9514 1404 393
Answer:
(f -g)(x) = |2x +3| -12
Step-by-step explanation:
The difference of the functions is ...
(f -g)(x) = f(x) -g(x) = |2x +3| -5 -7
(f -g)(x) = |2x +3| -12
Which equation is correct?
cos x° = opposite ÷ hypotenuse
sin x° = hypotenuse ÷ opposite
cos x° = hypotenuse ÷ opposite
sin x° = opposite ÷ hypotenuse
Answer:
sin x° = opposite ÷ hypotenuse
Step-by-step explanation:
SOH - CAH - TOA
SOH: Sin(θ) = Opposite / Hypotenuse
CAH: Cos(θ) = Adjacent / Hypotenuse
TOA: Tan(θ) = Opposite / Adjacent
Answer:
last option
Step-by-step explanation:
Sin is opposite/negative
I need help with this ASAP!!!
Answer:
y=-4x-6
Step-by-step explanation:
It jwust is mwannn
A sum of money increased by its 0.05 in every 6 months after how long time the annual compound interest on Rs. 4000 will be Rs. 1324?
Answer:
3 x 2 = 6 years to get Rs. 1324
Step-by-step explanation:
This is a mathematical relationship that transcends currencies. In other words, it also applies to Dollars, Pounds and Yen.
“Annual compound interest” is a phrase of dubious meaning. The process is a “compound interest problem”, but the item I think you are looking for is simply the amount of interest.
Month 0: interest: 0 balance: 4,000
Month 6: interest; 200 balance: 4,200
Month 12: interest 210 balance: 4,410 12-month total interest: 410
Month 18: interest: 220.5 balance: 4,630.5 12-month total interest: 430.5
Month 24: interest: 231.525 balance: 4,862.025 12-month total interest: 452.025
Month 30: int: 243.10125 bal: 5,105.12625 12-month total int: 474.35125
Keep expanding this progression until the 12-month total interest meets or exceeds 1324, the answer will be the number of months in the last line.
PLEASE HURRY!!! What is the scale factor of this dilation?
Answer:
1/2
Step-by-step explanation:
the legs and hypotenuse of the red triangle are double than the blue triangle
Helen is constructing a room. She is preparing a scale drawing of her room as 1 cm = 2.5 feet. Find the actual dimensions with the given model dimensions of 8 cm×5 cm.
20 feet×12.5 feet
15 feet×5.5 feet
10 feet×8 feet
8 feet×6.5 feet
Answer: 20 ft × 12.5 ft
Step-by-step explanation:
Since 1 cm = 2.5 ft,
8 cm = 8 · 2.5 = 20 ft5 cm = 5 · 2.5 = 12.5 ftTherefore, 8 cm × 5 cm = 20 ft × 12.5 ft
Use the Distributive property to solve this equation
-2(x-4)+8=2
Answer:
x=7
Step-by-step explanation:
-2(x-4)+8=2(remove brackets by multiplying with -2)
-2x+8+8=2(group like terms and simply)
-2x=2-16(change side change sign)
-2x = -14(divide both sides by -2)
x=7
calculate the volume of a cone knowing that it has a radius of 6cm and a height of 18cm
Answer:
V≈678.58cm³
Step-by-step explanation:
V=πr^2h/3=π·6^2·18/3≈678.58401cm³
Hope this helps! :D
55ml to each container how much to 18 containers
Answer:
Step-by-step explanation:
770
Answer:
it's very simple!!• 1 container contains =55ml
• So 18 container contains
• 18ml multiply to 55 =
• 990 Answer.
Thank you.1/2 of 12=1/4 of?
1/3 of 90=2/3of?
Answer:
24 and 45
Step-by-step explanation:
Okay, now that I can answer this question with the right answers:
The easy way to do this is to first solve the left hand side of the equation.
1/2 of 12 is the same as 12/2 = 6.
