Answer:
f(0) = 7
Step-by-step explanation:
f(x) = -3x + 7
Let x =0
f(0) = -3*0 + 7
f(0) = 7
BOND VALUATION Asiana Fashion's bonds have 10 years remaining to maturity. Interest is paid annually; they have a $1,000 par value; the coupon interest rate is 8% and thebyield to maturity is 9%.What is the bond's current market price?
Answer:
$935.76
Step-by-step explanation:
BOND VALUATION Asiana Fashion's bonds have 10 years remaining to maturity. Interest is paid annually; they have a $1,000 par value; the coupon interest rate is 8% and thebyield to maturity is 9%.What is the bond's current market price?
Step 1
We find the Present value factor of sum
The formula =
(1 + i)^n
Where
i = maturity rate = 9% = 0.09
n = number of years = 10 years
Present Value = ( 1 + 0.09)^-10
= 0.4224
Step 2
We find the present value factor of annuity
The formula is given as:
1 - (1+i)^-n / i
i = maturity rate = 9% = 0.09
n = number of years = 10 years
= 1 - (1 + 0.09)^-10 /0.09
= 1 - 0.4224 /0.09
= 0.5775 /0.09
= 6.417
Step 3
The bond's current market price is calculated as:
= PV factor of Sum × Par Value + PV factor of annuity × coupon payment
Coupon payment is calculated as:
= Coupon interest × par value
= 8% × 1000
= 80
Hence,
= 0.4224 × 1,000 + 6.417 × 80
= 422.4 + 513.36
= 935.76
In this exercise we have to use the knowledge of finance to calculate the corrective value of the market place, in this way we find that:
[tex]\$935.76[/tex]
We find the Present value factor of sum, by the formula of:
[tex](1 + i)^n[/tex]
Where:
i = maturity rate = 9% = 0.09 n = number of years = 10 years
Substituting the values in the formula as;
[tex]Present \ Value = ( 1 + 0.09)^{-10} = 0.4224[/tex]
We find the present value factor of annuity, by the formula as:
[tex]1 - (1+i)^{-n} / i[/tex]
Where:
i = maturity rate = 9% = 0.09 n = number of years = 10 years
Substituting the values in the formula as;
[tex]= 1 - (1 + 0.09)^{-10} /0.09\\= 1 - 0.4224 /0.09\\= 0.5775 /0.09\\= 6.417[/tex]
The bond's current market price is calculated as:
[tex]= PV \ factor\ of\ Sum * Par\ Value + PV\ factor\ of\ annuity * coupon\ payment[/tex]
Coupon payment is calculated as:
[tex]= Coupon\ interest * par\ value\\= 8\% * 1000= 80[/tex]
So continue the calcule;
[tex]= 0.4224 *1,000 + 6.417 * 80\\= 422.4 + 513.36\\= 935.76[/tex]
See more about market place at brainly.com/question/24518027
What is the probability that a randomly selected individual on this campus weighs more than 166 pounds? (express in decimal form and round final answer to 4 decimal places)
Answer:
hello attached is the missing part of your question and the answer of the question asked
answer : 0.2951
Step-by-step explanation:
Given data:
number of persons allowed in the elevator = 15
weight limit of elevator = 2500 pounds
average weight of individuals = 152 pounds
standard deviation = 26 pounds
probability that an individual selected weighs more than 166 pounds
std = 26 , number of persons(x) = 15, average weight of individuals(u) = 152 pounds
p( x > 166 ) = p( x-u / std, 166 - u/ std )
= p ( z > [tex]\frac{166-152}{26}[/tex] )
= 1 - p( z < 0.5385 )
p( x > 166 ) = 1 - 0.70488 = 0.2951
g If A and B are disjoint events, with P( A) = 0.20 and P( B) = 0.30. Then P( A and B) is: a. .00 b. .10 c. .50 d. 0.06
Answer: A) 0
P(A and B) = 0 when events A and B are disjoint, aka mutually exclusive.
We say that two events are mutually exclusive if they cannot happen at the same time. An example would be flipping a coin to have it land on heads and tails at the same time.
What is 2 cm converted to feet?
