Answer:
Add the like terms:
8x2+x2=9x2
-9y2-3y2=-12y2
-4x-7x=-11x
Combine each term:
9x2-12y2-11x
Hope this helps!!
Step-by-step explanation:
Hope This Helps man
if your ans is correct i will choose you as a brainlist when the number of student of a school was increased by 30% it became 455. Find the previous number student.
Step-by-step explanation:
find 30% of 455
which is = 136.5
then subtract 136.5 from the original number(455)
455 - 136.5
=318.5 student
20 PTS PLEASE HELP!!!!
Select the correct answer from each drop-down menu.
The function below describes the number of students who enrolled at a university, where f(t) represents the number of students and t represents the time in years.
Initially, (1.03, 3, 19,055, 18,500) students enroll at the university. Every,(1years, t years, 2years, 3years) the number of students who enroll at the university increases by a factor of (1.03, 3, 19,055, 18,500).
Answer:
Initially 18,500 students
Every 1 year
increase by a factor 1.03
Step-by-step explanation:
The missing information is selected from the given options from the drop down menu. The correct answers are : Initially 18,500 students enroll at the university. Every 1 years the number of students who enroll at the university increases by a factor 1.03.
F(t) = 18,500 * (1.03)^t
6 points are place on the line a, 4 points are placed on the line b. How many triangles is it possible to form such that their verticies will be the given points, if a ∥b?
Answer: 96
Step-by-step explanation:
Ok, lines a and b are parallel.
We can separate this problem in two cases:
Case 1: 2 vertex in line a, and one vertex in line b.
Here we use the relation:
"In a group of N elements, the total combinations of sets of K elements is given by"
[tex]C = \frac{N!}{(N - K)!*K!}[/tex]
Here, the total number of points in the line is N, and K is the ones that we select to make the vertices of the triangle.
Then if we have two vertices in line a, we have:
N = 6, K = 2
[tex]C = \frac{6!}{4!*2!} = \frac{6*5}{2} = 3*5 = 15[/tex]
And the other vertex can be on any of the four points on the line b, so the total number of triangles is:
C = 15*4 = 60.
But we still have the case 2, where we have 2 vertices on line b, and one on line a.
First, the combination for the two vertices in line b is:
We use N = 4 and K = 2.
[tex]C = \frac{4!}{2!*2!} = \frac{4*3}{2} = 6[/tex]
And the other vertice of the triangle can be on any of the 6 points in line a, so the total number of triangles that we can make in this case is:
C = 6*6 = 36
Then, putting together the two cases, we have a total of:
60 + 36 = 96 different triangles
Solve this problem... Really urgent
Answer:
[tex] \boxed{\sf Time \ taken = 15 \ minutes} [/tex]
Given:
Initial speed (u) = 65 km/h
Final speed (v) = 85 km/h
Acceleration (a) = 80 km/h²
To Find:
Time taken for car to achieve a speed of 85 km/h in minutes
Step-by-step explanation:
[tex]\sf From \ equation \ of \ motion:[/tex]
[tex] \boxed{ \bold{v = u + at}}[/tex]
By substituting value of v, u & a we get:
[tex] \sf \implies 85 = 65 + 80t[/tex]
Substract 65 from both sides:
[tex] \sf \implies 85 - 65 = 65 - 65 + 80t[/tex]
[tex] \sf \implies 20 = 80t[/tex]
[tex] \sf \implies 80t = 20[/tex]
Dividing both sides by 80:
[tex] \sf \implies \frac{ \cancel{80}t}{ \cancel{80}} = \frac{20}{80} [/tex]
[tex] \sf \implies t = \frac{2 \cancel{0}}{8 \cancel{0}} [/tex]
[tex] \sf \implies t = \frac{ \cancel{2}}{ \cancel{2} \times 4} [/tex]
[tex] \sf \implies t = \frac{1}{4} \: h[/tex]
[tex] \sf \implies t = \frac{1}{4} \times 60 \: minutes[/tex]
[tex] \sf \implies t = 15 \: minutes[/tex]
So,
Time taken for car to achieve a speed of 85 km/h in minutes = 15 minutes
PLEASE help me with this question! No nonsense answers please. This is really urgent.
Answer:
The third option: x= [tex]\frac{8}{3} \pi[/tex]
Step-by-step explanation:
Arc length formula=[tex]\frac{Central Angle}{360} * 2\pi r[/tex]
Arc length = [tex]\frac{120}{360} *2\pi (4)[/tex]
=[tex]\frac{8}{3}\pi[/tex]
SIMPLIFY.
