There is continuity in the flow as the velocity distribution is constant in the x-direction, but it can vary in the y-direction.The Navier-Stokes equations are thus valid. Finally, p(x,y)p(x,y) if the pressure at the origin is p0p0 is $$ p(x,y) = p_0 - \rho V^2 \frac{xy}{h^2} $$.
(a) Check continuity:Let v (x) be the velocity distribution. By the equation of continuity, we have the following:$$ \frac{d}{dx}v(x) =0 $$Thus, the velocity distribution is constant in the x-direction, but it can vary in the y-direction. Therefore, there is continuity in the flow.
(b)The Navier-Stokes equations are valid. (c) write down the Navier-Stokes equations:
$$ \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + w \frac{\partial v}{\partial y} = - \frac{1}{\rho}\frac{\partial p}{\partial x} + g_x $$$$ \frac{\partial w}{\partial t} + v \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial y} = - \frac{1}{\rho}\frac{\partial p}{\partial y} + g_y $$.Since there is no gravity, we have that g x = g y = 0. Then, we can rewrite the equations as follows:
$$ \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + w \frac{\partial v}{\partial y} = - \frac{1}{\rho}\frac{\partial p}{\partial x} $$$$ \frac{\partial w}{\partial t} + v \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial y} = - \frac{1}{\rho}\frac{\partial p}{\partial y} $$We also have the following:$$ \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} = 0 $$.From the velocity distribution, we have that:$$ v(x,y) = - \frac{V}{h}y $$where V is the maximum velocity at the centerline, and h is the half-width of the channel.
Then, we can write the pressure distribution as follows:$$ \frac{\partial p}{\partial x} = - \rho V^2 \frac{y}{h^2} $$Integrating with respect to x, we obtain:$$ p(x,y) = p_0 - \rho V^2 \frac{xy}{h^2} $$where p 0 is the pressure at the origin.
More on velocity distribution: https://brainly.com/question/29991330
#SPJ11
The electric flux through a spherical surface is4.3×104 N⋅m2/C. What is the net charge enclosed by the surface? The net charge enclosed by the surface isμC. The electric flux through a cubical box34 cmon a side is7.5×103 N⋅m2/C. What is the total charge enclosed by the box? The total charge enclosed by the box isμC
For the electric flux through a spherical surface is 4.3 x 10⁴ N⋅m²/C, then the net charge enclosed by the surface is μC, and for the electric flux through a cubical box 34 cm on a side is 7.5 x 10³ N⋅m²/C, the total charge enclosed by the box is μC.
The electric flux through a spherical surface is 4.3 x 10⁴ N⋅m²/C.
The net charge is Electric Flux = Charge / Surface Area,
so the net charge enclosed is 4.3 x 10⁴ / (4πr²) where r is the radius of the sphere.
Therefore, the net charge enclosed by the surface is μC.
The electric flux through a cubical box 34 cm on a side is 7.5 x 10³ N⋅m²/C.
The total charge is Electric Flux = Charge / Surface Area,
so the total charge enclosed is 7.5 x 10³ / (6a²)
where a is the length of one side of the cube.
Therefore, the total charge enclosed by the box is μC.
Learn more about electric flux here:
https://brainly.com/question/2664005
#SPJ11
A small block with mass 0.0400 kg slides in a vertical circle of radius R = 0.500 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the normal force exerted on the block by the track has magnitude 3.95 N. In this same revolution, when the block reaches the top of its path, point B, the normal force exerted on the block has magnitude 0.680 N. How much work is done on the block by friction during the motion of the block from point A to point B?
The work done on the block by friction during the motion of the block from point A to point B is 2.49 J.
The normal force acting on the block at point A and point B is different. We can find the weight of the block at points A and point B using the following formula:
Weight = mg,
where m is the mass of the block and g is the acceleration due to gravity.
Weight at point A = m × g
Weight at point B = m × g
Now, the normal force acting on the block at point A is given as 3.95 N.
Therefore, we can write the equation for the weight and normal force as:
Weight at point A - Normal force at point A = m × a
Now, at point A, the acceleration acting on the block is the centripetal acceleration a = v²/R where v is the velocity of the block at point A.