So 6 = 1/4 * x
To solve for that unknown x, just multiply both sides by 4 to cancel out the fraction:
6*4 = 4* 1/4*x
24 = x
For the other equation, do the same thing:
1/3 * 90 = 90/3 = 30
30 = 2/3*x
30*3 = 3* 2/3 *x
90 = 2x
90/2 = 2x/2
45 = x
Simplify -3[5 - (-8 + 6)]
Answer: -21
[tex]-3[5 - (-8 + 6)]\\=-3[5 - (-2)]\\=-3[5+2]\\=-3(7)\\=-21[/tex]
Answer:
-21
Step-by-step explanation:
-3[5 - (-8 + 6)]
Inner parentheses first
-3[5 - (-2)]
Then remaining parentheses
-3[5 +2]
-3(7)
Multiply
-21
Help me please giving brainliest, look at photo
Answer:
3x-z+9
Step-by-step explanation:
last option 3x+z+9 .........
Find the area of a 10 cm sphere
.
help
Answer:
that's 4,188.8 if it's gonna be a 10cm sphere
Let the sides of the rectangle be x and y and let f and g represent the area (A) and perimeter (p), respectively. Find the following.
Answer:
the answer is
f=x×y
g=2(x+y)
Computers from a certain manufacturer have a mean lifetime of 62 months, with a standard deviation of 12 months. The distribution of lifetimes is not assumed to be symmetric. Between what two lifetimes does Chebyshev's Theorem guarantee that we will find at least approximately 75% of the computers
Answer:
Between 38 and 86 months.
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by [tex]100(1 - \frac{1}{k^{2}})[/tex].
In this question:
Mean of 62, standard deviation of 12.
Between what two lifetimes does Chebyshev's Theorem guarantee that we will find at least approximately 75% of the computers?
Within 2 standard deviations of the mean, so:
62 - 2*12 = 38
62 + 2*12 = 86
Between 38 and 86 months.
A system of vertices connected in pairs
by edges. Definition
a pair of fair dice is rolled anf the sum of the numbers is noted. determine the probability that one die resulted in a 3, given that the sum is 8. g
Answer:
0.4 = 40% probability that one die resulted in a 3.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
Outcomes for the dice:
For the pair of dice:
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
So 36 total outcomes.
In this question:
Event A: Sum of 8
Event B: One dice resulting in 3.
Probability of a sum of 8:
These are the following desired outcomes:
(2,6), (3,5), (4,4), (5,3), (6,2)
5 outcomes out of 36, so:
[tex]P(A) = \frac{5}{36}[/tex]
Probability of a sum of 8 and one dice resulting in 3.
(3,5) or (5,3), so 2 outcomes out of 36, and:
[tex]P(A \cap B) = \frac{2}{36}[/tex]
Probability that one die resulted in a 3, given that the sum is 8:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{2}{36}}{\frac{5}{36}} = \frac{2}{5} = 0.4[/tex]
0.4 = 40% probability that one die resulted in a 3.
Domain and range problem help please
Answer:
The domain is the number of copies made (N)
The range is the is the total cost of the books (C)
The domain we know that they made 200 copies, so the domain would be 0-200.
The range would be:
C=10(200)+700
C=200+700
C=900
Range would be 700-900
The claim that 40% of those persons who retired from an industrial job before the age of 60 would return to work if a suitable job was available is to be investigated at the 0.02 significance level. If 74 out of the 200 workers sampled said they would return to work, what is our decision
Answer:
The p-value of the test is of 0.1922 > 0.02, which means that there is not significant evidence to reject the null hypothesis, that is, there is not significant evidence to conclude that the proportion is of less than 40%.
Step-by-step explanation:
Test if the proportion is less than 40%:
At the null hypothesis, we test if the proportion is of at least 0.4, that is:
[tex]H_0: p \geq 0.4[/tex]
At the alternative hypothesis, we test if the proportion is of less than 0.4, that is:
[tex]H_1: p < 0.4[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.4 is tested at the null hypothesis:
This means that [tex]\mu = 0.4, \sigma = \sqrt{0.4*0.6}[/tex]
74 out of the 200 workers sampled said they would return to work
This means that [tex]n = 200, X = \frac{74}{200} = 0.37[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.37 - 0.4}{\frac{\sqrt{0.4*0.6}}{\sqrt{200}}}[/tex]
[tex]z = -0.87[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a sample proportion below 0.37, which is the p-value of z = -0.87.