(5c^2 + c) - (3c^2 + 11c)
Answer:2 c^2 - 10c
Step-by-step explanation:
The cost for an upcoming field trip is $30 per student. The cost of the field trip C. in dollars, is a function of the number of students x.
Select all the possible outputs for the function defined by
C(x)=30
a. 20
b. 30
c. 50
d. 90
e. 100
Answer: B and D
Step-by-step explanation: since it is $30 per student the total cost would have to be a multiple of 30
How to do this question plz answer me step by
Answer:
481.92
Step-by-step explanation:
First find the increase
466.98 * 3.2%
466.98 * .032
14.94336
Add this to the original amount
466.98+14.94336
481.92336
Round to 2 decimal places
481.92
Answer it answer it answer it.
Answer:
Option C. P = 3/q
Step-by-step explanation:
To know the the correct answer to the question, do the following:
Let us assume a certain number for P say 2 and 3, and then, find the corresponding value for q in each case to see which will give a decreased value for q.
Option A
When P = 2, q =.?
P = 3q
2 = 3q
Divide both side by 3
q = 2/3
When P = 3, q =.?
P = 3q
3 = 3q
Divide both side 3
q = 3/3
q = 1
From the above illustration, we can see that as P increase, q also increase.
Option B
When P = 2, q =.?
P – 3 = q
2 – 3 = q
q = – 1
When P = 3, q =.?
P – 3 = q
3 – 3 = q
q = 0
From the above illustration, we can see that as P increase, q also increase.
Option C
When P = 2, q =.?
P = 3/q
2 = 3/q
Cross multiply
2 × q = 3
Divide both side by 2
q = 3/2
q = 1.5
When P = 3, q =.?
P = 3/q
3 = 3/q
Cross multiply
3 × q = 3
Divide both side by 3
q = 3/3
q = 1
From the above illustration, we can see that as P increase, q decreases.
Option D.
When P = 2, q =.?
1/p = 3/q
1/2 = 3/q
Cross multiply
1 × q = 2 × 3
q = 6
When P = 3, q =.?
1/p = 3/q
1/3 = 3/q
Cross multiply
1 × q = 3 × 3
q = 9
From the above illustration, we can see that as P increase, q also increase.
Now, haven done the above, only option C gives a decreased value for q as the value of P increases.
c
this before
Step-by-step explanation:
Can someone plz help me ASAP!!!!!!!!
Answer:
A) The number halfway between -2 and 6 is 2.
B) -10 is halfway between -18 and 8
A cyclist travels at $20$ kilometers per hour when cycling uphill, $24$ kilometers per hour when cycling on flat ground, and $30$ kilometers per hour when cycling downhill. On a sunny day, they cycle the hilly road from Aopslandia to Beast Island before turning around and cycling back to Aopslandia. What was their average speed during the entire round trip?
Answer:
Average speed during the trip = 24 km/h
Step-by-step explanation:
Given:
Speed of cyclist uphill, [tex]v_1[/tex] = 20 km/hr
Speed of cyclist on flat ground = 24 km/h
Speed of cyclist downhill, [tex]v_2[/tex] = 30 km/h
Cyclist has traveled on the hilly road to Beast Island from Aopslandia and then back to Aopslandia.
That means, one side the cyclist went uphill will the speed of 20 km/h and then came downhill with the speed of 30 km/h
To find:
Average speed during the entire trip = ?
Solution:
Let the distance between Beast Island and Aopslandia = D km
Let the time taken to reach Beast Island from Aopslandia = [tex]T_1\ hours[/tex]
Formula for speed is given as:
[tex]Speed = \dfrac{Distance}{Time}[/tex]
[tex]v_1 = 20 = \dfrac{D}{T_1}[/tex]
[tex]\Rightarrow T_1 = \dfrac{D}{20} ..... (1)[/tex]
Let the time taken to reach Aopslandia back from Beast Island = [tex]T_2\ hours[/tex]
Formula for speed is given as:
[tex]Speed = \dfrac{Distance}{Time}[/tex]
[tex]v_2 = 30 = \dfrac{D}{T_2}[/tex]
[tex]\Rightarrow T_2 = \dfrac{D}{30} ..... (2)[/tex]
Formula for average speed is given as:
[tex]\text{Average Speed} = \dfrac{\text{Total Distance}}{\text{Total Time Taken}}[/tex]
Here total distance = D + D = 2D km
Total Time is [tex]T_1+T_2[/tex] hours.