We can write the equation for the weight and normal force as:
m × g - 3.95 = m × v²/R
Similarly, at point B, we can write the equation for the weight and normal force as:
m × g - 0.680 = m × v²/R
Now, we can solve both the equations for the velocity of the block at point A and point B:
Velocity at point A, v₁ = √(gR - 3.95/m)
Velocity at point B, v₂ = √(gR - 0.680/m)
The change in kinetic energy during the motion from point A to point B is given by:
∆KE = KE₂ - KE₁
= (1/2)mv₂² - (1/2)mv₁²
We know that work done, W = ∆KE
So, the work done on the block by friction during the motion of the block from point A to point B is given by:
W = (1/2)m(v₂² - v₁²)
Substituting the values in the above equation:
W = (1/2) × 0.0400 × ((√(9.81 × 0.500 - 0.680/0.0400))² - (√(9.81 × 0.500 - 3.95/0.0400))²)
W = 2.49 J
Therefore, the work done on the block by friction is 2.49 J.
Learn more about Friction here:
https://brainly.com/question/24338873
#SPJ11
what is the minimum angular velocity (in rpm ) for swinging a bucket of water in a vertical circle without spilling any? the distance from the handle to the bottom of the bucket is 35 cm . express your answer in revolutions per minute.
The minimum angular velocity (in rpm) for swinging a bucket of water in a vertical circle without spilling any is 5.56 rpm.
The minimum angular velocity (in rpm) for swinging a bucket of water in a vertical circle without spilling any is given by the formula; Vmin=√g/R
where:
Vmin = minimum angular velocity (in rpm)g = acceleration due to gravity (9.81 m/s²)R = radius of the circular path or distance from the handle to the bottom of the bucket (35 cm)To express the answer in revolutions per minute, the radius of the circle must be converted to meters;R = 35 cm = 0.35 m
Substituting the values given above into the formula;
Vmin=√g/R Vmin=√9.81/0.35 Vmin = 5.56 rpmTherefore, the minimum angular velocity (in rpm) for swinging a bucket of water in a vertical circle without spilling any is 5.56 rpm.
Learn more about velocity: https://brainly.com/question/25749514
#SPJ11
a student pulls a 1500 kg suitcase along a flat sidewalk. if the cord on the suitcase breaks when the force is greater than 50n, what is the maximum acceleration that the student can achieve with the suitcase?
The maximum acceleration that the student can achieve with the 1500 kg suitcase is 50N/1500kg = 0.033 m/s2.
Acceleration is the change in velocity per unit time. Acceleration is a vector quantity that has both magnitude and direction. Acceleration is divided into deceleration acceleration and acceleration acceleration. Acceleration decreases meaning the direction of acceleration is opposite to the direction of velocity.
To calculate the maximum acceleration, we can use the following equation:
Force = Mass x Acceleration. Therefore, 50N = 1500kg x Acceleration
Solving for Acceleration, we get 50N/1500kg = 0.033 m/s2.
Learn more about acceleration : brainly.com/question/20595261
#SPJ11
A straight 2.40 m wire carries a typical household current of 1.50 A (in one direction) at a location where the earth's magnetic field is 0.550 gauss from south to north. *I know there's a lot of questions, but I will rate the you-know-what out of you a) Find the direction of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from west to east. b) Find the magnitude of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from west to east. c) Find the direction of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running vertically upward. d) Find the magnitude of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running vertically upward. e) Find the direction of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from north to south. f) Find the magnitude of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from north to south. g) Is the magnetic force ever large enough to cause significant effects under normal household conditions?
a) If the current is running from west to east, the force that our planet's magnetic field exerts on this cord is directed upwards
b) The magnitude of the force that our planet's magnetic field exerts on this cord if it is oriented so that the current in it is running from west to east is F =2.64 x 10^-4 N
c) If the current is running vertically upward, the force that our planet's magnetic field exerts on this cord is directed to the left. west
d) The magnitude of the force that our planet's magnetic field exerts on this cord if it is oriented so that the current in it is running vertically upward is F = 0 zero
e) If the current is running from north to south, the force that our planet's magnetic field exerts on this cord is directed east.
f) The magnitude of the force that our planet's magnetic field exerts on this cord if it is oriented so that the current in it is running from north to south is F = 2.64 x 10^-4 N
g) The magnetic force is not large enough to cause significant effects under normal household conditions.
