Frank and Gregory leave Centreville traveling in opposite directions on a straight road. Gregory drives 22 miles per hour faster than Frank. After 2.25 hours, they are 216 miles apart. Find Frank's speed and Gregory's speed.

Answers

Answer 1

Answer:

Frank speed = 37mi/hGregory speed = 59mi/hr

Step-by-step explanation:

Let the speed of Frank be x and speed of Gregory be y. If Gregory drives 22 miles per hour faster than Frank, then y = 22+x. SInce they they are 216miles apart after 2.25 hours,

Speed = Distance/Time

Total time travelled by them = 2.25hours

Total distance = 216 hours

Total speed = x+y = x+22+x

Substituting this parameters into the formula given to get x we will have;

x+22+x = 216/2.25

2x+22 = 96

2x = 96-22

2x = 74

x = 74/2

x = 37

Hence the speed of Frank is 37miles per hour while that of gregory is 37+22 = 59miles/hour


Related Questions

The Centers for Disease Control and Prevention (CDC) report that gastroenteritis, or stomach flu, is the most frequently reported type of recreational water illness. Gastroenteritis is a viral or bacterial infection that spreads through contaminated food and water. Suppose that inspectors wish to determine if the proportion of public swimming pools nationwide that fail to meet disinfectant standards is different from 10.7%, which was the proportion of pools that failed the last time a comprehensive study was done, 2008.

A simple random sample of 30 public swimming pools was obtained nationwide. Tests conducted on these pools revealed that 26 of the 30 pools had the required pool disinfectant levels.

Does this sample meet the requirements for conducting a one-sample z ‑test for a proportion?

a. No, the requirements are not met because the population standard deviation is not known.
b. No, the requirements are not met because the sample has fewer than 10 failures, which violates the condition for approximating a normal distribution.
c. No, the requirements are not met because the sample is not random, even though the number of successes and the number of failures are both at least 10, ensuring that the distribution is approximately normal.
d. Yes, the requirements are met because the sample size is more than 30, ensuring that the distribution is approximately normal.
e. Yes, the requirements are met because the number of successes and the number of failures of this random sample are both at least 10, ensuring that the distribution is approximately normal.

Answers

b. No, the requirements are not met because the sample has fewer than 10 failures, which violates the condition for approximating a normal distribution.

Step-by-step explanation:

from the question,  the number of successes is equal to 30

and it is more than the number of failures

for us to conduct this test such as the z test the data we are using should be a random sample from the population that we are interested in. the population should be at least as big as the sample by 10 times. first of all We need to check if the mean of the sample is normally distributed.

if 26 are successes out of a sample of 30, then failures would be 4. therefore option b is correct.

Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)

Answers

Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:

[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]

[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]

For angle θ:

If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];

Calculating:

a) (4,2,-4)

[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6

[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]

[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]

For θ, choose 1st option:

[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]

[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]

b) (0,8,15)

[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17

[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]

[tex]\theta = tan^{-1}\frac{y}{x}[/tex]

The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]

c) (√2,1,1)

[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2

[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]

[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]

[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]

d) (−2√3,−2,3)

[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5

[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]

Since x < 0, use 2nd option:

[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]

[tex]\theta = \pi + \frac{\pi}{6}[/tex]

[tex]\theta = \frac{7\pi}{6}[/tex]

Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:

[tex]r=\sqrt{x^{2}+y^{2}}[/tex]

Angle θ is the same as spherical coordinate;

z = z

Calculating:

a) (4,2,-4)

[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]

[tex]\theta = tan^{-1}\frac{1}{2}[/tex]

z = -4

b) (0, 8, 15)

[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8

[tex]\theta = \frac{\pi}{2}[/tex]

z = 15

c) (√2,1,1)

[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]

[tex]\theta = \frac{\pi}{3}[/tex]

z = 1

d) (−2√3,−2,3)

[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4

[tex]\theta = \frac{7\pi}{6}[/tex]

z = 3

Find x. A. 44√3 B. 33 C. 33√2 D. 11√3

Answers

Answer:

B

Step-by-step explanation:

Sin 45 = y/(11√6)

1/√2 = y/(11√6)

y= (11√6)/√2

y= 11√3

tan 60 = x/y

√3 = x/y

x = y√3

= (11√3)√3

= 11(3)

= 33

The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0

Answers

Answer:

Step-by-step explanation:

A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).