Looking at the z-table, z = -0.87 has a p-value of 0.1922.
The p-value of the test is of 0.1922 > 0.02, which means that there is not significant evidence to reject the null hypothesis, that is, there is not significant evidence to conclude that the proportion is of less than 40%.
Find the value of x.
A. 10
B. 6
C. 14
D. 8
9514 1404 393
Answer:
B. 6
Step-by-step explanation:
The products of the lengths of the parts of the chord are the same.
7×12 = 14x
7(12)/14 = x = 6 . . . . . divide by 14
Answer:
Option (B)
Step-by-step explanation:
If two chords are intersecting each other at a point insides a circle,
"Product of the measures of the line segments on each chord are equal"
By this property,
MH × HY = TH × HN
By substituting the measures of each segment,
7 × 12 = 14 × ([tex]x[/tex])
[tex]x=\frac{84}{14}[/tex]
[tex]x=6[/tex]
Therefore, Option (B) will be the correct option.
Graphing an integer problem help please
Answer:
Step-by-step explanation:
Given function is,
h(x) = 1 - 2x
Domain of the function = {-3, -2, 1, 5}
For range of the function,
Substitute the values of 'x' in the function,
h(-3) = 1 - 2(-3)
= 7
h(-2) = 1 - 2(-2)
= 5
h(1) = 1 - 2(1)
= -1
h(5) = 1 - 2(5)
= -9
Therefore, set of range for the function will be {7, 5, -1, -9}
Now plot the ordered pairs,
(-3, 7), (-2, 5), (1, -1), (5, -9)
There are two boxes containing red and blue balls. For box A, there are 3red balls and 7blue balls. For box B, there are 6red balls and 4blue balls. Now randomly pick up one ball from the two boxes, and the selected ball is red. What is the probability that this red ball is from box A
Answer:
0.3333 = 33.33% probability that this red ball is from box A.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Red ball
Event B: From box A.
Probability of a red ball:
3/10 = 0.3 of 1/2 = 0.5(box A)
6/10 = 0.6 of 1/2 = 0.5(box B). So
[tex]P(A) = 0.3*0.5 + 0.6*0.5 = 0.45[/tex]
Probability of a red ball from box A:
0.3 of 0.5, so:
[tex]P(A \cap B) = 0.3*0.5 = 0.15[/tex]
What is the probability that this red ball is from box A?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.15}{0.45} = 0.3333[/tex]
0.3333 = 33.33% probability that this red ball is from box A.
can you please answer this????
Answer:
x = 5
Step-by-step explanation:
I'm taking all bases as b so not typing it
2/3 log 125 = log (125^2/3) = log 25
1/2 log 9 = log (9^1/2) = log 3
So we can rewrite the equation as,
log x = log 25 + log 3 - log 15
or, log x = log (25×3) - log 15
or, log x = log 75 - log 15
or, log x = log (75/15)
or, log x = log 5
or, x = 5
Answered by GAUTHMATH
Use the unit circle to find tan 60°.
a. square root 3/3
c. 2 square root 3/3
b. square root 3/2
d. square root 3
Please select the best answer from the choices provided
A
B
C
D
the answer is d ( square root 3 )
tan = oposite / adjacent
tan 60° = √3 / 1
= √3
The graph of a quadratic function has x-intercepts of -7and -1 ,and passes through the point (-4,36). determine the equation of the quadratic function in the form f(x)=a(x-m)(x-n)
Answer:
[tex]f(x) = -4(x+7)(x+1)[/tex]
Step-by-step explanation:
Quadratic equation:
A quadratic equation, with roots(x-intercepts) at [tex]x_1[/tex] and [tex]x_2[/tex], and leading coefficient a, is given by:
[tex]f(x) = a(x - x_1)(x - x_2)[/tex]
Has x-intercepts of -7 and -1
So [tex]x_1 = -7, x_2 = -1[/tex]. Thus
[tex]f(x) = a(x - (-7))(x - (-1)) = a(x+7)(x+1)[/tex]
Passes through the point (-4,36).