EXPLANATION
a) The direction of the force that our planet's magnetic field exerts on the cord is perpendicular to both the direction of the current and the direction of the magnetic field, according to the right-hand rule. In this case, if the current is running from west to east, and the magnetic field is from south to north, the force will be directed upwards.
b) The magnitude of the force can be calculated using the formula:
F = BIL sin(theta)
where B is the magnitude of the magnetic field, I is the current, L is the length of the wire, and theta is the angle between the direction of the current and the direction of the magnetic field. In this case, theta is 90 degrees, so sin(theta) = 1. Substituting the given values, we get:
F = (0.550 x 10^-4 T) x (1.50 A) x (2.40 m) x 1
= 2.64 x 10^-4 N
Therefore, the magnitude of the force is 2.64 x 10^-4 N.
c) If the current in the wire is running vertically upward, the force will be directed towards the west.
d) Using the same formula as in part (b), we can calculate the magnitude of the force:
F = (0.550 x 10^-4 T) x (1.50 A) x (2.40 m) x sin(90)
= 0
Therefore, the magnitude of the force is zero.
e) If the current in the wire is running from north to south, the force will be directed towards the east.
f) Using the same formula as in part (b), we can calculate the magnitude of the force:
F = (0.550 x 10^-4 T) x (1.50 A) x (2.40 m) x 1
= 2.64 x 10^-4 N
Therefore, the magnitude of the force is 2.64 x 10^-4 N.
g) The magnitude of the magnetic force in this case is quite small, and under normal household conditions, it is unlikely to cause significant effects. However, in some situations, such as in electrical power transmission systems, the effects of the magnetic force may need to be taken into account.
For more such questions on magnetic field
https://brainly.com/question/13689629
#SPJ11
write the equations for the balance of the forces in the horizontal and vertical directions for block a and for block b (four equations). start with the force exerted on block a in the horizontal direction.
The equations for the balance of forces in the horizontal and vertical directions for Block A and Block B are: Horizontal direction of Block A: T = 12.5 N,Vertical direction of Block A: W = 24.5 N,Horizontal direction of Block B: T = 22.5 N and Vertical direction of Block B: W = 44.1 N.
The forces acting on Block A are: Force of tension (T) and Force of gravity (W).The forces acting on Block B are: Force of tension (T) and Force of gravity (W).For Block A in the horizontal direction, the force exerted will be the force of tension (T).
Therefore: Horizontal direction of Block A: T = mA a ………………….. (1) For Block A in the vertical direction, the force exerted will be the force of gravity (W).
Therefore: Vertical direction of Block A: W = mA g ………………….. (2) For Block B in the horizontal direction, the force exerted will also be the force of tension (T).
Therefore: Horizontal direction of Block B: T = mB b ………………….. (3) For Block B in the vertical direction, the force exerted will be the force of gravity (W).
Therefore: Vertical direction of Block B: W = mB g ………………….. (4)
The equations can be solved by substituting the values of the masses and the acceleration due to gravity. Therefore, equations (1) to (4) will become:
Horizontal direction of Block A: T = 2.5 (5) = 12.5 N Vertical direction of Block A: W = 2.5 (9.8) = 24.5 N Horizontal direction of Block B: T = 4.5 (5) = 22.5 N Vertical direction of Block B: W = 4.5 (9.8) = 44.1 N
Therefore, the equations for the balance of forces in the horizontal and vertical directions for Block A and Block B are:
Horizontal direction of Block A: T = 12.5 N Vertical direction of Block A: W = 24.5 N Horizontal direction of Block B: T = 22.5 N Vertical direction of Block B: W = 44.1 N
More on forces: https://brainly.com/question/14932990
#SPJ11
does air move from areas of high pressure to low pressure
Explanation: Gases move from high-pressure areas to low-pressure areas. And the bigger the difference between the pressures, the faster the air will move from the high to the low pressure.
lab 4: newton's second law: the atwood machine pre-lab questions: 1. what happens to the acceleration of our system when the mass of the system increases but the net force stays constant? 2. what happens to the acceleration of our system when the net applied force increases but the mass of the system does not change? 3. explain, in your own words, potential sources of error in today's experiment.
According to Newton's second law, the acceleration of a system is directly proportional to the net force applied to it and inversely proportional to its mass. Therefore, if the net force stays constant but the mass of the system increases, the acceleration of the system will decrease.
Similarly, if the mass of the system remains constant but the net applied force increases, the acceleration of the system will increase.
There are several potential sources of error in the Atwood machine experiment. For example, friction in the pulley or air resistance could cause the system to accelerate at a different rate than predicted by theory. Additionally, the masses used in the experiment may not be perfectly accurate, which could introduce small errors into the measurements. The string connecting the two masses could also stretch or have varying elasticity, which could affect the results. Finally, human error in measuring the time or the distances traveled by the masses could lead to inaccuracies in the calculated values of acceleration or tension in the string.
for more such question on acceleration
https://brainly.com/question/10425898
#SPJ11
Which of the following correctly compares the Sun's energy generation process to the energy generation process in human-built nuclear power plants?