X = 100pth percentile of W

Y = 100(1-p)th percentile of W

Expressing Y as a function of X;

Y = 100(1-p)th = 100th - 100pth

Recall that 100pth is same as X, so substitute;

Y = 100th - X

where 100th = hundredth percentile of W and X = 100pth percentile of W  

In Triangle A B C, what is the value of x? Triangle A B C. Angle A is (10 x minus 10) degrees, angle B is (8 x) degrees, angle C is (10 x + 8) degrees.

Answers

Answer:

6.5

Step-by-step explanation:

The sum of all angles in a triangle are 180 degrees.

=> 10x -10 + 8x + 10x + 8 = 180

=> 28x -2 = 180

=> 28x = 182

=> x = 6.5

So, Angle A = 10 x 6.5 -10 = 65 - 10 = 55 degrees

     Angle B = 8 x 6.5 = 52 degrees

     Angle C = 10 x 6.5 + 8 = 65 + 8 = 73 degrees.

55 + 52 + 73 = 55 + 125 = 180 degrees

Do phone surveys provide adequate coverage of households with respect to one particular parameter? The parameter is the proportion of households without children. If telephone surveys provide adequate coverage of households, then p , the proportion of households without children in the set of all future samples reached by phone, must be equal to the proportion of households without children in the population of all households. Suppose that Thomas, a market analyst, contacts a simple random sample of 300 households as part of a national telephone survey. Of the households contacted, 129 households, or 43 %, have no children and 57 % have at least one child. The most recent census indicates that 48 % of all households have no children and 52 % have at least one child.

Answers

Complete  Question

The complete question is shown on the first uploaded image

Answer:

Based on the result of his test , Thomas should fail to reject null hypothesis at a significance level of  0.01. Thomas sufficient evidence  to conclude that  the proportion of  households without children in the set of all future samples reached by phone is not equal to the proportion of households without children in the population of all households.

Step-by-step explanation:

From the question we see that the p-value is greater than the level of significance (0.01 )so we fail to reject the null hypothesis.

This means that Thomas has  sufficient evidence to conclude that the proportion of households without children in the set of all future samples reached by phone is not equal to the proportion of households without children in the population of all households.

Match the ones on the left to the right

Answers

Answer/Step-by-step explanation:

[tex] (4 + 5) + 2 = 4 + (5 + 2) [/tex] => any combination of numbers were formed or grouped when adding. The associative property of addition was applied.

[tex] 2(2x + 4) = 4x + 8 [/tex] => the sum of two terms (addend) are multiplied by by a number separately (I.e., a(b + c) = a(b) + a(c) = ab + ac). The property applied is distributive property.

[tex] (7x * x) * 3 = 7 * (x * 3) [/tex] => the numbers were grouped in any combination to arrive at same result when multiplying. Associative property of multiplication was applied.

[tex] (8 * x * 2) = (x * 8 * 2) [/tex] => the numbers where ordered in any manner to arrive at same result when multiplying. Cummutative property of multiplication was applied.

[tex] (7 + 3) + 1 = (1 + (7 + 3) [/tex] => the order in which the nnumbers in the were arranged doesn't matter, as same result is arrive at. This is Cummutative property of addition.

find the dimension of the swimming pool if the sum must be 50 feet and the length must be 3 times the depth.

Answers

Answer:

depth 5 8.3 ft, length 5 24.9 ft, width 5 16.8 ft

Help please!!!!!!!!!!!!

Answers

Answers:K ' = (-9, 5)L ' = (-5, 7)M ' = (-3, 5)N ' = (-5, 3)

==================================================

Explanation:

When we reflect any point (x,y) over the line y = x, the x and y coordinates swap. So for instance, we have K = (5, -9) turn into K ' = (-9, 5).

Consider a point like (1,2). We can move it down 1 unit to have it land on the line y = x, then we can move it one unit to the right to move it to (2,1). These two translations effectively move the original point to its reflected location. The distance from (1,2) to y = x, is the same as the distance from (2,1) to y = x. Furthermore, the line connecting (1,2) to (2,1) is perpendicular to y = x.

Uhhhhhhhhhhhhhhhhhhhh

7 less than the quotient of a number and 3 is 5. Find the number.