Putting the values in the formula and using equations (1) and (2):
[tex]\text{Average Speed} = \dfrac{2D}{T_1+T_2}}\\\Rightarrow \text{Average Speed} = \dfrac{2D}{\dfrac{D}{20}+\dfrac{D}{30}}}\\\Rightarrow \text{Average Speed} = \dfrac{2D}{\dfrac{30D+20D}{20\times 30}}\\\Rightarrow \text{Average Speed} = \dfrac{2D\times 20 \times 30}{{30D+20D}}\\\Rightarrow \text{Average Speed} = \dfrac{1200}{{50}}\\\Rightarrow \bold{\text{Average Speed} = 24\ km/hr}[/tex]
So, Average speed during the trip = 24 km/h
Solve using quadratic formula.
1.)5x^2+13x=6
2.)3x^2+1=-5x
PLEASE HELP!!! WILL MARK BRAINLIEST!!!
Answer:
1. 2/5,-3 2. [tex]x=\frac{-5+-\sqrt{13} }{6}[/tex]
Step-by-step explanation:
i used the quadratic formula to find x also please note that 2 has 2 answers bc of the +- beofre the sqrt of 13
Step-by-step explanation:
1).5x² + 13x - 6 = 0
Using the quadratic formula
[tex]x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
a = 5 , b = 13 c = - 6
We have
[tex]x = \frac{ - 13± \sqrt{ {13}^{2} - 4(5)( - 6) } }{2(5)} [/tex]
[tex]x = \frac{ - 13± \sqrt{169 + 120} }{10} [/tex]
[tex]x = \frac{ - 13± \sqrt{289} }{10} [/tex]
[tex]x = \frac{ - 13±17}{10} [/tex]
[tex]x = \frac{ - 13 + 17}{10} \: \: \: \: \: or \: \: \: \: x = \frac{ - 13 - 17}{10} [/tex]
x = 2/5 or x = - 32).3x² + 5x + 1 = 0
a = 3 , b = 5 , c = 1
[tex]x = \frac{ -5 ± \sqrt{ {5}^{2} - 4(3)(1)} }{2(3)} [/tex]
[tex]x = \frac{ - 5± \sqrt{25 - 12} }{6} [/tex]
[tex]x = \frac{ - 5± \sqrt{13} }{6} [/tex]
[tex]x = \frac{ - 5 + \sqrt{13} }{6} \: \: \: \: or \: \: \: x = \frac{ - 5 - \sqrt{13} }{6} [/tex]
Hope this helps you
jim buys a calculator that is marked 30% off. If he paid $35, what was the original price?
Answer:
x = 50
Step-by-step explanation:
Let x be the original price.
He got 30% off
The discount is .30x
Subtract this from the original price to get the price he paid
x - .30x = price he paid
.70x = price he paid
.70x = 35
Divide each side by .7
.70x/.7 = 35/.7
x=50
Angles L and M are supplementary. What is the sum of
their measures?
The sum of the measures of angles L and M is
180 degree
Step-by-step explanation:
supplementary means anhke havinv sum of 180 degree
so sum to two supplemrntary angles is 180 drgree
Supplementary angles always add to 180.
One way I think of it is "supplementary angles form a straight angle", and both the words "supplementary" and "straight" start with the letter "S".
In contrast, complementary angles form a corner. Both "complementary" and "corner" start with "co". By "corner", I mean a 90 degree corner.
Al’s Produce Stand sells 6 ears of corn for $1.50. Barbara’s Produce Stand sells 13 ears of corn for $3.12. Write two equations, one for each produce stand, that model the relationship between the number of ears of corn sold and the cost.
Answer:
6n = 1.50
and
13n = 3.12
Step-by-step explanation:
Here in this question, we are interested in writing equations that relate the number of ears of corn sold and the cost.
For Al’s produce stand, let the price per corn sold be n
Thus;
6 * n = 1.50
6n = $1.50 •••••••(i)
For the second;
let the price per corn sold be n;
13 * n = $3.12
-> 13n = 3.12 •••••••••(ii)
PLEASE HELP!!!
Which expression shows a way to find the area of the following rectangle?
Answer:
B
Step-by-step explanation:
This rectangle appears to have 7 boxes on the bottom, and 3 box for the side.