Both processes involve nuclear fusion, but the Sun fuses hydrogen while nuclear power plants fuse uranium.
The Sun generates energy by fusing small nuclei into larger ones, while our power plants generate energy by the fission (splitting) of large nuclei.
The Sun generates energy through nuclear reactions while nuclear power plants generate energy through chemical reactions.
The Sun generates energy through fission while nuclear power plants generate energy through fusion.
The correct comparison of the energy generation processes is "The Sun generates energy by fusing small nuclei into larger ones, while our power plants generate energy by the fission (splitting) of large nuclei". Thus, the correct options are A and B.
What is Nuclear power?Nuclear reactions involve the alteration of an atom's nucleus in both cases. Nuclear power plants and the sun both use energy generated by these nuclear reactions to produce electricity. The difference is in the type of nuclear reaction that takes place.
In the Sun, nuclear fusion is the process by which atomic nuclei of low atomic number fuse to form a heavier nucleus with the release of energy. The energy produced in this way is what makes the Sun so hot and bright. In a nuclear power plant, nuclear fission is the process by which the nucleus of an atom is split into two smaller nuclei.
The energy that is released in the process is used to heat water, creating steam that drives a turbine, which in turn drives a generator to produce electricity.
Therefore, the correct options are A and B.
Learn more about Nuclear power here:
https://brainly.com/question/18769119
#SPJ11
Rank the objects from left to right based on their average distance from the Sun, from farthest to closest. (Not to scale.)Pluto, Saturn, Jupiter, Mars, Earth, Mercury
From farthest to closest, the ranking of the planets based on their average distance from the Sun would be:
Pluto, Saturn, Jupiter, Mars, Earth, Mercury
Note that the objects are not to scale, so this ranking may not be perfectly accurate in terms of relative distances. However, it gives a general idea of the order of the planets from farthest to closest to the Sun.
The eight planets in our solar system, listed in order from the Sun, are:
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
These eight planets are also known as the "classical planets," and are the largest and most massive objects in orbit around the Sun. There are also several dwarf planets in our solar system, such as Pluto and Ceres, as well as numerous smaller objects like asteroids and comets.
Learn more about planets:
https://brainly.com/question/11023671
#SPJ11
If the magnetic field steadily decreases from B to zero during a time interval t , what is the magnitude E of the induced emf?
Express your answer in terms of x,y ,t , and B .
If the magnetic field steadily decreases from B to zero during a time interval t, the magnitude E of the induced emf is given by the formula; E = (Bx-y/t), where B is the magnetic field, x, and y are constants.
An induced emf is the voltage generated across a conductor when it moves through a magnetic field. It is also induced when there is a change in the magnetic field passing through a conductor.
The emf generated in a coil of wire is equal to the rate of change of magnetic flux through the coil. Magnetic flux is given by the formula: φ=B*A,
where - B is the magnetic field strength and
- A is the area of the coil.
If the magnetic field steadily decreases from B to zero during a time interval t, the change in magnetic flux is given by the formula: Δφ=B*A = B*ΔA, where ΔA is the change in area over time Δt.
The induced emf E is given by the formula: E = (-N * Δφ)/Δt
Where N is the number of turns in the coil. If the magnetic field is steadily decreasing, then ΔB/Δt is constant, and the induced emf E is given by the formula: E = (-N * B * ΔA/Δt) = (-N * B * x*y/t) = (Bx-y/t), where x and y are constants.
Learn more about magnetic fields here:
https://brainly.com/question/26257705
#SPJ11
We always see the same side of the Moon because a. the Moon does not rotate on its axis. b. the Moon rotates on its axis once for each revolution around Earth. c. when t…
We always see the same side of the Moon because
a. the Moon does not rotate on its axis.
b. the Moon rotates on its axis once for each revolution around Earth.
c. when the other side of the Moon is facing Earth, it is unlit.
d. when the other side of the Moon is facing Earth, it is on the opposite side of Earth.
e. none of the above
We always see the same side of the Moon because the "Moon rotates on its axis once for each revolution around Earth." Thus, the correct option will be B.
How does the Moon rotates?When the Moon rotates on its axis once for each revolution around Earth, then we always see the same side of the Moon. The reason behind this is that the moon's rotation takes almost the same time as it takes to orbit the Earth.
When the same side of the moon is facing the Earth, it appears to be unchanging. That is why we always see the same side of the moon from Earth. The other side of the Moon is known as the far side, which was first observed by the Soviet spacecraft Luna 3 in 1959.
Therefore, the correct option will be B.