Answers

Answer:

The answer is 36

Step-by-step explanation:

Let the number be x

7 less than the quotient of a number and 3 is written as

[tex] \frac{x}{3} - 7[/tex]

The result is 5

So we have

[tex] \frac{x}{3} - 7 = 5[/tex]

Move - 7 to the right side of the equation

That's

[tex] \frac{x}{3} = 7 + 5[/tex][tex] \frac{x}{3} = 12[/tex]

Multiply both sides by 3 to make x stand alone

We have

[tex]3 \times \frac{x}{3} = 12 \times 3[/tex]

We have the final answer as

x = 36

Hope this helps you

How many solutions does 2−9x=−6x+5−3x have?

Answers

Answer:

There are no values of  x  that make the equation true.

No solution

Step-by-step

hope it help

Hi

2-9x = -6x+5-3x

-9x+6x+3x = 5-2

  0x = 3

as  0 ≠ 3 , there is no answer possible to your equation.

WILL MARK BRAINIEST!!! Segment AC has two endpoints; (-2,5) and (2,-5). What are the coordinates of point B on segment AC such that the ratio of AB to BC is 5:1? Any help would be appreciated; first correct answer get brainiest and a 5 star review!

Answers

Answer:

[tex](\frac{4}{3},-\frac{10}{3})[/tex]

Step-by-step explanation:

If the extreme ends of a line segment AC are A[tex](x_1,y_1)[/tex] and C[tex](x_2,y_2)[/tex].

If a point B(x, y) divides the segment in the ratio of m : n

Then the coordinates of the point B are,

x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]

y = [tex]\frac{my_2+ny_1}{m+n}[/tex]

If the ends of AC are A(-2, 5) and C(2, -5) and a point B divides it in the ratio of m : n = 5 : 1

Therefore, coordinates of this point will be,

x = [tex]\frac{5\times (2)+1(-2)}{5+1}[/tex]

  = [tex]\frac{10-2}{5+1}[/tex]

  = [tex]\frac{8}{6}[/tex]

  = [tex]\frac{4}{3}[/tex]

y = [tex]\frac{5\times (-5)+1(5)}{5+1}[/tex]

  = [tex]\frac{-25+5}{6}[/tex]

  = [tex]-\frac{20}{6}[/tex]

  = [tex]-\frac{10}{3}[/tex]

Therefore, coordinates of the point B are [tex](\frac{4}{3},-\frac{10}{3})[/tex].

Money is invested into an account earning 4.25% interest compounded annually. If the accumulated value after 18 years
will be $25,000, approximately how much money is presently in the account?
a $5,875
b. $11,820
c. $19,125
d. $23,960

Answers

Answer:

  b.  $11,820

Step-by-step explanation:

The 'rule of 72' tells you the doubling time of this account is about ...

  (72 years)/(4.25) = 16.9 years

So, in 18 years, the amount will be slightly more than double the present value. That is, the present value is slightly less than half the future amount.

  $25,000/2 = $12,500

The closest answer choice is ...

  $11,820

__

The present value of that future amount is ...

  PV = FV×(1 +r)^-t = $25,000×1.0425^-18 ≈ $11,818.73

The present value is about $11,820.

Answer:

B

Step-by-step explanation:

the difference of two complementary angles is 17 degrees. find the measures of the angles

Answers

Answer:

The angle measures are 53.5° and 36.5°.

Step-by-step explanation:

We can create a systems of equations, assuming x and y are the angle measures.

Since the two angles are complementary, their angle measures will add up to 90.

x + y = 90

x - y = 17

We can now use the process of elimination, and end up with:

2x = 107

Dividing both sides by two gets us

x = 53.5

Substituting this value into an equation will get us y

53.5 + y = 90

y = 36.5

Hope this helped!

A baking scale measures mass to the tenth of a gram, up to 650 grams. Which of the following measurements is possible using this scale? a.3.8 grams b.120.01 grams c.800.0 grams d.54 milligrams

Answers

Answer:

Step-by-step explanation:

The answer is b

120.01 grams

Recall the formula V = four-thirds pi r cubed.

Answers

Answer:

1308.33

Step-by-step explanation:

In the pic

Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Playing the game of​ roulette, where the wheel consists of slots numbered​ 00, 0,​ 1, 2,​ ..., To play the​ game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots.a. The sample space is (00, 0}. b. The sample space is (00, 0, 1,2,., 33). c. The sample space is (00). d. The sample space is (1, 2,..., 33).