Answer:
0.065617 ft
Step-by-step explanation:
Answer:
0.0656168 feet.
Step-by-step explanation:
Can somebody please solve this problem for me!
Answer:
x = 200.674
Step-by-step explanation:
tan∅ = opposite/adjacent
Step 1: Find length of z
tan70° = 119/z
ztan70° = 119
z = 119/tan70°
z = 43.3125
Step 2: Find length z + x (denoted as y)
tan26° = 119/y
ytan26° = 119
y = 119/tan26°
y = 243.986
Step 3: Find x
y - z = x
243.986 - 43.3125 = x
x = 200.674
Gavin goes to the market and buys one rectangle shaped board. The length of the board is 16 cm and width of board is 10 cm. If he wants to add a 2 cm wooden border around the board, what will be the area of the rectangle board?
Answer:
The answer is 216
Step-by-step explanation:
if there is a 2 cm border, that means that the sides will both become 2 centimeters longer. so (16+2)*(10*2) = 18*12 = 216.
Nisha is looking out the window of her apartment building at a sculpture in a park across the street. The top of Nisha's window is 80 feet from the ground. The angle of depression from the top of Nisha's window to the bottom of the sculpture is 20°. How far away from the building is the sculpture? Round your answer to the nearest hundredth.
Answer:
219.80 feet
Step-by-step explanation:
Tan 20= 80/b
Tan 20= 0.363970234266
(0.363970234266)b=80
b= 219.80 feet
The distance between the sculpture and the bottom of the building is required.
The distance between the building and sculpture is 219.80 feet.
Trigonometry[tex]\theta[/tex] = Angle of depression = Angle of elevation = [tex]20^{\circ}[/tex]
p = Height of building = 80 feet
b = Required length
From the trigonometric ratios we have
[tex]\tan\theta=\dfrac{p}{b}\\\Rightarrow b=\dfrac{p}{\tan\theta}\\\Rightarrow b=\dfrac{80}{\tan 20}\\\Rightarrow b=219.80\ \text{feet}[/tex]
Learn more about trigonometry:
https://brainly.com/question/23899312
HCF of x minus 2 and X square + X - 6
Answer:
[tex] \boxed{ \sf{ \bold{ \huge{ \boxed{x - 2}}}}}[/tex]Step-by-step explanation:
[tex] \sf{x - 2} \: and \: { {x}^{2} + x - 6}[/tex]
To find the H.C.F of the algebraic expressions, they are to be factorised and a common factor or the product of common factors is obtained as their H.C.F
Let's solve
First expression = x - 2
Second expression = x + x - 6
Here, we have to find the two numbers which subtracts to 1 and multiplies to 6
= x + ( 3 - 2 ) x + 6
Distribute x through the parentheses
= x + 3x - 2x + 6
Factor out x from the expression
= x ( x + 3 ) - 2x + 6
Factor out -2 from the expression
= x ( x + 3 ) - 2 ( x + 3 )
Factor out x+3 from the expression
= ( x + 3 ) ( x - 2 )
Here, x - 2 is common in both expression.
Thus, H.C.F = x - 2
Hope I helped!
Best regards!!!
Answer:
x - 2
Step-by-step explanation:
by factorization method
1) x - 2
2) x^2 + x - 6
by splitting method
x^2 + 3x - 2x - 6
taking separate common from the first two terms and last two terms
x(x + 3) - 2(x + 3)
now writing x+3 once and the other term to get the right answer
(x + 3)(x - 2)
in both parts just see the similar term and write it as HCF
HCF= x - 2
and the second method by which you can get this answer is division method
A 160-lb man carries a 5-lb can of paint up a helical staircase that encircles a silo with radius 20 ft. If the silo is 90 ft high and the man makes exactly three complete revolutions, how much work is done by the man against gravity in climbing to the top
Weight of man and paint = 160 + 5 = 165 total pounds.
Gravitational force is independent of the path taken so we can ignore the radius of the silo.
Work done = total weight x height
The problem says he climbs to the top so overall height is 90 feet
Work = 165 lbs x 90 ft = 14,850 ft-lbs
how can i solve this factorial? A 6,2- P6- A 5,3 + P5
What is 28% of 58?