Learn more about Moon here:
https://brainly.com/question/13538936
#SPJ11
When using compass orientation, migrating animals make use of _____.a. memories from previous trips with parentsb. familiar landmarks and olfactory cuesc. the north and south polesd. the sun, stars, and Earth's magnetic field
When using compass orientation, migrating animals make use of the sun, stars, and Earth's magnetic field to navigate. So, option d is correct option.
Compass orientation in migrating animals is the process of using the sun, stars, and Earth's magnetic field to navigate. Migrating animals use a variety of techniques to navigate, depending on their species and environment.
Some animals use the position of the sun, stars, and Earth's magnetic field as their primary means of orientation when migrating. This is known as compass orientation.
Compass orientation is a technique that relies on environmental cues, such as the position of the sun and stars, to determine direction. Some animals can use the Earth's magnetic field to navigate as well. This is known as magnetic orientation.
Magnetic orientation is used by some species of birds and fish, as well as certain insects and reptiles. Other animals use landmarks and olfactory cues to navigate.
These animals rely on visual or chemical markers in the environment to orient themselves. This technique is known as piloting. Piloting is used by animals such as rodents, bats, and some species of birds. Animals that use piloting must be able to remember and recognize the landmarks they use as cues to navigate.
Finally, some animals use memories from previous trips with parents to navigate. This technique is known as true navigation. True navigation requires animals to have a highly developed sense of spatial awareness and memory. True navigation is used by animals such as sea turtles and some species of birds.
All of these techniques require different cognitive abilities and sensory mechanisms, but they allow animals to navigate over long distances to reach their desired destinations.
for similar question on magnetic field to navigate.
https://brainly.com/question/22986969
#SPJ11
what happens after the helium flash in the core of a star?
After the helium flash in a star, the core quickly heats up and expands.
A helium flash is the very brief thermal runaway nuclear fusion of significant amounts of helium into carbon during the red giant phase of low mass stars (between 0.8 solar masses (M) and 2.0 M). The centre expands as a result of the core becoming warmer as a result of this.
Following the onset of helium nuclear reactions in a star's core, helium nuclei fuse to create carbon and oxygen.
Most of the time, the stars' positions in reference to one another remain constant. Convergence between Orion and Taurus is ongoing. Ursa Minor is never far from Draco. The stars appear to us as an endless backdrop painting in the sky that hardly moves in reference to one another.
To know more about stars:
https://brainly.com/question/29572549
#SPJ4
Which term describes the energy an object has due to the motion of its
particles?
A. Magnetic energy
B. Chemical energy
C. Elastic energy
D. Thermal energy
Answer: The answer is D. Thermal Energy.
Explanation:
Thermal energy is a type of kinetic energy owing to the fact that it results from the movement of particles.
Why is this wrong? Can anybody please help me thanks!
Answer:
[tex]\boxed{5427N}[/tex]
Explanation:
We use the well-known equation:
[tex]F=m\cdot a[/tex]
where:
[tex]F=[/tex] Force (Newton)[tex]m=[/tex] mass [tex](kg)[/tex][tex]a=[/tex] acceleration (m/s^2)so, we can rewrite the equation like this:
[tex]F= (810kg)(6.7m/s^2)\\F=5427N[/tex]
So, taking into account the statement as seen in the image, your answer must be correct.
[tex]\text{-B$\mathfrak{randon}$VN}[/tex]
a 35.0-g bullet moving at 475 m/s strikes a 4.4-kg bag of flour that is on ice, at rest. the bullet passes through the bag, leaving at 220 m/s. how fast is the bag moving when the bullet exits?
When the 35.0-g bullet moving at 475 m/s strikes the 4.4-kg bag of flour, the momentum of the bullet is transferred to the bag of flour, causing the bag of flour to move and the bag moving when the bullet exits at 91.3 m/s.
What is the speed of bag moving when the bullet exits?We can calculate the velocity of the bag of flour after the collision using conservation of momentum:
Here we have the following data as :
Momentum of bullet before collision = Momentum of bullet and bag after collision
m bullet × v bullet, before = (m bullet + m bag) bag × v bag, after
We can solve for v bag ,after:
v bag ,after = (m bullet × v bullet, before) / (m bullet + m bag)
v bag, after = (35.0 g × 475 m/s) / (35.0 g + 4.4 kg) = 91.3 m/s
Therefore, the bag of flour is moving at 91.3 m/s when the bullet exits.
Read more about mass here:
https://brainly.com/question/1838164
#SPJ11
A falling object experiment is performed to determine the acceleration due to gravity on an unknown planet (not the Earth) from photographic data of the falling object.