Answers

Answer:

The correct option is (B).

Step-by-step explanation:

It is provided that, in a game of roulette the  wheel consists of slots numbered​ 00, 0,​ 1, 2,​ ..., 33.

The sample space of an experiment, is the set of all the possible outcomes of the random trials.

There are a total of 35 slots on the roulette wheel where the ball can land.

So, there are a total of 35 outcomes for one rotation of the wheel.

Then the sample space consists of all the 35 outcomes, i.e.

S = {00, 0, 1, 2, 3, ..., 33}

Thus, the correct option is (B).

Ashton needs to rent a car while on vacation. The rental company charges $19.95, plus 18 cents for each mile driven. If Ashton only has $50 to spend on the car rental, what is the maximum number of miles she can drive?

Answers

Answer:

166.9 miles or 166 miles

Step-by-step explanation:

We can form an equation like this:

19.95 + .18x = 50

In this equation, "x" is the number of miles.

=> 19.95 - 19.95 +.18x = 50 -19.95

=> .18x = 30.05

=> .18x/.18 = 30.05/.18

=> x = 166.9

Ashton can drive 166.9 miles.

**Note: We cannot round the answer to 167, as she would not have enough money to drive the extra 0.1 mile.

Find the Correlation of the following two variables X: 2, 3, 5, 6 Y: 1, 2, 4, 5

Answers

Answer:

The correlation of X and Y is 1.006

Step-by-step explanation:

Given

X: 2, 3, 5, 6

Y: 1, 2, 4, 5

n = 4

Required

Determine the correlation of x and y

Start by calculating the mean of x and y

For x

[tex]M_x = \frac{\sum x}{n}[/tex]

[tex]M_x = \frac{2 + 3+5+6}{4}[/tex]

[tex]M_x = \frac{16}{4}[/tex]

[tex]M_x = 4[/tex]

For y

[tex]M_y = \frac{\sum y}{n}[/tex]

[tex]M_y = \frac{1+2+4+5}{4}[/tex]

[tex]M_y = \frac{12}{4}[/tex]

[tex]M_y = 3[/tex]

Next, we determine the standard deviation of both

[tex]S = \sqrt{\frac{\sum (x - Mean)^2}{n - 1}}[/tex]

For x

[tex]S_x = \sqrt{\frac{\sum (x_i - Mx)^2}{n -1}}[/tex]

[tex]S_x = \sqrt{\frac{(2-4)^2 + (3-4)^2 + (5-4)^2 + (6-4)^2}{4 - 1}}[/tex]

[tex]S_x = \sqrt{\frac{-2^2 + (-1^2) + 1^2 + 2^2}{3}}[/tex]

[tex]S_x = \sqrt{\frac{4 + 1 + 1 + 4}{3}}[/tex]

[tex]S_x = \sqrt{\frac{10}{3}}[/tex]

[tex]S_x = \sqrt{3.33}[/tex]

[tex]S_x = 1.82[/tex]

For y

[tex]S_y = \sqrt{\frac{\sum (y_i - My)^2}{n - 1}}[/tex]

[tex]S_y = \sqrt{\frac{(1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2}{4 - 1}}[/tex]

[tex]S_y = \sqrt{\frac{-2^2 + (-1^2) + 1^2 + 2^2}{3}}[/tex]

[tex]S_y = \sqrt{\frac{4 + 1 + 1 + 4}{3}}[/tex]

[tex]S_y = \sqrt{\frac{10}{3}}[/tex]

[tex]S_y = \sqrt{3.33}[/tex]

[tex]S_y = 1.82[/tex]

Find the N pairs as [tex](x-M_x)*(y-M_y)[/tex]

[tex](2 - 4)(1 - 3) = (-2)(-2) = 4[/tex]

[tex](3 - 4)(2 - 3) = (-1)(-1) = 1[/tex]

[tex](5 - 4)(4 - 3) = (1)(1) = 1[/tex]

[tex](6-4)(5-3) = (2)(2) = 4[/tex]

Add up these results;

[tex]N = 4 + 1 + 1 + 4[/tex]

[tex]N = 10[/tex]

Next; Evaluate the following

[tex]\frac{N}{S_x * S_y} * \frac{1}{n-1}[/tex]

[tex]\frac{10}{1.82* 1.82} * \frac{1}{4-1}[/tex]

[tex]\frac{10}{3.3124} * \frac{1}{3}[/tex]