Since area is base×height
It would be 7×3
which of these is an example of a discrete random variable? A. Time worked on a job B. Weight of a child C. First digit of a phone number D. Length of a fish
A discrete random variable has a countable number of possible values. In this case I am pretty sure it is either none of the above or maybe the phone one.
Discrete random variables are simply countable, which should be a finite number and it should not change continuously. So, Time worked on a job is the discrete random variable among the four options.
Discrete random variable:A random variable is said to be discrete if an experiment gives a finite number that is countable and should not change continuously.
Here, Time worked on a job has a fixed time for a job has to be done. So, it is a discrete random variable.
Some more examples of Discrete random variables are:No. of girls in a family,
No. of outcomes of the head when two coins are flipped.
No. of defective street lights out of 100 bulbs in a certain area.
No. of the possible outcome of getting 4 when a dice is thrown twice.
Wrong answers with explanation:The weight of a child changes as the child grows. So, it cannot be a discrete random variable.
The first digit of a phone number also changes for each and every person, whenever a person changes his /her number automatically will get a new number and it will have a different digit. So, it cannot be a discrete random variable.
The length of fish also varies according to the different sizes of fish. So, it cannot be a discrete random variable.
Know more about the discrete random variables:
https://brainly.com/question/17238189?referrer=searchResults
#SPJ2
The drama club is selling tickets to its play. An adult ticket costs $15 and a student ticket costs $11. The auditorium will seat 300 ticket-holders. The drama club wants to collect at least $3630 from ticket sales.
Answer:
83 adult tickets and 217 student tickets.
Step-by-step explanation:
Let number of adult tickets sold = [tex]x[/tex]
Given that total number of tickets = 300
So, number of student tickets = 300 - [tex]x[/tex]
Cost of adult ticket = $15
Cost of student ticket = $11
Total collection from adult tickets = $[tex]15x[/tex]
Total collection from student tickets = [tex](300-x)\times 11 = 3300-11x[/tex]
Given that overall collection = $3630
[tex]15x+(3300-11x) = 3630\\\Rightarrow 15x-11x=3630-3300\\\Rightarrow 4x = 330\\\Rightarrow x = 82.5[/tex]
So, for atleast $3630 collection, there should be 83 adult tickets and (300-83 = 217 student tickets.
Now , collection = $3632
8 less than half of n
Answer:
n/2>8
Step-by-step explanation:
Half of N is N/2
And if 8 is less that half of N or N/2
then
N/2 has to be greater than 8
N/2>8
Find the length of the base and the height and calculate the area
Answer:
44
Step-by-step explanation:
base = 3- -5 = 8
height = 8 - -3 = 11
1/2 bh
1/2(8)(11) = 44
In politics, marketing, etc. We often want to estimate a percentage or proportion p. One calculation in statistical polling is the margin of error - the largest (reasonble) error that the poll could have. For example, a poll result of 72% with a margin of error of 4% indicates that p is most likely to be between 68% and 76% (72% minus 4% to 72% plus 4%). In a (made-up) poll, the proportion of people who like dark chocolate more than milk chocolate was 32% with a margin of error of 2.2%. Describe the conclusion about p using an absolute value inequality.
Answer: |p-72% |≤ 4%
Step-by-step explanation:
Let p be the population proportion.
The absolute inequality about p using an absolute value inequality.:
[tex]|p-\hat{p}| \leq E[/tex] , where E = margin of error, [tex]\hat{p}[/tex] = sample proportion
Given: A poll result of 72% with a margin of error of 4% indicates that p is most likely to be between 68% and 76% .
|p-72% |≤ 4%
⇒ 72% - 4% ≤ p ≤ 72% +4%
⇒ 68% ≤ p ≤ 76%.
i.e. p is most likely to be between 68% and 76% (.
The conclusion about p using an absolute value inequality is in the range of 29.8% to 34.2%.
What is absolute value inequality?An expression using absolute functions and inequality signs is known as an absolute value inequality.
We know that the absolute value inequality about p using an absolute value inequality is written as,
[tex]|p-\hat p| \leq E[/tex]
where E is the margin of error and [tex]\hat p[/tex] is the sample proportion.
Now, it is given that the poll result of 72% with a margin of error of 4% indicates that p is most likely to be between 68% and 76%. Therefore, p can be written as,
[tex]|p-0.72|\leq 0.04\\\\(0.72-0.04)\leq p \leq (0.72+0.04)\\\\0.68 \leq p\leq 0.76[/tex]
Thus, the p is most likely to be between the range of 68% to 76%.