At time = 0 seconds, the object's displacement is 0 m.
At time = 0.4 seconds, the object's displacement is 1.5 m.
From the above information, calculate the value of the acceleration due to gravity on the unknown planet.
18.75 m/s² is the acceleration brought on by gravity on the unidentified planet.
What type of acceleration does an item have when it falls naturally under the influence of gravity?9.8 m/s2 is the acceleration caused by gravity at or close to the surface of the Earth. The force of gravity causes items to fall towards the ground.
The acceleration brought on by gravity on the unidentified planet may be calculated using the equation of motion for a falling object:
d = 1/2 * g * t²
where d is the object's displacement, g is the acceleration brought on by gravity, and t is the passing of time.
This equation can be changed in order to account for g:
g = 2 * d / t²
Plugging in the given values:
d = 1.5 m
t = 0.4 s
g = 2 * 1.5 m / (0.4 s)²
g = 18.75 m/s²
To know more about acceleration visit:-
https://brainly.com/question/30660316
#SPJ1
A motorcyclist starts from rest and reaches a speed of 6m/s after travelling with constant acceleration for 3s. What is his acceleration?
As given, the motorcyclist starts from rest and reaches a speed of 6 m/s
after traveling with uniform acceleration for 3 seconds.
Here, initial velocity u=0
Final velocity v=6 m/s
Time t=3 sec.
Let the acceleration of the motorcycle be a.
On using the equation of motion, v=u+at
6=0+3×a
Or 3a=6
Or a=63
Or a=2 m/s2
→Therefore, the acceleration in a motorcycle is 2 m/s2.←
Given the definition of EER, find the EER of an 8000 Btu/hour air conditioner that requires a power input of 1500 W. Express your answer numerically in British thermal units per hour per watt. EER = __________(Btu/hour)/W
EER is defined as the Energy Efficiency Ratio which is the ratio of cooling capacity in BTU/hr to the power input in watts.
The EER of the given 8000 Btu/h air conditioner is 5.33 Btu/hour per watt.
In the case of the given 8000 Btu/h air conditioner that requires a power input of 1500 W, the EER can be calculated as follows:
EER = (cooling capacity in Btu/hr) / (power input in watts)
EER = 8000 Btu/hour / 1500 W = 5.33 Btu/hour per wat.
Energy efficiency ratio (EER) is used in the USA and is defined as the system output in Btu/h per watt of electrical energy.
Coefficient of performance (COP) is the equivalent measure using SI units, which is widely used in the UK. A COP of 1.0 equates to an EER of 3.4.
To know more about power:https://brainly.com/question/11569624
#SPJ11
suppose that you drop a solid iron ball and a hollow iron ball, both the exact same diameter, from the same height at the same time. aristotle would predict that
If you drop a solid iron ball and a hollow iron ball of the same diameter from the same height at the same time, Aristotle's prediction would be that the solid iron ball will fall faster than the hollow iron ball.
Aristotle and gravity lawAristotle, who lived in ancient Greece, believed that heavier objects would fall faster than lighter ones. This was a commonly held belief at the time, but it has since been proven incorrect through scientific experiments.
In reality, when dropped from the same height at the same time, both the solid iron ball and the hollow iron ball of the same diameter would fall at the same rate, neglecting air resistance. This is because the rate at which an object falls is determined by its mass and the force of gravity acting on it, which are the same for both balls.
This was first demonstrated by Galileo Galilei in the late 16th century through his famous experiment involving dropping objects from the Leaning Tower of Pisa. He showed that objects of different masses would fall at the same rate in a vacuum and that air resistance was the primary factor that caused objects to fall at different rates in the real world.
In summary, Aristotle would have predicted that the solid iron ball would fall faster than the hollow iron ball, but this prediction has been shown to be incorrect by scientific experiments.
More on Aristotle can be found here: https://brainly.com/question/5399979
#SPJ1
consider a two photon excitation process where the wavenumber of the excitation light is 10000 cm. assume an internal conversion. what would be the wavelength of the emitted light for two photon excitaton fluorescence
The wavelength of the emitted light for two photon excitaton fluorescence is 600nm.
What is the wavelength?A two photon excited process-
Wavenumber of the excitation light = 10000 cm-1 = 1000 nm
In case of two photon excitation photon -
Second harmonic generation = [ Wavenumber ( in nm ) ] / 2 = 1000/2 = 500 nm
We know, ESGH = 3.97 × 10^-19J
For two photon excitation fluorescence internal conversion, energy is 6.89 × 10^-20J. So, Energy of fluorescence = ESHG - EIC = 3.286 × 10^-19J.