[tex]\frac{10}{9.9372}[/tex]

[tex]1.006[/tex]

Hence, The correlation of X and Y is 1.006

According to the South Dakota Department of Health, the number of hours of TV viewing per week is higher among adult women than adult men. A recent study showed women spent an average of 34 hours per week watching TV, and men, 29 hours per week. Assume that the distribution of hours watched follows the normal distribution for both groups, and that the standard deviation among the women is 4.5 hours and is 5.1 hours for the men.a. What percent of the women watch TV less than 40 hours per week? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)b. What percent of the men watch TV more than 25 hours per week? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)c. How many hours of TV do the one percent of women who watch the most TV per week watch? Find the comparable value for the men. (Round your answers to 3 decimal places.)

Answers

Answer:

a) P(x<40) = 0.90824

Therefore, the percent of the women watch TV less than 40 hours per week is 0.90824 × 100 = 90.8240%

b)P(x>25) = 1 - P(z = -0.78) = 0.7823

Therefore, percent of the men watch TV more than 25 hours per week?is 0.7823 × 100 = 78.230%

c)The number of hours that the one percent of WOMEN who watch the most TV per week watch is for 44.485hours

While, for the MEN, the number of hours that the one percent of men who watch the most TV per week watch is for 40.883 hours

Step-by-step explanation:

To solve this question, we would be using z score formula:

z = (x-μ)/σ,

where x is the raw score

μ is the population mean

σ is the population standard deviation.

a. What percent of the women watch TV less than 40 hours per week? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)

z = (x-μ)/σ,

where x is the raw score = 40 hours

μ is the population mean = 34 hours

σ is the population standard deviation = 4.5

z = (40 - 34)/4.5

z = 1.33333

Approximately to 2 decimal places = z score = 1.33

Using the normal distribution z score table

Probabilty value from Z-Table:

P(z = 1.33) = P(x<40) = 0.90824

Therefore, the percent of the women watch TV less than 40 hours per week is 0.90824 × 100 = 90.8240%

b. What percent of the men watch TV more than 25 hours per week? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)

z = (x-μ)/σ,

where x is the raw score = 25 hours

μ is the population mean = 29 hours

σ is the population standard deviation = 5.1

z = (25 - 29)/5.1

z = -0.78431

Approximately to 2 decimal places

z score = -0.78

Using the z score normal distribution table:

Probability value from Z-Table:

P(z = -0.78) = P(x<Z) = 0.2177

P(x>25) = 1 - P(z = -0.78) = 0.7823

Therefore, percent of the men watch TV more than 25 hours per week?is 0.7823 × 100 = 78.230%

c. How many hours of TV do the one percent of women who watch the most TV per week watch? Find the comparable value for the men. (Round your answers to 3 decimal places.)

First, we find what the z score is.

We were asked in the question to find how many hours 1% of the women watch TV the most.

We have to find the confidence interval

100 - 1% = 99%

The z score for the confidence interval of 99% or 0.99(in decimal form) = 2.33

z score = 2.33

Since we know the z score now, we proceed to find x = raw score.

z = (x-μ)/σ,

where x is the raw score = unknown

μ is the population mean = 34 hours

σ is the population standard deviation = 4.5

2.33= (x - 34)/4.5

Cross Multiply

2.33 × 4.5 = x - 34

10.485 = x - 34

x = 10.485 + 34

x = 44.485 hours.

Therefore, the number of hours that the one percent of women who watch the most TV per week watch is for 44.485hours

In the question, we were also asked to find the comparable value for men.

Hence, for one percent of the men.

We determine what the z score is.

We were asked in the question to find how many hours 1% of the men watch TV the most.

We have to find the confidence interval

100 - 1% = 99%

The z score for the confidence interval of 99% or 0.99(in decimal form) = 2.33

We already have our z score as 2.33

z = (x-μ)/σ,

where x is the raw score = unknown

μ is the population mean = 29 hours

σ is the population standard deviation = 5.1

2.33= (x - 29)/5.1

Cross Multiply

2.33 × 5.1 = x - 29

11.883 = x - 29

x = 11.883 + 29

x = 40.883 hours.

Therefore, the number of hours that the one percent of men who watch the most TV per week watch is for 40.883 hours

A circle has center (3, -5) and the point (-1, -8) lies on the circumference of the circle. What is the equation of the circle in Standard Form?