Similarly, the proportion of people who like dark chocolate more than milk chocolate was 32% with a margin of error of 2.2%. Therefore, p can be written as,
[tex]|p-\hat p|\leq E\\\\|p-0.32|\leq 0.022\\\\(0.32-0.022)\leq p \leq (0.32+0.022)\\\\0.298\leq p\leq 0.342[/tex]
Thus, the p is most likely to be between the range of 29.8% to 34.2%.
Hence, the conclusion about p using an absolute value inequality is in the range of 29.8% to 34.2%.
Learn more about Absolute Value Inequality:
https://brainly.com/question/4688732
Manuel made at least one error as he found the value of this expression. Identify the step in which Manuel made his first error. After identifying the step with the first error, explain the corrected steps and find the final answer.
Answer:
Manuel made his first mistake in step 2 leading to the continuous mistakes
Final answer=185
Step-by-step explanation:
Manuel made at least one error as she found the value of this expression. 2(-20) + 3[5/4(-20)] + 5[2/5(50)] + 4(50) Step 1: 2(-20) + 3(-25) + 5(20) + 4(50) Step 2: (3 + 2)(-20 + -25) + (5 + 4)(20 + 50) Step 3: 5(-45) + 9(70) Step 4: -225 + 630 Step 5: 405 Identify the step in which Chris made her first error. After identifying the step with the first error, write the corrected steps and find the final answer.
2(-20) + 3[5/4(-20)] + 5[2/5(50)] + 4(50)
Step 1: 2(-20) + 3(-25) + 5(20) + 4(50)
Step 2: -40 - 75 + 100 +
200
Step 3: -115 + 300
Step 4: 185
Manuel made his first error in step 2 by combining two different terms into one as he has done
(3 + 2)(-20 + -25) and also (5 + 4)(20 + 50)
Step 2: (3 + 2)(-20 + -25) + (5 + 4)(20 + 50)
Step 3: 5(-45) + 9(70) Step 4: -225 + 630 Step 5: 405
He should have evaluated the terms separately as I have done above, giving us 185 as the final answer in contrast to his 405 final answer.
Both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop. Each takes out a piece and eats it. What are the possible pairs of candies eaten? A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon B. Cherry-lemon, lemon-lollipop, lollipop-cherry, lollipop-lollipop, lemon-lemon C. Lemon-cherry, lemon-cherry, lemon-cherry, lemon-lollipop, lemon-lollipop, lemon-lollipop, cherry-lollipop, cherry-lollipop, cherry-lollipop D. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-lollipop, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lemon, lollipop-lemon
Answer:
A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon
Step-by-step explanation:
From the above question, we are told that both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop
There are two events here's
2 people = Fred and Ed
3 bags of different sweets = Lemon Cherry and Lollipop
The number of ways that both of them can eat this singly is calculated using combination formula
C(n, r) = nCr = n!/r! (n - r)!
n = 3, r = 2 = 3C2 = 3!/2! (3 - 2)!
= 3 × 2 × 1/2 × 1
= 3
We were asked to find the possible pairs
Hence = 3² = 9
There are 9 possible pairs through which Fred and Ed can eat their sweets and they are:
1) Lemon - Lemon
2) Cherry - Cherry
3) Lollipop - Lollipop
4) Lemon - Cherry
5) Cherry - Lemon
6) Lollipop - Cherry
7) Cherry - Lollipop
8) Lollipop - Lemon
9) Lemon - Lollipop.
Therefore, Option A is the correct option
Answer:
LEMONS BURN YOUR HOUSE DOWN JK its this A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon
Step-by-step explanation:
From the above question, we are told that both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop
There are two events here's
2 people = Fred and Ed
3 bags of different sweets = Lemon Cherry and Lollipop
The number of ways that both of them can eat this singly is calculated using combination formula
C(n, r) = nCr = n!/r! (n - r)!
n = 3, r = 2 = 3C2 = 3!/2! (3 - 2)!
= 3 × 2 × 1/2 × 1
= 3
We were asked to find the possible pairs
Hence = 3² = 9
There are 9 possible pairs through which Fred and Ed can eat their sweets and they are:
1) Lemon - Lemon
2) Cherry - Cherry
3) Lollipop - Lollipop
4) Lemon - Cherry
5) Cherry - Lemon
6) Lollipop - Cherry
7) Cherry - Lollipop
8) Lollipop - Lemon
9) Lemon - Lollipop.