We know, E = hc / λ
λ = 6.049 x 10^-7 m
≈ 600 nm
Learn more about wavelength on:
https://brainly.com/question/10728818
#SPJ1
True or False: For a given water velocity (distance traveled per unit time), the greater the cross sectional area of a stream channel, the lower will be the stream flow (discharge: volume of water per unit time).
For a given water velocity (distance traveled per unit time), the greater the cross-sectional area of a stream channel, the lower will be the stream flow (discharge: volume of water per unit time)" is a false statement.
What is Stream discharge?Stream discharge is measured by the volume of water flowing per unit of time, which is calculated by multiplying the stream's cross-sectional area (flow width × flow depth) by its water velocity. As a result, the given statement is false.
According to the formula, an increase in the cross-sectional area of the stream will cause a rise in the stream flow (discharge: volume of water per unit time) because it is multiplied by the velocity. So, for a given water velocity, the greater the cross-sectional area of a stream channel, the higher the stream flow (discharge: volume of water per unit time) will be.
Learn more about Stream discharge here:
https://brainly.com/question/8282980
#SPJ11
A ball is thrown upwards and caught when it comes back down. In the presence of air resistance, the speed with which it is caught is:
(A) more than the speed it had when thrown upwards.
(B) the same as the speed it had when thrown upwards.
(C) less than the speed it had when thrown upwards.
A ball is thrown upwards and caught when it comes back down. In the presence of air resistance, the speed with which it is caught is C. less than the speed it had when thrown upwards.
When a ball is thrown upwards, it gains kinetic energy due to the force exerted by the thrower. Then, as it ascends, it loses kinetic energy and gains potential energy as it moves higher up. Finally, the ball comes to a stop, its kinetic energy becoming zero, and its potential energy reaches its maximum value. At the top, the ball begins to fall back to the ground.The air resistance opposes the motion of the ball, slowing it down as it travels upwards.
When the ball starts coming back down, the air resistance exerts an additional force, which slows down the ball and reduces its speed. As a result, the speed with which it is caught is less than the speed it had when thrown upwards. Hence, option (C) is correct.
Learn more about kinetic energy at:
https://brainly.com/question/22174271
#SPJ11
Help asaaap it's about doppler effect
The frequency that the bad guy hear is 12000 hz when the police car is moving with speed of 80m/s.
Frequencyfo=fs(vvov), where fo is the observed frequency, fs is the source frequency, v is the speed of sound, vo is the observer's speed, the top sign indicates the observer is approaching the source, and the bottom sign indicates the observer is leaving the source.Equation fo=800(80-65) fo = 12000 after substituting the variablesThe apparent change in frequency of a wave as a result of an observer moving with respect to the wave source is known as the Doppler effect or Doppler shift. It bears the name of the Austrian physicist Christian Doppler, who first described the phenomenon in 1842.For more information on doppler effect kindly visit to
https://brainly.com/question/15318474
#SPJ1
f the initial energy of a conservative system is ei and the final energy is ef, what can we say about the relationship between these two energies in such a system?
In a conservative system, the total energy is conserved, which means that the initial energy (ei) is equal to the final energy (ef).
What are conservative system?Conservative systems are those where the total energy remains constant over time, such as in a pendulum swinging back and forth or a planet orbiting a star under the influence of gravity.
In such systems, the energy can be converted from one form to another, but the total amount of energy remains constant.
Therefore, we can say that in a conservative system, the initial energy (ei) and the final energy (ef) are equal. This means that any changes in the system's energy, such as potential energy being converted into kinetic energy, must be balanced by an equal and opposite change in some other form of energy, such as potential energy being converted into kinetic energy.
Learn more about conservation of energy here: https://brainly.com/question/166559
#SPJ1
a cross section across a diameter of a long cylindrical conductor of radius a=2 cm carrying uniform current 170 A. What is the magnitude of the current's magnetic field at radial distance (a) 0, (b) 1 cm, (c) 2 cm (wire's surface), and (d) 4 cm
The magnitude of the current's magnetic field at radial distances (a) 0, (b) 1cm, (c) 2cm (wire's surface), and (d) 4cm are undefined, 1.7 * 10^-3 Tesla, 1.7 * 10^-3 Tesla, and 8.5 * 10^-4 Tesla, respectively.
The question is about finding the magnitude of magnetic fields at different radial distances across a diameter of a long cylindrical conductor of radius a=2 cm carrying uniform current 170A.
