numbers.

108 divides 216. (216 = 2×108)

Then the greatest common factor of 216 and 108 is 108.

For d^2 and d we will follow the same strategy

d divides d^2 (d^2 = d*d)

Then the greatest common factor of them is d.

So the greatest common factor will be 108d if and only if d is positive. If not then 108 is the answer

Answer:

[tex]\boxed{108d}[/tex]

Step-by-step explanation:

Part 1: Find GCF of variables

The equation gives d ² and d as variables. The GCF rules for variables are:

The variables must have the same base.If one variable is raised to a power and the other is not, the GCF is the variable that does not have a power.If one variable is raised to a power and the other is raised to a power of lesser value, the GCF is the variable with the lesser value power.

The GCF for the variables is d.

Part 2: Find GCF of bases (Method #1)

The equation gives 108 and 216 as coefficients. To check for a GCF, use prime factorization trees to find common factors in between the values.

Key: If a number is in bold, it is marked this way because it cannot be divided further AND is a prime number!

Prime Factorization of 108

108 ⇒ 54 & 2

54 ⇒ 27 & 2

27 ⇒ 9 & 3

9 ⇒ 3 & 3

Therefore, the prime factorization of 108 is 2 * 2 * 3 * 3 * 3, or simplified as 2² * 3³.

Prime Factorization of 216

216 ⇒ 108 & 2

108 ⇒ 54 & 2

54 ⇒ 27 & 2

27 ⇒ 9 & 3

9 ⇒ 3 & 3

Therefore, the prime factorization of 216 is 2 * 2 * 2 * 3 * 3 * 3, or simplified as 2³ * 3³.

After completing the prime factorization trees, check for the common factors in between the two values.

The prime factorization of 216 is 2³ * 3³ and the prime factorization of 108 is 2² * 3³.  Follow the same rules for GCFs of variables listed above and declare that the common factor is the factor of 108.

Therefore, the greatest common factor (combining both the coefficient and the variable) is [tex]\boxed{108d}[/tex].

Part 3: Find GCF of bases (Method #2)

This is the quicker method of the two. Simply divide the two coefficients and see if the result is 2. If so, the lesser number is immediately the coefficient.

[tex]\frac{216}{108}=2[/tex]

Therefore, the coefficient of the GCF will be 108.

Then, follow the process described for variables to determine that the GCF of the variables is d.

Therefore, the GCF is [tex]\boxed{108d}[/tex].

Is -5/6 Real, Rational, Irrational, Integer, Whole, or real number?

Answers

Answer:

Rational

Step-by-step explanation:

Rational number consists of

Whole NumbersNatural NumbersIntegersNegative NumbersFractionsDecimals

-5/6 is a Fraction and we can also simply it to a Decimal.

Hope this helps ;) ❤❤❤

Other Questions
Combine the radicals. 224+554 A) 536 B) 56 C) 196 D) 936 Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n) What caused the Western Roman Empire to fall? There was no single cause, and no sudden fall. Romes decline took place over many years, and was the result of many factors. Write a short essay that briefly describes the factors that led to the decline and fall of the Western Roman Empire. Which is represented by the image? Two cards are drawn from a standard deck of cards.Part A: If they are drawn with replacement, what is the probability that both cards are 2s? Show your work. (1 point)Part B: If they are drawn without replacement, what is the probability that the first card is a club and the second card is a spade? Show your work (1 point)Part C: Which of the two scenarios in Part A or Part B represents dependent events? Explain your answer using complete sentences. Show your work. (2 points) According to Jung, the deepest, impersonal layer of the unconscious mind that is shared by all humans is called the What three things did you like about the book? Explain why? What was your favourite part and why? From the book mahashweta by sudha murty Help me Im stuck please The following data were taken from the financial statements of Gates Inc. for the current fiscal year. Property, plant, and equipment (net) $971,600 Liabilities: Current liabilities $140,000 Note payable, 6%, due in 15 years 694,000 Total liabilities $834,000 Stockholders' equity: Preferred $4 stock, $100 par (no change during year) $834,000 Common stock, $10 par (no change during year) 834,000 Retained earnings: Balance, beginning of year$890,000 Net income386,000 $1,276,000 Preferred dividends$33,360 Common dividends130,640 164,000 Balance, end of year 1,112,000 Total stockholders' equity $2,780,000 Sales $21,141,000 Interest expense $41,640 Assuming that total assets were $3,433,000 at the beginning of the current fiscal year, determine the following. When required, round to one decimal place. (48. PERSEVERE WhaPERSEVERE What is the greatest number of planes determined using any three ofthe points A, B, C, and D if no three points are collinear? What goal did the Western allies have in the Boxer Rebellion?O A. To conquer and occupy all of ChinaB. To prove to Japan that Europeans controlled AsiaC. To protect the ability of business to continue trade with ChinaO D. To depose the dowager empress and institute a democracy Please answer question now A balloon artist creates balloon hats for children at a stores grand opening. The graph shows the number of balloons the artist has remaining, y, after creating x hats.A coordinate plane showing Balloon Hat Creations. The x-axis shows Number of Balloon Hats and the y-axis shows Balloons Remaining. The straight line starts at (0. 500) and continues down and to the right through points, (50, 250) and ends at (100, 0).What phrases can be used to describe the line representing the relationship between the number of balloons remaining and the number of hats created? Select three options.positive slopenegative slopeconstant slopeincreasing functiondecreasing function Please help! Dad will murder me if I don't have this done by the time he gets home! 100 points for whoever solves this! I need all the steps A solid block is attached to a spring scale. When the block is suspended in air, the scale reads 21.2 N; when it is completely immersed in water, the scale reads 18. 2 N. What are the volume and density of the block? What is the solution to 7 p = -56? A. -49 B. -8 C. 8 D. 49 Identify the kind of logical fallacy found in the following sentence. I knew my blind date would be horrible when the cat coughed up a hairball in my shoe while I was getting ready. A. reversing causal direction B. slippery slope C. cherry picking D. post hoc/false cause A customer buys 1,000 shares of XYZ at $60 in a margin account, regular way settlement. Two days after the trade, XYZ has dropped to $40. The minimum maintenance margin requirement is: Two sources of light of wavelength 700 nm are 9 m away from a pinhole of diameter 1.2 mm. How far apart must the sources be for their diffraction patterns to be resolved by Rayleigh's criterion