Therefore, Option A is the correct option
A cube whose edge is 20 cm 1 point
long, has circles on each of its
faces painted black. What is the
total area of the unpainted
surface of the cube if the
circles are of the largest
possible areas?(a) 90.72 cm2 (b)
256.72 cm² (c) 330.3 cm² (d)
514.28 cm?
Answer:
Unpainted surface area = 514.28 cm²
Step-by-step explanation:
Given:
Side of cube = 20 Cm
Radius of circle = 20 / 2 = 10 Cm
Find:
Unpainted surface area
Computation:
Unpainted surface area = Surface area of cube - 6(Area of circle)
Unpainted surface area = 6a² - 6[πr²]
Unpainted surface area = 6[a² - πr²]
Unpainted surface area = 6[20² - π10²]
Unpainted surface area = 6[400 - 314.285714]
Unpainted surface area = 514.28 cm²
Multiply. (2x - 3)(x + 4) a 2x² + 11x - 12 b 2x² + 5x - 12 c 2x² + 11x - 7 d 2x² + 3x - 7
Answer:
2x^2 +5x-12
Step-by-step explanation:
(2x - 3)(x + 4)
FOIL
first 2x*x = 2x^2
outer 2x*4 = 8x
inner -3x
last -3*4 = -12
Add these together
2x^2 +8x-3x-12
Combine like terms
2x^2 +5x-12
Find the coefficient of third term of (2x−1)^6.
240
using pascals trianle
for the power 6 it is
1, 6,15,20, 15,6, 1
and for the third term (2x)^4 and (-1)^2
[tex]15 \times {(2x)}^{4} \times {( - 1)}^{2} [/tex]
[tex]240 {x}^{4} [/tex]
Since only the coefficient is needed
the answer is 240.
The required coefficient of third term is 480.
Coefficient of the third term of (2x−1)^6 to be determine.
Coefficient is defined as the integer present adjacent to the variable.
Here, (2x−1)^6
Using binomial expansion,
Third term = P(6,2)(2x)^6-2(-1)^2
= 6*5*16x^4
= 480x^4
Thus, the required coefficient of third term is 480.
Learn more about coefficient here:
https://brainly.com/question/2507029
#SPJ2
Find the graph of the inequality y<-1/5X+1.
Answer:
Please refer to attached image for the graph of inequality.
Step-by-step explanation:
Given the inequality:
[tex]y<-\dfrac{1}{5}x+1[/tex]
To graph this, first let us convert it to corresponding equality.
[tex]y=-\dfrac{1}{5}x+1[/tex]
As we can see that the above equation is a linear equation in two variables so it will be a straight line.
Now, let us find at least two points on the above equation so that we can plot them and then extend it to get the complete graph.
Two points that can be easily found, are:
1st put [tex]x = 0[/tex] , [tex]y=-\frac{1}{5}\times 0+1 =1[/tex]
So one point is (0, 1 )
Now, put y = 0,
[tex]0=-\frac{1}{5}\times x+1\\\Rightarrow 1=\frac{1}{5}\times x\\\Rightarrow x = 5[/tex]
Second point is (5, 0)
Let us plot the points on the graph and extend the straight line.
Now, we know that it is an inequality, the are will be shaded.
As there is no equal to sign in the inequality, so the line will be dashed.
Let us consider one point and check whether that satisfies the inequality or not.
If the point is satisfied in the inequality, we will shade that area towards the point.
Let us consider the point (0, 0).
0 < 0 +1
Point is satisfied.
Please refer to the attached image for the graph of given inequality.
Loreto quería decorar un viejo tambor metálico para usarlo de paragüero. Para ello, contaba con un grueso cordón que pretendía pegar en el contorno del borde superior del tambor. Sabiendo que el diámetro de este era 58,5 cm, cortó el cordón, dejando el trozo más largo de 175,5 cm de longitud de modo que le alcanzara justo, pero le faltaron 7 cm. ¿Cuál fue el error de Loreto?
Answer:
u should put the question in English to so English people can also help
Set A={XIX is an even whole number between 0 and 2) = 0
True? or false?
false
Step-by-step explanation:
false
If we did not write the equation 5x=21, instead we wrote it 21=5x,
we would get a different solution.
O True
O False
Answer:
Step-by-step explanation:
5x = 21 and 21 = 5x are identical relationships, and so the solution would be the same in both cases. (Commutative Property: order of addition/subtraction is immaterial)