Hhhhhhh
Answer:
16.24
Step-by-step explanation:
of means multiply
28% * 58
Change to decimal form
.28 * 58
16.24
Answer:
[tex]\Large \boxed{\mathrm{16.24}}[/tex]
Step-by-step explanation:
[tex]28\% \times 58[/tex]
[tex]\displaystyle \sf Apply \ percentage \ rule : a\%=\frac{a}{100}[/tex]
[tex]\displaystyle \frac{28}{100} \times 58[/tex]
[tex]\sf Multiply.[/tex]
[tex]\displaystyle \frac{1624}{100} =16.24[/tex]
Question 2: Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
Answer:
?
Step-by-step explanation:
Answer:
33
Step-by-step explanation:
Let "x" be the number of nickels, of dimes, and of quarters.
The value of the nickels is 5x cents.
The value of the dimes is 10x cents
The value of the quarters is 25x cents.
Equation:
Value of nickels + Value of dimes + Value of quarters =1320 cents
5x + 10x + 25x = 1320
Sove for "x". Then you will know the number of each coin.
Enter an expression that is equivalent to (6x2−1)+(x2+3)−2(x2−5)−15x2, combining all like terms. Use the on-screen keyboard to type the correct polynomial in the box below.
Answer:
Its 10x^2+12
Step-by-step explanation:
Answer:
-10X^2+12
Step-by-step explanation:
find m<SPT in degrees
Answer: 60°
Step-by-step explanation:
∠UQR = 180°
∠UQR = ∠UQ + ∠QR
180° = 115° + ∠QR
65° = ∠QR
∠QRT = 180°
∠QRT = ∠QR + ∠RS + ∠ST
180° = 65° + ∠RS + 55°
180° = 120° + ∠RS
60° = ∠RS
Mark each of the following as true or false and explain how you know.
true false false true...is the quick answer
Remember that negatives are always less than positive numbers.
Rhombus J K L M is shown. The length of J K is 2 x + 4 and the length of J M is 3 x. What is the length of a side of rhombus JKLM? 4 units 8 units 12 units 16 units
Answer:
12 units
Step-by-step explanation:
Since all of the sides of a rhombus are congruent, JK = JM which means:
2x + 4 = 3x
-x = -4
x = 4 so 3x = 3 * 4 = 12
What is the measure of FEG?
A. 30 degrees
B. 40 degrees
C. 50 degrees
D. 70 degrees
Please include ALL work!! <3
Answer:
C. 50 degrees
Step-by-step explanation:
Because 6x + 5x = 110° and x = 10
5×10 = FEG 50°
Solve for x: x/25 > 5
Answer:
x>125
Step-by-step explanation:
Answer:
x > 125
Step-by-step explanation:
Multiply each side by 25, so it now looks like this: x > 125I hope this helps!
The data represents the daily rainfall (in inches) for one month. Construct a frequency distribution beginning with a lower class limit of and use a class width of . Does the frequency distribution appear to be roughly a normal distribution?
Answer:
The frequency distribution does not appear to be normal.
Step-by-step explanation:
The data provided is as follows:
S = {0.38 , 0 , 0.22 , 0.06 , 0 , 0 , 0.21 , 0 , 0.53 , 0.18 , 0 , 0 , 0.02 , 0 , 0 , 0.24 , 0 , 0 , 0.01 , 0 , 0 , 1.28 , 0.24 , 0 , 0.19 , 0.53 , 0 , 0, 0.24 , 0}
It is provided that the first lower class limit should be 0.00 and the class width should be 0.20.
The frequency distribution table is as follows:
Class Interval Count
0.00 - 0.19 21
0.20 - 0.39 6
0.40 - 0.59 2
0.60 - 0.79 0
0.80 - 0.99 0
1.00 - 1 . 19 0
1.20 - 1. 39 1
The frequency distribution does not appear to be normal. This is because the frequencies does not start and end at almost equivalent points and the mid-distribution does not consist of the highest frequency.
Thus, the frequency distribution does not appear to be normal.
Which expression is equal to (1+6i)−(7+3i) ?