Answers

Answer:

[tex] {(x - 3)}^{2} + {(y + 5)}^{2} = {5}^{2} [/tex]

Step-by-step explanation:

First find the radius

Which is the distance between the 2 points.

Radius =5

The answer in the standad form is above.

The equation of the circle in Standard Form is (x - 3)² + (y + 5)² = 25

The standard equation of a circle is given as:

(x - a)² + (y - b)² = r²

where (a, b) is the center of the circle and r is the radius of the circle.

Given the center as (3, -5) hence the radius of the circle is the distance between (3, -5) and (-1, -8). Hence:

[tex]Radius=\sqrt{(-8-(-5))^2+(-1-3)^2} \\\\Radius=5\ units\\[/tex]

hence:

(x - 3)² + (y - (-5))² = 5²

(x - 3)² + (y + 5)² = 25

The equation of the circle in Standard Form is (x - 3)² + (y + 5)² = 25

Find out more at: https://brainly.com/question/13658927

Identify the vertex of the graph. Tell whether it is a minimum or maximum.
(-2,-2); maximum
(-2,-2); minimum
(-2, -1); minimum
(-2, -1); maximum

Answers

Answer:

(-2,-2); minimum

Step-by-step explanation:

From the graph, the vertex is (-2, -2) and since there are no y values that go less than the y value of the vertex, it is a minimum.

Could anyone help me with this question please? Thank you.

Answers

Answer:

  C)  549 km²

Step-by-step explanation:

The area of the regular pentagon is given by ...

  A = (1/2)Pa

where P represents the perimeter, and 'a' represents the apothem (6.2 km). Of course, the perimeter is 5 times the side length.

The lateral area is the product of the perimeter and the height:

  LA = Ph

Using these formulas, and recognizing the total area includes two (2) pentagons, we have ...

  total area = (LA) +2(A) = Ph +2(1/2)Pa = P(h +a)

  = (45 km)(6 km +6.2 km) = 549 km^2

Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r

Answers

Answer:

Note that orthogonal to the plane means perpendicular to the plane.

Step-by-step explanation:

-1x+3y-3z=1 can also be written as -1x+3y-3z=0

The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).

Let us find a point on this  line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively

Therefore, the vector equation is given as:

-1(x-0) + 3(y-0) + -3(z-5) = 0

-x + 3y + (-3z+15) = 0

-x + 3y -3z + 15 = 0

Multiply through by - to get a positive x coordinate to give

x - 3y + 3z - 15 = 0


[tex](y - 1) log_{10}(4?) = log_{10}(16?) [/tex]
find the value of y​

Answers

Answer:

3

Step-by-step explanation:

Given the log function [tex](y-1)log_{10}(4) = log_{10} 16\\ \\[/tex] to get the value of y, the following steps must be carried out;

[tex](y-1)log_{10}(4) = log_{10} 16\\\\(y-1)log_{10}(2^2) = log_{10} 2^4\\\\ (y-1)2log_{10}(2) = 4log_{10} 2\\ \\DIvide\ both\ sides\ by \ log_{10}2\\\\\frac{2(y-1)log_{10}2 }{log_{10}2} = \frac{4log_{10}2}{log_{10}2} \\\\2(y-1) = 4\\\\[/tex]

Open the bracket

[tex]2y-2(1) = 4\\\\2y -2 = 4\\\\add \ 2 \ to \ both \ sides\\\\2y-2+2 = 4+2\\\\2y = 6\\\\Divide \ both \ sides\ by \ 2\\\\2y/2 = 6/2\\\\y = 3[/tex]

Hence the value of y is 3

Suppose that it rains in Spain an average of once every 9 days, and when it does, hurricanes have a 2% chance of happening in Hartford. When it does not rain in Spain, hurricanes have a 1% chance of happening in Hartford. What is the probability that it rains in Spain when hurricanes happen in Hartford? (Round your answer to four decimal places.)

Answers

Answer:

I found the answer on Yahoo

Step-by-step explanation:

P[rains in spain] = 1/9

P[hurricane in hartford & rain in spain] = 0.03*1/9 = A

P[hurricane in hartford & no rain in spain] = 0.02*8/9

P[hurricane in hartford] = 0.03*1/9 + 0.02*8/9 = 0.19/9 = B

P[rain in spain | hurricane in hartford] = A/B = 3/19 <---------

Please help with this

Answers

The shape has 11 sides.