This means that when [tex]x = -4, y = 36[/tex], and we use this to find the leading coefficient.
[tex]36 = a(-4+7)(-4+1)[/tex]
[tex]a(3)(-3) = 36[/tex]
[tex]-9a = 36[/tex]
[tex]a = -\frac{36}{9}[/tex]
[tex]a = -4[/tex]
So
[tex]f(x) = -4(x+7)(x+1)[/tex]
Given the number 2376.458 rounded to the following place values: 1) Rounded to the nearest hundred, 2) Rounded to the nearest whole unit, 3) Rounded to the nearest hundredth,
Answer:
1)2400
is the result of rounding 2376.458 to the nearest 100.
2) 2376
is the result of rounding 2376.458 to the nearest integer.
3)2376.46
is the result of rounding 2376.458 to the nearest 0.01
I hope this is right and it helps !!!!!!!!!!!!!!!!
Answer:
1(2400)
2(2376)
3(2376.46)
Step-by-step explanation:
it's just your fraction skills
Help on #9 thank you
Identify the first 4 terms in the arithmetic sequence given by the explicit formula ƒ(n) = 8 + 3(n – 1).
Answer:
Step-by-step explanation:
f(n) = 8 + 3(n) - 3
f(n) = 5 + 3n
f(1) = 5 + 3(1)
f(1) = 8
f(2) = 5 + 3(2)
f(2) = 5 + 6
f(2) = 11
f(3) = 5 + 3*3
f(3) = 14
f(4) = 5 + 3*4
f(4) = 17
Use implicit differentiation to solve that the derivative
Given
e ˣʸ = sec(x ²)
take the derivative of both sides:
d/dx [e ˣʸ] = d/dx [sec(x ²)]
Use the chain rule:
e ˣʸ d/dx [xy] = sec(x ²) tan(x ²) d/dx [x ²]
Use the product rule on the left, and the power rule on the right:
e ˣʸ (x dy/dx + y) = sec(x ²) tan(x ²) (2x)
Solve for dy/dx :
e ˣʸ (x dy/dx + y) = 2x sec(x ²) tan(x ²)
x dy/dx + y = 2x e ⁻ˣʸ sec(x ²) tan(x ²)
x dy/dx = 2x e ⁻ˣʸ sec(x ²) tan(x ²) - y
dy/dx = 2e ⁻ˣʸ sec(x ²) tan(x ²) - y/x
Since e ˣʸ = sec(x ²), we simplify further to get
dy/dx = 2 tan(x ²) - y/x
please help me with this its really needed
Answer:
f(x) = log x - 1 --> (10, 0)
f(x) = -(log x - 2) --> (100, 0)
f(x) = log(- x - 2) --> (-3, 0)
f(x) = -log-(x-1) --> (0, 0)
Step-by-step explanation:
An x-intercept is the position where the value of y(in this case f(x)) is 0.
Let's start with the first equation:
f(x) = log x - 1
If f(x) is 0, we would get this equation:
0 = log x - 1
Now, we solve for x:
1 = log x
x = 10
This means the x-intercept is (10, 0).
f(x) = -(log x - 2)
Again, we can set f(x) to 0, and solve for x:
0 = -(log x - 2)
0 = log x - 2
2 = log x
x = 100
This means the x-intercept is (100, 0)
Same process applies for the third:
f(x) = log(- x - 2)
0 = log(- x - 2)
1 = -x - 2
3 = -x
x = -3
(-3, 0)
f(x) = -log-(x-1)
0 = -log-(x-1)
0 = log-(x-1)
1 = -(x-1)
1 = -x + 1
0 = -x
x = 0
(0, 0)
145+ (-15) + (-188) =
O 56
0 -58
O 358
O 58
Q) 145+ (-15) + (-188) = ?
→ 145+ (-15) + (-188)
→ {145 - 15} - 188
→ 130 - 188
→ -58 is the solution.