Answer:
- 6+3iStep-by-step explanation:
[tex](1+6i)-(7+3i) ?\\Group\:the\:real\:part\:and\:the\:imaginary\\\:part\:of\:the\:complex\:number\\\left(a+bi\right)\pm \left(c+di\right)=\left(a\:\pm \:c\right)+\left(b\:\pm \:d\right)i\\=\left(1-7\right)+\left(6-3\right)i\\1-7=-6\\6-3=3\\=-6+3i[/tex]
Marine ecologists estimate the reproduction curve for swordfish in a fishing ground to be f(p) = −0.01p2 + 9p, where p and f(p) are in hundreds. Find the population that gives the maximum sustainable yield, and the size of the yield.
Answer:
The population that gives the maximum sustainable yield is 45000 swordfishes.
The maximum sustainable yield is 202500 swordfishes.
Step-by-step explanation:
Let be [tex]f(p) = -0.01\cdot p^{2}+9\cdot p[/tex], the maximum sustainable yield can be found by using first and second derivatives of the given function: (First and Second Derivative Tests)
First Derivative Test
[tex]f'(p) = -0.02\cdot p +9[/tex]
Let equalize the resulting expression to zero and solve afterwards:
[tex]-0.02\cdot p + 9 = 0[/tex]
[tex]p = 450[/tex]
Second Derivative Test
[tex]f''(p) = -0.02[/tex]
This means that result on previous part leads to an absolute maximum.
The population that gives the maximum sustainable yield is 45000 swordfishes.
The maximum sustainable yield is:
[tex]f(450) = -0.01\cdot (450)^{2}+9\cdot (450)[/tex]
[tex]f(450) =2025[/tex]
The maximum sustainable yield is 202500 swordfishes.
coefficient of 8x+7y
Answer:
8
Step-by-step explanation:
Identify the exponents on the variables in each term, and add them together to find the degree of each term.
8x→1
7y→1
The largest exponent is the degree of the polynomial.
1
The leading term in a polynomial is the term with the highest degree.
8x
The leading coefficient of a polynomial is the coefficient of the leading term.
____________________________________________________________
The leading term in a polynomial is the term with the highest degree.
8x
The leading coefficient in a polynomial is the coefficient of the leading term.
8
List the results.
Polynomial Degree: 1
Leading Term: 8x
Leading Coefficient: 8
Hope This Helps!!!
A group of fitness club members lose a combined total of 28 kilograms in 1 week. There are approximately 2.2 pounds in 1 kilogram. Assuming the weight loss happened at a constant rate, about how many pounds did the group lose each day?
Answer:
8.8 pounds
Step-by-step explanation:
Given the following :
Combined weight loss which occurred within a week = 28 kg
Number of days in a week = 7 days
1 kilogram (kg) = 2.2 pounds
Combined weight loss in pounds that occurs within a week:
Weight loss in kg × 2.2
28kg * 2.2 = 61.6 pounds
Assume weight loss occurred at a constant rate :
Weight lost by the group per day :
(Total weight loss / number of days in a week)
(61.6 pounds / 7)
= 8.8 pounds daily
Answer:
88
Step-by-step explanation:
Found the answer and I am doing the quiz rn lel
Scores on a college entrance examination are normally distributed with a mean of 500 and a standard deviation of 100. What percent of people who write this exam obtain scores between 350 and 650?
Answer:
The percentage is [tex]P(350 < X 650 ) = 86.6\%[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 500[/tex]
The standard deviation is [tex]\sigma = 100[/tex]
The percent of people who write this exam obtain scores between 350 and 650
[tex]P(350 < X 650 ) = P(\frac{ 350 - 500}{ 100} <\frac{ X - \mu }{ \sigma } < \frac{650 - 500}{ 100} )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of \ X )[/tex]
[tex]P(350 < X 650 ) = P(\frac{ 350 - 500}{ 100} <Z < \frac{650 - 500}{ 100} )[/tex]
[tex]P(350 < X 650 ) = P(-1.5<Z < 1.5 )[/tex]
[tex]P(350 < X 650 ) = P(Z < 1.5) - P(Z < -1.5)[/tex]
From the z-table [tex]P(Z < -1.5 ) = 0.066807[/tex]
and [tex]P(Z < 1.5 ) = 0.93319[/tex]
=> [tex]P(350 < X 650 ) = 0.93319 - 0.066807[/tex]
=> [tex]P(350 < X 650 ) = 0.866[/tex]
Therefore the percentage is [tex]P(350 < X 650 ) = 86.6\%[/tex]
What is the missing statement in step 10 of the proof?