Let's solve it step by step.
(a) At radial distance 0:
At the center of the conductor, r = 0, the magnetic field is zero.
It can be found by using the formula for the magnetic field at the center of the wire:
B = (μ_0 * I) / (2 * π * r)
= (4π * 10^-7 * 170) / (2π * 0)
= undefined.
Therefore, the magnetic field at r = 0 is undefined.
(b) At radial distance 1cm:
Using the formula for the magnetic field at a point P located at a radial distance r from the center of the wire:
B = (μ_0 * I) / (2 * π * r)
= (4π * 10^-7 * 170) / (2π * 0.01)
= 1.7 * 10^-3 Tesla.
(c) At radial distance 2cm:
The magnetic field at r = a (i.e., the surface of the wire) can be determined by substituting the value of r = 2cm into the magnetic field formula:
B = (μ_0 * I) / (2 * π * r)
= (4π * 10^-7 * 170) / (2π * 0.02)
= 1.7 * 10^-3 Tesla.
(d) At radial distance 4cm:
Again, we use the formula for the magnetic field at a point P located at a radial distance r from the center of the wire:
B = (μ_0 * I) / (2 * π * r)
= (4π * 10^-7 * 170) / (2π * 0.04)
= 8.5 * 10^-4 Tesla.
For similar question on magnetic field
https://brainly.com/question/26257705
#SPJ11
write an expression for the magnitude of the force, f, exerted on the firefighter by the pole. answer in terms of the variables from the problem statement as well as g for the acceleration due to gravity.
The expression for the magnitude of the force exerted on the firefighter by the pole can be expressed as F = mg + ma.
Where m is the mass of the firefighter,
g is the acceleration due to gravity, and
a is the acceleration of the pole
In order to find an expression for the magnitude of the force, F, exerted on the firefighter by the pole, we need to consider the forces acting on the firefighter.
According to Newton's second law of motion, the force acting on an object is equal to its mass multiplied by its acceleration. In this case, the forces acting on the firefighter are the gravitational force, which is pulling the firefighter downwards with a force of mg, and the force exerted on the firefighter by the pole, which is pushing the firefighter upwards with a force of ma. Therefore, the total force acting on the firefighter is given by the sum of these two forces, which is: F = mg + ma
Thus, this expression gives us the magnitude of the force exerted on the firefighter by the pole. Here, m is the mass of the firefighter, g is the acceleration due to gravity, and a is the acceleration of the pole. if the pole is not accelerating (i.e., if a = 0), then the expression reduces to F = mg, which is the gravitational force acting on the firefighter.
To know more about Magnitude please visit :
https://brainly.com/question/30337362
#SPJ11
a suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.00 s. then security agents appear, and the man runs as fast as he can back along the sidewalk to his starting point, taking 12.6 s. what is the ratio of the man's running speed to the sidewalk's speed?
The ratio of the man's running speed to the sidewalk's speed is 6.3.
To solve the problem, we can start by using the formula:
distance = speed × time
Let's assume that the length of the moving sidewalk is L, and the speed of the man is v and the speed of the sidewalk is u.
When the man runs along the sidewalk from one end to the other, his speed relative to the ground is (v + u), and the distance he covers is L. Therefore, we have:
L = (v + u) × 2.00 s
When the man runs back along the sidewalk to his starting point, his speed relative to the ground is (v - u), and the distance he covers is also L. Therefore, we have:
L = (v - u) × 12.6 s
Now we can solve for v/u by dividing the two equations:
(v + u)/(v - u) = 2.00/12.6
Solving for v/u gives:
v/u = (2.00/12.6 + 1)/(2.00/12.6 - 1) = 6.3
Therefore, the ratio of the man's running speed to the sidewalk's speed is 6.3.
For more similar questions on distance:
brainly.com/question/12356021
#SPJ11
a flat, circular loop has 17 turns. the radius of the loop is 12.5 cm and the current through the wire is 0.60 a. determine the magnitude of the magnetic field at the center of the loop (in t).
The magnetic field at the center of the loop is calculated to be 0.159 T.
The magnetic field at the center of a flat, circular loop with 17 turns, a radius of 12.5 cm, and a current of 0.60 A can be determined by using the equation B = µ₀.n.I/2.π.r, where
B is the magnitude of the magnetic field, µ₀ is the permeability of free space, n is the number of turns, I is the current, and r is the radius of the loop.Using this equation, the magnetic field at the center of the loop is calculated to be 0.159 T.
Learn more about magnitude of the magnetic field: brainly.com/question/30640184
#SPJ11