Using the angle formula for polygons:

The sum of all the interior angles is:

11-2 x 180 = 9 x 180 = 1,620 degrees.

For one angle divide the total by number of sides:

1620 / 11 = 147.27 which rounds to 147.2

The answer is D.

Ava started her hw at 7:20pm she finished it at 8:05 pm how long did she take to her hw?

Answers

Answer:

45 mins

Step-by-step explanation:

illustrate the distributive property to solve 144/8

Answers

Answer:

8 (19) or  8 (18 +1)

Step-by-step explanation:

Distributive property means to distribute.

HCF of 144 and 8.

=> 8 is the HCF of 144 and 8

8 (18 + 1)

=> 8 (19)

how would you write six times the square of a number

Answers

6 to the power of whatever number you are going by

Answer:

[tex]\huge \boxed{6x^2 }[/tex]

Step-by-step explanation:

6 times a number squared.

Let the number be [tex]x[/tex].

6 is multiplied to [tex]x[/tex] squared.

[tex]6 \times x^2[/tex]

Other Questions
how many significant figures are in 820 400.0 L i need some help with a tutorial. Calculate the time it would take a cell phone signal to travel from a point on the equator to the satellite and back. One difference from the Cherokee culture of the southeast and Pueblo groups is that At 10:05 a.m., there are 2 microscopic bacteria cells in the bottle. How many cells will be in the bottle at 10:15 a.m.? A. 2 B. 4 C. 8 D. 16 how to find the theta with side lengths of a triangle 11.What is the value of AH in k cal/mol for the following reaction?CH3CH2CH3 + Br2CH3 -CH-CH3 + HBrBr(1)-12(2)-13(3)-15(4)-16 What is the specific latent heat of fusion of ice if it takes 863 kJ to convert 4.6 kg of ice into water at 0 C? The optimum capital structure Question 4 options: a) Provides the lowest cost of capital b) Has the best mix of debt, preferred stock, and common equity c) Can change over time as market and firm conditions change d) All of these apply What is an example of nature exhibiting zerowaste?1. Oxygen is a waste productfrom plants.2. Oxygen is a waste productfrom animals3. Animals consume oxygen inrespiration4. Plants consume oxygen inphotosynthesisA1 and 3B1 and 42 and 3D2 and 4 Suppose that a box contains 6 cameras and that 3 of them are defective. A sample of 2 cameras is selected at random. Define the random variable X as the number of defective cameras in the sample. Write the binomial probability distribution for X . Round to two decimal places. Find y round to the nearest tenth Find the cost of fencing a square plot area 11025 sq m. at the rate of rupees 85 per sq m. The Mono firm in __________ is renowned for its philosophy of designing cutlery and other utensils that are so sophisticated and elegant as to be "timeless." A sprinkler system is being installed in a newly renovated building on campus. The average activation time is supposed to be at most 20 seconds. A series of 12 fire alarm/sprinkler system tests results in an average activation time of 21.5 seconds. Do these data indicate that the design specifications have not been met? The hypotheses to be tested are H0: m = 20 versus Ha: m > 20, where m = the true average activation time of the sprinkler system. Assume that activation times for this system are Normally distributed with s = 3 seconds. (a) What is the value of the observed test statistic? (b) What is the value of the P-value? (c) Are the data statistically significant at the 5% significance level? Explain briefly. (d) What does the decision you made mean with respect to the question "Do these data indicate that the design specifications have not been met?" (e) If the true average activation time of the sprinkler system is, in fact, equal to 20 seconds, what type of error would you have made? In the space below write an essay in response to one of the following questions:What sins are punished most severely and why?Or what does Inferno indicate about medieval values?You must also respond to this question: Do you agree with Dante's hierarchy of Hell? Why or why not? A practice, favored by unions, which contractually binds employers to hire only workers who are already members of the union is called a(n): All the following statements concerning requirements to reinstate a lapsed life insurance policy are correct EXCEPT: Group of answer choices The lapse must have resulted from other than the surrender of the policy for its cash value. There is no time limit on when the policy may be reinstated. Evidence of insurability is required. All overdue premiums must be paid along with interest from the premium due dates. Find the length of KE. A. 30 B. 28 C. 15 D. 3 The issue of _____ concerns how often a particular project will be repeated and what its lifespan will be.