Answer:
c/sin C = b/sin C
Step-by-step explanation:
Look at the statement in the previous step and the reason in this step.
c sin B = b sin C
Divide both sides by sin B sin C:
(c sin B)/(sin B sin C) = (b sin C)/(sin B sin C)
c/sin C = b/sin B
Need Assitance
*Show Work*
Answer:
66 2/3 %
Step-by-step explanation:
First find the students not in the 8th grade
24 - 8 = 16
16 students are not in the 8th grade
Take the fraction of the students not in the 8th grade over the total
16/24 = 2/3
Change to a decimal
.66666666666
Multiply by 100 to change to a percent
66.666666%
66 2/3 %
Answer:
66.67% of students are not in eighth grade
Step-by-step explanation:
8/24=1/3
1/3=0.33333333333
1-0.33333333333=0.66666666667
0.66666666667=66.67%
in the diagram, find the values of a and b.
Answer:
m∠a = 67° , m∠b = 42°Step-by-step explanation:
∠a is alternate interior angle to ∠ECD
∠b is alternate interior angle to ∠BCD
so:
If AB || CD then:
m∠a = m∠ECD = 25° + 42° = 67°
m∠b = 42°
The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.
Answer:
7/11 = 0.6363...
Step-by-step explanation:
7 + 4 = 11
probability of winning: 7/11 = 0.6363...
The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]
Given that the odds of the horse winning the race is 7:4
Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:
[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]
From the given question;
The probability of the horse winning the race is:
[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]
[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]
Learn more about probability here:
https://brainly.com/question/11234923?referrer=searchResults
A new fast-food firm predicts that the number of franchises for its products will grow at the rate dn dt = 6 t + 1 where t is the number of years, 0 ≤ t ≤ 15.
Answer:
The answer is "253"
Step-by-step explanation:
In the given- equation there is mistype error so, the correct equation and its solution can be defined as follows:
Given:
[tex]\bold{\frac{dn}{dt} = 6\sqrt{t+1}}\\[/tex]
[tex]\to dn= 6\sqrt{t+1} \ \ dt.....(a)\\\\[/tex]
integrate the above value:
[tex]\to \int dn= \int 6\sqrt{t+1} \ \ dt \\\\\to n= \frac{(6\sqrt{t+1} )^{\frac{3}{2}}}{\frac{3}{2}}+c\\\\\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}+c\\\\[/tex]
When the value of n=1 then t=0
[tex]\to 1= \frac{12(0+1)^{\frac{3}{2}}}{3}+c\\\\ \to 1= \frac{12(1)^{\frac{3}{2}}}{3}+c\\\\\to 1-\frac{12}{3}=c\\\\\to \frac{3-12}{3}=c\\\\\to \frac{-9}{3}=c\\\\\to c=-3\\[/tex]
so the value of n is:
[tex]\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}-3\\\\[/tex]
when we put the value t= 15 then,
[tex]\to n= \frac{(12\sqrt{15+1} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\sqrt{16} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\times 64)}{3}-3\\\\\to n= (4\times 64)-3\\\\\to n= 256-3\\\\\to n= 253[/tex]
PLEASE HELP ASAP Madelyn drove a race car in a race. She averaged 55 mph and began the race 0.5 hours ahead of the other drivers. The variable d represents Madelyn's distance driven, in miles. The variable t represents the number of hours since the other drivers began to race. Which equation can be used to determine the distance Madelyn drove t hours into the race? d=55t−0.5 d=55(t+0.5) d=55(t−0.5) d = 55t + 0.5
Answer:
d=55(t+0.5)
Step-by-step explanation:
d=55(t+0.5)
Answer:
27.5
Step-by-step explanation: